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The electronic structure near defec¢®ich as impuritiesin superconductors is explored using a fully
self-consistent technique. This technique exploits the short-range nature of the impurity potential and of the
induced change in the superconducting order parameter to calculate features in the electronic structure down to
the atomic scale with unprecedented spectral resolution. Magnetic and honmagnetic static impurity potentials
are considered, as well as local alterations in the pairing interaction. Extensions to strong-coupling supercon-
ductors and superconductors with anisotropic order parameters are form{&0&63-182¢07)04537-2

. INTRODUCTION di(x,V,T) ¢€?

* &nSTM(a)) Im GU(X,X;(,U)
dv h j_wda) dw ; T )
Low-temperature superconductors almost always have a 1)

high concentration of nonmagnetic impurities. Even in the
dirty limit, however, where the mean free path is shorter tharHere e is the charge of the electron amtyty(w) is the
the coherence length, superconductivity endtrékis phe-  Fermi function in the STM tip
nomenon can be understood by generalizing BCS péiting
be between degenerate Kramers-partnered states in a time- w—eV
reversal invariant systefiMagnetic impurities, which do Nstm(@) = 1+exp< KeT
break time-reversal invariance, have more profound effects
on the superconductor in dilute concentrations than nonmagdrhe local density of states is proportional to the imaginary
netic impurities, lowering the critical temperatufg (Refs.  part of the retarded Green’s function fully dressed by the
4-6) and producing localized states within the §adpwhich  interaction of the electronic system with the impurity.
at sufficient concentrations hybridize to produce The spatially dependent differential conductivity around a
gaplessnes¥ In the course of the investigation of the effects nonmagnetic impurity at the surface of a superconductor has
of impurities on superconductivity during the last four de-been considered theoreticafiyfor both isotropic and aniso-
cades, the primary emphasis has been the influence of imptropic order parameters. In Ref. 26 the impurity was modeled
rities on bulk properties. These effects have been treateds a point defect, and spatial oscillations in the LDOS at
within a strong-coupling formalisnte.g., Ref. 15 but only  various voltages were calculated. These oscillations are the
very recently self-consistently and beyond the Bornsuperconductor's analog of oscillations in the LDOS created
approximationt® The above work was primarily concerned by step edges and defects on noble-metal surfAc&sThe
with bulk or impurity-averaged characteristics and ignoredsuperconductor’'s LDOS oscillations would allow one to
the spatial structure of electronic properties near to the immeasure the anisotropy of the superconductor’s order param-
purity. eter. The conductance oscillations for voltages just above a
Among the first local properties calculated in the vicinity gap minimum or maximum are strongly pronounced in the
of an impurity in a superconductor were the structures ofeal-space directions corresponding to the momenta of the
screening clouds around a charged impdfity and a mag- gap minimum and maximum. Calculations followed which
netic impurity’®'°in a superconductofcharacterized by ex- considered sharp energy features in the scattering process,
ponentially decaying Friedel-lik€ oscillations. The oscilla-  such as resonant stat€’s’® Nevertheless, an important as-
tion of the order parameter around a magnetic impurity wasumption of these calculations has remained unchecked in
first evaluated without self-consistenty>® A self-  detalil, that the electronic distortions induced by the impurity
consistent calculation was reported for the order parameter ate local, including the deformation of the order parameter.
the impurity and very far away foweakmagnetic impurity ~ Self-consistent calculations using the Bogoliubov—de
potentials by Schlottmantf,and far away from nonmagnetic Gennes(BdG) equationd® followed for two-dimensional
impurities by Fettef® systems?~**but have been hampered by finite-size effects.
Interest in local properties near impurities in supercon- A magnetic impurity differs from a honmagnetic impurity
ductors has been revived by the capability of scanning tunin that a localized state exists aroundit>*°The first cal-
neling microscopySTM) to perform localized spectroscopic culations of the LDOS of the localized and continuum states
measurements. The differential conductivity measured at around a magnetic impurity were performed recently both
point x, voltageV, and temperatur@ can be related to the with a simplified analytic model and numerically via the self-
local density of stated.DOS) at the tip location as follows: consistent techniqdé described in this paper. Calculations
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of the LDOS of the localized state with angular momentumnecessary spectral resolution. The key energy scale which
guantum number’=0 were performed with a slightly dif- must be resolved is the superconducting gap. Thus, the nu-
ferent analytic model and numerically in two dimensions viamerical difficulty increases as the ratio of the Fermi energy
the self-consistent BdG equatiotisThese calculations were t0 the gap becomes large. Hence the band structure assumed
motivated by reports of experimental measurements aroun@’ the superconductor must be somewhat unreali§tic

Mn and Gd atoms on a niobium surface. The experimentalRefs. 54, 55 the Fermi wavelength was approximately 100
results, which have now appeared in Ref. 39, indicéte: , Which is mappropna}ely Iargr’é). This limitation extends
discrete states are evident within the energy gap and th cal_cul5a7t|ons of the interaction between a vortex and an
LDOS associated with them is asymmetric with voltage!MPUrty.” the characteristics of the vortex lattit®:® and
aroundV=0, and(2) the LDOS becomes indistinguishable yvork on a nonmagnetic impurity™*> and a magnetic
from the bulk density of states within a distance greater thaffmPun

ty*®in a two-dimensionas-wave ord-wave supercon-
the Fermi wavelength but much less than the coherencductor. In contrast, the computational requirements of the
length.

Koster-Slater technique are determined by the range of the
Another type of defect is a local change in the pairing .

impurity potential, rather than the necessary spectral preci-
interaction. The resulting spatially dependent order param§'°n'

eter can then distort the LDOS. An order-parameter suppres- In Sec. |l of this paper we first describe the BdG fqrmal—
sion can even localize states, as in a vortex £0fé. ism for local defect potentials and then compare with the

The local electronic properties of all of these defects Car{(osgelr -Sblaterdformgl_lfsm. t.Sectm? ”tl' (Ijesc;]r]br(]es an 3nalyt|c
be calculated self-consistently from the Gor'kov equdfion model, f?hse on it tgnc It;)nh poten I?t,hw Ic re_prci uce?t
without further approximation with the technique introducedS°™M€ Ot the guantitative benhavior o theé numerical resufts.

in Ref. 37. Our technique for calculating the electronic struc-SeCt'on IV discusses the results of the numerical calculations

ture around a defect in a superconductor is related to thg)r magne_tic impurities, ngnmagnetic impur_ities, impurities
Koster-Slater inversion techniques for determining the Ioca|ncorporatlng both magnetic and nonmagnetic potentials, and

electronic structure of impurities in met4* Since its iInhomogeneities in the pairing interaction. A heuristic pic-

original application to localized vibrational mé)d”er’sthis al- ture of the electronic structure near these impurities will be
gorithm has been applied to numerous problems includin resented_ here, and the calculaﬂc_ms will be co.mpared with
deep levels in semiconductdfsand impurity states in he analytic model of Sec. Ill. Section V generalizes the for-

magneté’ The Koster-Slater technique separates spac@a".sm of Sgc. Il to the case of strong-coupling and aniso-
around the defect into two regions: the near field and the faloPically paired superconductors.

field. The far field is a region distant enough from the defect

that the potential is insignificant and the order parameter has Il. FORMALISM

relaxed back to its homogeneous value. The near field is the
region close to the defect where the potential is finite or the
order parameter is distorted. In essence, the Gor'’kov equa- To place our formalism in context we will contrast it with
tion that determines the Green’s functions of the inhomogethe BdG equations, which are Schieger-like equations for
neous superconductor is inverted in the real-space region dfie electron and hole components of the quasiparticle wave
the near field. This paper describes the technique in detaifunctionsu(x) andv(x), respectively. These are, for a free-
expands on an analytic model introduced in Ref. 37 and reelectron band structure with mass the positive-energyi)
ports several calculations of the properties of the defects desolutions to

scribed above.

In constrast to the Koster-Slater technique presented here,
some other formalisms for inhomogeneous superconductiv-
ity, such as Ginzburg-Landau thedtyor the Eilenberger
equationg? treat the spatial degrees of freedom as coarse (V)2
grained over the superconductor’s coherence length. Coarse- .
grained approximations are not appropriate for considering | 2m ~E=Vo(X)+aVe(X) [vy(X)+ A% (X)us(x) =0.
electronic structure on the atomic scale near a defect. These 3
approximations are not made, however, in deriving the BdG
equations. These equations are generalized "Sialger HereoVg is a position-dependent, spin-dependent potential,
equations for the electron and hole wave functions of a quasuch as one originating from an impurity with a classical
siparticle, and are valid for a superconductor with an arbi-spin. V is a position-dependent nonmagnetic potential and
trarily varying order parameter, only constrained by the va-A(x) is the inhomogeneous order paramet&(x) can be
lidity of BCS theory. chosen real since the defect potential is F8dlhe quantiza-

Unfortunately, the BdG equations have significant practi-tion direction of the electronic spins in the superconductor
cal difficulties as well. Despite qualitative success modeling(o= *1/2) is chosen parallel to the classical spin. A classi-
STM measurements of a single vortex in superconductingal spin has no quantum dynamics, and cannot flip the qua-
NbSe,%° calculations of the electronic structdte® using  siparticle spin. Hence spin is a good quantum number for the
the BdG equations are hampered by the difference in energyuasiparticles and only two coupled equatipBss.(3)] are
scales between the Fermi energy and the order paramet@equired. The combinationsVs* Vy have physical signifi-
Since the BdG equations are solved numerically for a finitecanceioVs+ Vg is the potential felt by an electron of spin
system, the difficulty of the calculation is determined by thewhile oVs—V, is the potential felt by a hole of spie.

A. Bogoliubov—de Gennes equations

(hV)?
2m

—E+Vy(X)+aVg(X) U (X)+A(X)v,(X)=0,
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The spatially dependent order parameter is determined [ ot
self-consistently: FOXX' 0)=—i J_mdte"” O(t)(0[{#1(X";1),4,(x;0)}/0),
9
. Ens
A =2 ¥(%Eng)Uns (X0}, ()tan )
no 2kB

F*(x,X';— )= —if dte'“to(t)
wheren labels the states for each spin T is the tempera- o
ture, andkg is Boltzmann’s constanty(x,E,,) is the effec- ><<O|{¢1r(x’;t),zp}r(x;O)HO), (10
tive electron-electron interaction potential, which is

Y(X,Eno) =70, Ene<fowp, —Gf(x,x’;—w)=—if dte'“to(t)

=0, E,,~hop. ) X<0|{¢I(X,;t)'¢l(X;0)}|o>' (12)

Fora spherically symmetric defect_the wave function§ arerhe explicit subscriptg and | do notrefer to the spin of the
eigenstates of angular momentum with quantum numbers gy citation in the superconductor but rather to the spin band

andm. Typically the defect is placed in a sphere of radRis  of the normal state used to construct the excitation. The key
with appropriate boundary conditions. The valueRols de-  concept is that the spiap band contains botip electrons
termined by the spectral resolution necessary for accurately,q qown holes just as the spidewn band contains both
evaluating Eq(4) and the spectral width of features measur-qownelectrons andip holes. The convention employed here
able by, for example, the STM. The typical complicationsjs siandard in the theory of semiconductors where a spin-up
resulting from approximating an infinite system by a finite- gjectron excited above the Fermi energy leaves a spin-down
size system apply, such as discrete states above the enengyje helow the Fermi energy. This is convenient for mag-
gap and the heavy investment of computer time required fopetic potentials since if spin-up electrons are attracted to a
large values oR. For example, in the calculations for the magnetic impurity spin-down holes should be repelled by the
vortex in NbSe,>> ez /Ao=32 was the largest ratio of the jmpuyrity. In the presence of a single classical impurity spin,
Fermi energy to the homogeneous order parameter consighe quasiparticle spin is a good quantum number despite
ered. This value is unrealistic, and is a result of inapproprig|ectron-hole mixing. Our convention determines the compo-
ately fitting the coherence length and upper critical field ofgjtion of a spin-up quasiparticle to be part spin-up electron

NbSe to a free-electron model. A more realistic band ang part spin-up hole, rather than part spin-up electron and
structur@® has a bandwidth to energy gap ratio at least arpart spin-down hole.

order of magnitude greater, and a highly anisotropic Fermi  pqor >0, G(x,x';w) describes spin-up excitations, in-
velocity. Niobium has areg/Ao=705, rendering its LDOS glving the mixing of electrons in the spin-up band with

numerically inaccessible for most potentialg and V. holes in the spin-down band. Fer<0, G(x,x'; ») describes
spin-down excitations, involving the mixing of electrons in
B. Koster-Slater inversion formalism the spin-down band with holes in the spin-up band. Since

We now introduce a self-consistent method which works>P 1 'S @ good quantum number it is not necessary to use a

within a sphere whose radius is determined by the range 4><4bforma_l|sm|3f_s%ch ?js. kil Eef'l 62. TheRnc;ta;;)n here
the defect’s potential and utilizes the continuum spectrum o as heehn simpified an |mpr'ovfe relative to Ret. 37. f
the homogeneous superconductor. In essence, we invert theT e homogeneous Green's function is independent, 0
Gor’kov equation in real space. The Gor'kov equatfdior a
defect in a superconductor can be written in the Nambu

formalismbL [ exxe) f(x,x";w) )
ormalisnf! as g(x,x"; @) (f*(X,X';—w) T (12)
J dX"[ 8(x—X") — g(x,X"; 0)V(X")]G(X" X" ») The potential
_ ’. Vo(X") +Vo(X") SA(X")
=g(x,x";w), (6) | 'S
- o= e e 03

whereg is the homogeneous Green’s functidn,is the po-

tential, and the inhomogeneous retarded Green’s function, Where 6A(x)=A(x) —Aq andVs, Vo, andA(x) have simi-
lar meaning above as in the BdG equations. The factor of

Gi(xX';0) FOx,x" o) one-half fr_om the electron spin has been incorporated into
G(X,X’;w)=< . . . . . @ the potentiaMg. To be concrete, and without loss of gener-
F*(x X' —w) —Gi(xX;-w) ality, the spin direction attracted by the potential will be
called spin up, and the spin direction repelled will be called
The elements of this matrix are spin down®® The self-consistency equation for the order pa-
rameter is

G (XX ;)= i Jidteiw‘0<t)<0|wx';t>.¢$<x;0>}|0>,

® 5A(X)=f:dwy(x,w)n(w)lm F(x,X;w)—Aqy, (14
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wheren(w) is the Fermi occupation function at temperature 0.5 — —
T. 0.0
For a BCS superconductor with an isotropic gap in a para- <~ ’
bolic band, foro much smaller than the Fermi energy, = -05
g
No 2 © 10
g(x,x’;w)=——e_(A0_“’) RNy L L
Ker -1.5
0 2 4 6 8 10
r (units of k)
X | coSKgr + ———= sinkgr |,
\/AS— w? FIG. 1. Change in the local order paramet&k(x), for a mag-
netic potential strengthg= 7Ny|fdxVg(x)|=1.75 as a function of
AN, > the distanc? from the impurity. The change becomes negligible
f(x,X;0)=— e~ (80— w® M AITA0E gin K, beyond 16 *.

k;:l’ \ Aé_ (1)2

(15 We thus obtain the useful result that the electronic structure
in the far field is easily determined once the electronic struc-
ture in the near field is known. The connection to fhe
matrix formalism is straightforward, as from E@2),

wherer =|x—x’| andNy is the density of states for each spin
at the Fermi level. The coherence lengik-7vg/mAg,
wherev is the Fermi velocity. These expressions are valid
for w above and belowA, so long as the imaginary parts of T=V(—-g""V) L (23
both f andg are multiplied by sgrw.

One strength of this formalism is its reliance on the short- Certain features of the above equations simplify their nu-
range nature of the defect's potential. Solution of B8).  merical implementation. Each angular momentum channel
requires inverting the frequency-dependent real-space matrisonstitutes an independent block-diagonal submatrix in

M(w). Since the bare Green’s functions in Eq$5) have
M(X,X"; @)= 8(X—=X")—g(X,X";0)V(X") (16) analytic expansions in spherical harmonigw) can be cal-
i . 1 culated quickly. These expansions are detailed in the Appen-
to obtain G(x,x";w), so G=M~-g. The structure of g
M(x,x"; ) allows for a precise description of the difference  The value oR is governed by the longest-range potential.
between the near field and the far field. We require that thg,, this paper that is determined, not by the shorter-ranged
defect's potential/(x) is zero for|x|>R. The spacéx|>R  magnetic and nonmagnetic potentials, but by the self-
belongs to the far field, whereas the spadesR belongs to  congistently determinedA(x). We modelVs and Vo with
the near fleld.. We can t'hen s.eparate any real-space nAatrix Gaussians of radiuk;l and evaluate Eq(14) at T=0.
symbolically into four pieces: The OA(x) for wvg=wNg|fdxVg(X)|=1.75 and v,
An—n pn—f ='7rNo|fdeo(x)|=0 i_slshown in Fig. 1. While p;cillating
A:( ) , (17)  With wavelength~ kg ~, SA(x) falls off to a negligible po-
tential within 10(;1. A typical radial grid of 100 points
provides a numerically robust solution. The self-consistent
solution depends on the value of

Af~>n Af—»f

wheren andf label the near-field region and far-field region,
respectively. The particular example Bf is block triangu-
lar: NoAo/ki=(273%¢ke) 1= (4m2er/Ag) "L,  (24)
I-g"""V 0 which for niobium is 3.6¢10°° (Ref. 64. This is the single
M= —gnv ) dimensionless parameter required to parametrize the free-
electron model of a superconductor.
(1—gn—nv)~t 0 In contrast to the Koster-Slater technique described here,
l:( ) (18  which exploits a physical distinction between the near field
g | and the far field to accelerate the numerical calculation, the
BdG equations treat the near field and the far field on the

It is clear from Eq.(18) that the computational effort in same level. A largeR is desired for decent spectral resolu-
inverting M, and thus finding the inhomogeneous electronic ) 9 P

structure, is entirely determined by the complexity of invert-g?rgink;st ;Zenggzsgﬁsﬁfaﬁn'f Iltlenr::;c:att)i)(/) :%;ntigcggéog' La-
ing M"~". The inhomogeneous Green’s functions in the : P q

near and far fields are tions, by comparison, is typically slower gnd substantially
less accurate than the Koster-Slater technique.

er‘IV(I _ ganV)_l

Gn—»n:(l _gn—>nv)—lgn—>n' (19)
C. Connection to the Born approximation
G f=(1-g""Vv) g™, (20) In Ref. 26 it was argued that calculations within the Born
approximation for thespatial structure of thedI(r;V)/dV
G =g —-g""V) 1, (2)  would remain accurate for strong potentials, so long as the

potential was short ranged. In this section we explicitly make
G =g +g V(I —g""V) gt (22)  the connection between the result from the Born approxima-
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tion and the result from the Koster-Slater technique in thelll. ANALYTIC SOLUTION OF THE POINT POTENTIAL
limit that self-consistency can be ignored and that the size of

. ) A. Magnetic and nonmagnetic point potentials
the potential approaches a point. g g point p

In this limit Eq. (22) is Approximating the local potential by & function
1 1 VstV 0
== 2 Im G, (xXw)=— — Im{2g(x,X; ) VOO=Va)=| Ty Ly |90 (30

+[9(%,0; @) Ve ©)9(0,%: ) 111 leads to a simple expression for HE),
—[g*(x,0;— w) 1-9(0,0;w)(Vs+ Vo) —£(0,0;)(Vs— Vo) )
XVE(— 0)3* (0,X; — ) |22, —*(0,0;— )(Vg+Vg) 1+9*(0,0;— w)(Vs— Vo)

(25) X G(0,0;0)=M"""(w)G(0,0; )
where Vgg(w)=V[1—g(0,0;0)V] 1. The inhomogeneous =9(0.0,0). (3)
part of the right-hand side of E@5) has the following form | principle M (w) can be found from the Green’s functions
if the off-diagonal elements of .(w) can be ignoredthis is  in Eq. (15), however there is a divergence in the real part of
appropriate when self-consistency is not impontant g(r;») asr—0. This divergence is coped with in Ref. 8 by
discarding the divergent piece. This approximation is essen-
1 tially an assumption ofstrict particle-hole symmetnfnot
- IM{ ([ Ve @) 11— [ Vi — ©)122(9(X,0,0)g(0,X, @) merely linearizinge(k) arqundeF]. We now discuss the ef-
fects of this approximation on the local properties of the
—(x,0,0)f(0,X,))}. (26) system in thenormal state. The heuristics will be simpler for
the normal state, but the conclusions also apply to the super-

In the Born approximation the Green'’s functions appear inconductlng state.

the same combinations but the prefactor is the nonmagnetic _ .

potentialV,. Hence the spatially dependent features reported B. Particle-hole symmetry in the normal state

in Ref. 26, which are determined by the Green’s-functions | order to focus on the spin-dependent potential, the non-
combinations, are qualitatively retained in our more com-magnetic potential will be set to zero. The normal-state prop-
plete model. erties can be obtained from E@.5) for A;=0. That yields a

There would be no inhomogeneous structure for a maggreen's function appropriate for an outgoing wave:
netic potential in the Born approximation, however, since

(XX ;0)=— TNo elker (32
efl W)= ’
0 Vs where w is considered close to the Fermi surface so the

change in momentum due ©+0 is negligible. Theinho-
so the distortions in the LDOS of the two spin directions aremogeneousocal density of states obtained for&function
equal and opposite. potential using this Green’s function is unphysical, since it
diverges at =0. Now we examine the local density of states

D. Self-consistent potentials when the divergent real part of is ignored:

In addition to the self-consistent order parameter, self- 1 (mNgVg)? | sirf ker
consistent spin-dependent and charge-dependent potentials™ — Im GU(X,X;w):No(l— 1+ (7NgV?| (ker)2 )
: . ovs F
can also be constructed fof(x) using the calculated spatial (33)
structure of the spis(x) and chargep(x) around the defect,
This expression yields the pathological behavior that the lo-
cal density of states near a spin-dependent potential is ex-
actly the same for spin-up electrons as for spin-down elec-
trons. A spatial response in the LDOS to a spin-dependent
(28 potential that is identical for up and down spin electroniy
occurs for certain band structures witp at special energies
(e.g., half-filled tight-binding models The local density of
(29  states fows=7N|V¢=0.1is plotted in Fig. 2 as a function
of distance from the potential. Although it is somewhat dis-
torted from its homogeneous value, it does not show the
Since these self-consistent quantities are unlikely to changgpin-dependent asymmetry of a more realistic model. An ex-
much between the normal and superconducting $tate,  act calculation for a Gaussian of range® is also shown in
calculations are reported for such potentials in this paper. Fig. 2 for comparison.

Im[GT(x,x;w)—GL(X,X;w)])

w

S(X)Z%Jldwn(w)( -

p0=3 f_ldwn(m( -

Im G,(X,X; ®)
T )
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115 pr===—= T y T the response of a particle-hole symmetric system to a poten-
Spinup | Gaussian, range=k, tial does not depend on the sign of that potential, #hds
! T fA{lmeTtI’r'f required to distinguish between electrons and holes. A
= ! spin-up electron feels a potent@l+ vy, whereas a spin-up
< 1.05 ! hole feels a potentiads—vy. This additional honmagnetic
g3 D\ potential only breaks particle-hole symmetry localyithin
$ | Eitherspin NS —Erse e the range of the potentialwhereas for a realistic band struc-
s Vi ture the particle-hole symmetry is broken everywhere in the
g 095 l’ solid. _ o
®n | For a Gaussian potential with range
o down e 2 [y 1 (_ (kea)? “‘1}
0.85 h . 2 "t Jmkea n=2 (2n—=3)! 2 '

(39

For the Gaussian potentials numerically calculated in this
FIG. 2. Spectral weight in the normal state around a magneticpaper a=k,§1 S0 a=0.704.

impurity with vs=0.1 as a function of the distance from the impu-
rity r. The solid lines are exact solutions for spin-{gttracted by
the impurity) and spin-dowr{repelled by the impurityelectrons for

a Gaussian potential of rangg * in a metal with a free-electron As seen from Fig. 1, the distortion of the order parameter
dispersion relation. The dashed line, which is the same for botlig short-ranged around an impurity. We may then consider
spin-up and spin-down electrons, is the calculated spectral weighhe effect of the order-parameter distortion on the electronic
for the particle-hole symmetrié—function potential model. The dot- structure to be parametrized by an effectigdunction po-
dashed line is the result for &function potential calculated using tentjal SAS(x) similarly motivated to thes-function poten-

the muffin-tin Green’s functions. The muffin-tin Green’s functions tja1s for the magnetic and nonmagnetic potentials. The po-
fix the pathological result of the symmetric model that the SpecuakentiaIV(x) is changed in the following way:

weight is the same for spin-up and spin-down electrons. The

muffin-tin parametere=0.704, is determined by the range of the

Gaussian potential and is therefore not a free parameter. V(X)=V8(x)=

r (units of kF'1)

C. Self-consistency within the analytic model

VetVy  SA
A Vg—V,

A more realistic approach to coping with the divergenceThe relative effect of the’A compared to the other two po-
in Eq. (32 without yielding the pathological result of Eq. tentials is likely to be small for the potentials considered in
(33) is to average the-symmetric real part of over arange  thjs paper. TypicallyNgVs/k3~1 or NgVo/ki~1, and for a

given by the assumed range of the potential. That yields §ee-electron model of niobiurN0A0/k§=3.6>< 105, Even
finite value for the local density of states at the potential, bu?or a small coherence length of é= 10k;1

does not control the behavior for small To perform that NAA- /K3 =1.6X10"3

task, we consider a “muffin-tin” Green’s function. This 070 °F = '
. 50— 7TN05A

function has the form

8(x). (36)

For convenience we define

N D. Energies of localized states in the superconductor
,. 0 Likgr
gx,x";w)=———¢€"F, >Ry . .
Ker The energies of the localized states of angular momentum
. / correspond to the positive energies=|(}|, where
=—imNg—mea, r<Ry, (34

n—n —

wherea is the average of the-symmetric real part of over detM™(0)=0, (37)
the range of the potential, ariR}, is chosen so that the spa- and the solution is traced to thé-channel block oM (see
tially integrated spectral weight of the Green’s function isAppendix. For the analytic modelM""(w) is the matrix
unchanged(as required by probability conservationVe  shown in Eq.(31), whereg(0,0;w) in the superconducting
show in Fig. 2 the local density of states calculated with thisstate is constructed similarly to that of the normal state,
Green’s function. In particular, the asymmetry in the re-
sponse of spin-up electrons and spin-down electrons to a
spin-dependend-function potential is governed by this phe-
nomenological parameter. The agreement with the exact
solution is good at the origin and far from the impurity. The The anomalous Green’s function is given by Etp), since
muffin-tin Green’s function is discontinuous, unfortunately, it does not have a divergence problemrasO,
but yields a better approximation of the response of the sys-
tem than the particle-hole symmetric approximatigis-
carding thew-symmetric real part of the Green'’s functjon

It is also possible to generate an asymmetry between
spin-up and spin-down electrons by adding a nonmagneti¢his analytic model only has localized states in the0
potentialv, with thewv to parametrize the impurity, but still angular momentum channel, as expected féifanction po-
maintaining a particle-hole symmetric band structure. Sincéential. Those energies are

0(0,0;w)=—mNg

2 39)
o ——.
AS— w?

£(0,0;0)=— 7N, _ Do | (39)
Ad— w?
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vsSo= [(0580)°— (V2 + 72)(55—72)]1’2\ 205604
wo= U§+’}/2 AO: AwO—W. (42)

(40)
E. Spectral weight asymmetry in the analytic model

where A spin-up quasiparticle consists of amplitudes for a

spin-up electror(electron in a spin-up stgteand a spin-u
y=[(1+a?)(vi-v5~ 85 —2avo—1]/2. (4D hFc))Ie(eFI)ectron mri(ssing from a sp?n—dosvn zsa):ht@herefoee thg
spectral weight of a spin-up localized state will be divided
Equation(40) reduces to a result obtained by SHibehen  petween an electronlike pole in the spin-up bandataw,
vo=a=38=0, a result obtained by Rusinbvwhen [with weightA(r; )] and a holelike pole in the spin-down
a=8,=0, a result obtained by &swhenv,=8,=0, and a band atw=— wo [with weightA | (r; — wg) ]. These two types
result obtained by Salkola, Balatsky, and Schriéffevhen  of excitation are independently resolvable by a scanning tun-
a=0. neling microscope, since at positive sample voltage relative
One solution of Eq(40) is a spin-up quasiparticle and the to the tip the STM places electrons in the sample, whereas at
other is a spin-down gquasiparticle. There may be only oneegative sample voltage the STM places holes in the sample.
real solution to Eq(40); then only one”’=0 localized state We define the energy of the pole in the spin-up band to be
exists around the impurity. This occurs for largg. When  ; and in the spin-down band to ke, . Even thoughw, is
vs=0 the localized states are due to order-parameter sugways positive, w; can be positive or negative, and
pression, and the energies of the two spin states are degen;=—w, .
erate. This follows from time-reversal symmetry in the ab- The spatial structure of the spectral weights of the spin-up
sence of a magnetic potential. For smajlthe two energies band and spin-down band components of the localized state

are split by an amount are given by
|
7NpA A(Z)—wz (UO_US)Ag-F(UO+U3)w2+(UO+Us)a’2(Ag—(1)2)
Ay(rw)= o(w—w,) 2
ZUS AO AO
2(vot+vg)awAZ— w?—(1+a?)(vEi—v2)(a(A2— w?) + w VAL - w?)
+ Aé , r<Rg
_WNOAO (Ag—w2)3/2 ZF(\/W) 5 S 2 (22
T ken)? 2043 O}~ e Ay (0—w,) Usm vot(vs—vp)
x @ iP(Ker )+ (vt vg)| 1+ ( Y —— 2(Ker)
a— ———— |si N+ (vsto Vs~ V)] ———=—a| |CO r
A o2 F sTVo s~ Vo AZ= o2 F
w .
+2(vstuvg)| vo—vst[1—a(vg—uvg)] ﬁ)sm(kpr)cos{kpr)l, r>R,.
(43

The above expression is set up for use as a muffin-tifcor a spin-down quasiparticle there is an electronlike pole in
Green's function. The construction of such a Green’s functhe spin-down band and a holelike pole in the spin-up band
tion requires that the spectral weight integrates to one. Howand the relative weight is still given by the expression above.
ever, ignoring the contribution from<R,, the above ex- This expression fovy=0 was reported in Ref. 37.

pression can be integrated over all space, and still yields In the following section these results are compared with
one-half for the spin-up band and one-half for the spin-dowmumerical calculations of properties in the superconducting
band to orderAy/er. Hence the quasiparticle is one-half stateandin the normal state.

electron and one-half hole. This provides additional confi-

dence in the above expressions. IV. COMPARISON WITH NUMERICAL RESULTS
The frequency-integrated weight at the defect of the two AND DISCUSSION

types of excitation can be calculated within the analytic _ .

rﬁgdel and ig(for 8,=0) y A. Nonmagnetic impurity

B ) ) Even strong nonmagnetic impurities at moderate concen-
Ai(r=0) _ 1+2a(vo—vy)+(1+a%)(vo—vs) trations will not suppress the critical temperature of a
A(r=00 1+2a(votve)+(1+a?)(vo+tve? superconductot.Nevertheless, it was recognized early”dn
(44)  that the local order parameter may be affected. In Ref. 25 the
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FIG. 3. Comparison of the spectral weight in the superconduct- 2
ing state at several frequencies to the spectral weight of the normal  (a) e\//A 0
state and the spatial dependence of the order parameter. All of these
curves are indistinguishable, but they have been displaced for better
visibility. The spectral weights are normalized to their value at large
distances from the impurity, and the order parameter is normal-
ized to the homogeneous order paramatgr This figure indicates
that normal-state properties drive the spatially dependent features of
the superconductor’s spectrum.

effect of the nonmagnetic impurity was calculated in the far
field by modeling the impurity potential with a phase shift.
The phase shifts were evaluated for two models: a spherical
square-well potential and ad-shell potential. Self-
consistency was ignored by only focusing on regions far
from the impurity where the change in the order parameter is
small compared to its homogeneous value. The order-
parameter change due to the impurity was found to oscillate
with the Fermi wavelength, and decay ras’ for r<é&. For
r>¢, expressions in Ref. 25 indicate a decayr of.

Figure 3 shows the spectral weighfr; w) at several fre-
guencies above the energy gap near a strong nonmagnetic FIG. 4. Differential conductivity(LDOS) as a function of volt-
impurity with a Gaussian potential of rangg! and strength  age and position calculated around a nonmagnetic impurity with
vo=7/8, calculated self-consistently for a superconductor=0.875. The LDOS is normalized by the homogeneous DOS of
with £k-=449 (a free-electron parametrization of niobium the normal state. The spectrum is suppressed substantially in the
The spectral weights are suppressed to approximately 30%cinity of the impurity. The temperature B.13A/ks, which for
of their homogeneous value at the center of the potentiafioPium corresponds to about 2 Ka) A coherence length appro-
Only continuum states are shown since no localized stategiate for niobiumgke=449. (b) A much shorter coherence length,
were found for this potential. The curves showing the specko:lo'
tral weight have been displaced from each other so that they
may be distinguished. Also shown displaced in Fig. 3 is thaveight far from the impurity. This expression is valid for
spectral weight in the normal state, normalized to the specsmall r and smallw, the regime of interest for STM on a
tral weight in the homogeneous metall the quantities plot-  superconductor. Fow of order Ao, Eq. (45) is valid for
ted in Fig. 3 arddentical to the accuracy of the calculation. r<é&.

Figure 3 is an illustration of a relationship between the spec- \ye further illustrate the relationship of EG5) in Fig.
tral weight in the normal state and the spectral weight in thql(a), which shows the LDOS for this nonmagnetic impurity

superconducting state, normalized by the normal-state DOS, as a function of volt-
A(r) age and position calculated from Eq(1) with
A(r;w)= gnTAsc(“’)' (45  T=(0.13)Ay/kg. This temperature corresponas2 K for
0

niobium. There is no change in the enemggp due to this
where A,(r) is the spectral weight in the inhomogeneousnonmagnetic potential. Figure(@ shows that it is merely
normal state for energies near the Fermi surface Agfw) the local amplitude of the spectral weight which is reduced—
is the homogeneousuperconductor's spectral weight as athis would manifest itself in a locally reduced oscillator
function of frequency. Rl is the normal state’s spectral strength for an optical transition, or the reduction in the tun-
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neling current for an STM, which is directly proportional to squared, the spatial structure of the electron and hole spectral
the LDOS shown in Fig. @). Figure 4b) is an identical weights must be similar. They are, since the normal-state
calculation for a shorter coherence lengths 10&;1. There spectral weightA,(r;w) is roughly frequency independent
appears to be little difference, although here a localized stateround the Fermi energy over an energy range much greater
exists near the continuum. thanA,.
Figures 3 and @,b show for the nonmagnetic impurity We now comment on the lack of localized states near the
that the normal-state electronic structure determinespae  nonmagnetic impurity foitky =449 and the small binding
tial dependence of the superconductok@;w) for all fre-  energy of the quasiparticle fgike=10. The suppression of
guencies including near the energy gap. The potentidihe order parameter near the impurity may be considered to
strength of the impurity is orders of magnitude greater thariorm an attractive off-diagonal potential which may bind
Ay, and thus locally mixes in states far from the Fermi sur-quasiparticles. Localized states created by order-parameter
face in the homogeneous metal. These states are requiredsoppression would be doubly degenerate, due to the two pos-
construct probability densities which are suppressed by 70%ible spin statefsee Eq(40)]. Since the quasiparticle is half
near the impurity. The spatial structure of the spectral weightiole and half electron, if the electron part is attracted and the
in the normal state is essentially identical to that seen in Fighole part is repelled, one might expect the effects of such a
3 over an energy range around the Fermi surface which isonmagnetic potential on the quasiparticle to cancel. How-
orders of magnitude greater thanp . ever the binding energy of the localized state is an order of
Once the normal-state band structure has been distortedagnitude smallef wo=(1—2X10 %)A,] than that found
by the presence of the nonmagnetic impurity, supercondudh Sec. IV D for a suppressed order parameter via pairing
tivity is a small perturbation within a narrower frequency suppression. This may be explained by the well-known re-
range. The formation of the gap in the single-particle excitapulsive effect(quantum reflectionof a strong attractive po-
tion spectrum in the superconducting state is characterize@ntial on a quantum-mechanical particle. We find also that
by the “mixing” of electron and hole amplitudes to form in the case of the magnetic impurity that a large enough
guasiparticles near the gap edge. These quasiparticles, ther®@nmagnetic potential of either sign will suppress the bind-
fore, are constructed from single-particle eigenstates of thing of a quasiparticle to the impurity. We note here that the
metal which have already been strongly distorted by the im¥atio of the nonmagnetic potential to the off-diagonal poten-
purity potential. tial [ SA(r)] is much larger §o/NgAo~10% than the ratios
Equation(45) has important implications for spectroscopy of the nonmagnetic potentials to the magnetic potentials con-
on a superconductor, for one of the procedures for normalsidered below.
izing spectra taken at different lateral positions on a super-
conducting surface is to assume that the LDOS at a particular
voltage much larger thaf is the same. This is an attempt B. Magnetic impurity

to correct for possible changes in the tip-surface distance Recently, we have presented calculations of the LDOS
upon moving the tip laterally. A small change in the tip- (and thus the differential conductivity in an STM experi-
surface distance can have a strong effect on the tunnelingieny in the vicinity of a magnetic impurity’ These calcu-
current. Unfortunately this procedure will prevent an experi-jations indicated that the spatial structure of the electron am-
ment from seeing changes in the LDOS due to a nonmagjitude of the localized state differed strongly from the hole
netic impurity, including the conductance oscillations de-ampiitude of the localized state. A further result was that the
scribed in Ref. 26. . spectrum should recover to the homogeneous spectrum

We now discuss the properties of the order parametekyithin a few atomic spacings. Similarly motivated calcula-
A(r) is self-consistently determined, and is shown in Fig. 3tions of the LDOS due to the =0 localized state have been
for smallr to be identical in spatial structure to the normal- presented since théf,although these calculations did not
state spectral weight, address the continuum LDOS. The two models used in Ref.
38 were(1) a &function model solved using particle-hole
symmetric Green'’s functions, but not self-consistently, and
(2) self-consistent calculations for a two-dimensional tight-
binding s-wave superconductor within the BdG equations.
Since a nonmagnetic potential repulsive to electrons attracthe first method can only model the normal-state properties
holes, andA(r) depends equally on electron and hole ampli-properly for a particle-hole symmetric band structure, such
tudes, one might expect a nonmagnetic potential to havas at the Van Hove singularity in a two-dimensional tight-
little effect on the spatial dependence of the order parametehinding band structure. The second method must contend
However the allowable maximum spectral density of holeswith numerical finite-size effects, which make it difficult to
depends on the spectral density of the electron band whermlculate the continuum states. A result obtained from the
the holes reside, so if most electrons are excluded from théirst method which is only true for special band structures is
site, holes will be effectively excluded as well. To emphasizethat the spatial structure of the electron and hole components
this point we note that the scaled anomalous spectral weigldf the quasiparticle are the same. The authors of Ref. 38 did
Im F(r,r; o) is identical to the scaled\(r;w) for the fre- raise the possibility of an additional nonmagnetic potential as
quencies shown in Fig. [&nd for all relevant frequencies for a source of electron-hole amplitude asymmetry in the spatial
the self-consistency equation E44)]. Since ImF(r,r;w) is  structure of the localized state. We fodhdnd will explore
proportional to the product of electron and hole amplitudeshelow that there is, for realistic band structures, electron-hole
and A(r;w) is proportional to the electron amplitude asymmetry without a nonmagnetic potenffal.

A(r)_An(r) _A(r;w)
AO B 2N0 B Asc(w) '

(46)
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T T predicting the localized state energies. The muffin-tin model

Spin u = Spin u ) Jie \
A, p\ P =1 pin up will prove more successful at predicting the spatial asymme-
| try between the electron and hole amplitudes of the localized
ey state.

Mt The unimportance of self-consistency for determining the
energies of the localized states can be gauged by the small
difference between the short-coherence length result and the
long-coherence length result. The most important feature it
~~~~ determines in Fig. 5 is the size of the discontinuity in the
=i~ localized state energy atf,. This discontinuity is due to a

— discontinuous change in the order parameter at this magnetic
Spin down| potential strength, a result pointed out in Ref. 37 which will

L be discussed more below.

As seen in Fig. 5, the value off, is mostly independent
of the value of the coherence length. We present the follow-

FIG. 5. Energies of the quasiparticle poles as a function of thdNd justification of that observation. The decrease in the qua-
magnetic potential strengih, for the first two angular momentum Siparticle energy by the classical spin is proportional to the
states around the impurity. The spin-up and spin-down labels refepverlap of the atomic-scale potential and the impurity site.
to the band that the excitation resides in—an excitation with negaThe state is, aside fromra ? falloff, extended over a volume
tive energy(holelike) in a spin-up band is a spin-down hole. The given by the range of the exponential envelope of the local-
solid line corresponds totke=10, the long-dashed line to ized state[Eq. (43)], R=m&/2y1—(wo/Ag)2. Thus the
£ke=449, the short dashed line to the symmetric model of Shibapverlap, and consequently the quasiparticle’s energy reduc-
and the dot-dashed line to the result calculated with muffin-tintjon, is proportional twAg. When this energy exceeds the
Green'’s functions and=0.704. At a critical value o"S:U:OI the energy required to create a quasiparticmjxl the ground
up poles cross to negative energies and the down poles cross Qate contains a quasiparticle. Henegg is approximately
positive energies, |_nd|cat_|ngacha_nge in the character qf the_grounﬂdependent ofA,, and is determined primarily by the
state. The kink evident in the solid and long-dashed lines is realnormal-state properties of the superconductor.

an_d due to the discontinuo_tﬂathO) change inA(x) atvs, . The .. A more complete interpretation of the energetic diagram
unimportance of self-consistency can be gauged by the small dlf(-)f Fig. 5 requires an understanding of the threshold energy to
ference between the short-coherence length result and the Ion%-reate' a pair of excitations. such as in an optical experiment
coherence length result. . .p . ! . p. . P '
The pairing is suppressed local to the impurity since an up-

1. Energy and character of localized states spin electron is attracted to the impurity and its time-reversed

partner, the down-spin electron, is repelled. Therefore, the

energy needed to break a pair and create a localized quasi-

b

Energies of Quasiparticle Poles
o

° |Spin down

0.0 0.5 1.0 1.5
Magnetic Potential Strength (v,)

We will begin with a discussion of the energies of the

localized states around a magnetic impurity and the spifyarticie with angular momenturet in the vicinity of the
character of those states. Solutions to 87) can be evalu- magnetic impurity, whew <v?*, , is reduced from 2, to
. . 1 S /1
ated numerically. Figure 5 shows the dependence of the erxo+w/_ One member of thes broken pair is a delocalized
f /

ergies of the localized state poles for the first two angulaS in-down quasioarticle at the aap edaeth enerqy A
momentum channels on the strength of the magnetic potenf[;e other rgemb[()er of the broke% gairdiggmalizedgp))/in—ogb

: _ -1
tial. Results for a short coherence lengt=(10k *) are quasiparticle with energy . Forvs>v}, there is a spin-up

lshov;/r? (so_hi 4“929)1&5_'\_’;'1(3” las rIfESL:thS for a lot.n? cotm?.[re?ce quasiparticle with angular momentuin the ground state
ength (€= F)- € localized guasiparlicie state 10r ¢ i superconductdP. An essential point about the ground

smallv is the spin s'%%te attracted to the classical spin, whichy;ie of 4 superconductor containing classical magnetic im-
we will label up (1).” As the potential strength increases, ., .+ ac _ *

the excitation energy of each angular momentum state dé;tu;tlgei: ézms;:;_e?]t}l::;novfspgijrse/d(;?(;cilrloi; th\ nei Wgaraovu*nd
creases. At some critical valugt, the localized state be- ' S~

. o for any/ then theT =0 ground state contains localized qua-
comes a §p|n-down e?<C|t_at|on, t_he energy changes abrthI3§’iparticles as well as pairs and there are new low-energy
an::l thter(lj |fncrea}[ies W't:] ;pcreaslmg. TE(I)S behaV||(|)r can be excitations including the reformation of a pair as well as the
ex |r5a(':de trfom Ee "’Eg;".y I'fhn'zoth%} (h )] als v;/e t | excitation of a localized quasiparticle to a higher energy lo-
_evident from £q.(7) 1S that the -channel EIeclron pole 764 or continuum statévhich requires an energy less
involves entirely single-particle states within the spin-up

band when the”-channel solution to Eq.37), 1>0. This than anyAo+ ;).

occurs forvs<vi,. However, forQ<0 (vs>v?,), the elec-

tron pole involves entirely states within the spin-down band.

The holelike pole always involves single-particle states in  We now focus on our results for the local density of states

the opposite spin band from the electronlike pole. The sourcaear the impurity. Figures(é), 6(b), and Gc) show LDOS

of the quasiparticle amplitude for the various poles is indi-results forvs=0.5, 0.875, and 1.75 respectively. They show

cated in Fig. 5. the state split off from the continuum, with a larger electron-
Also shown in Fig. 5 are the analytic results for the polelike amplitude than holelike amplitud€ig. 6(a)], and then

energies fora=0 (Ref. 8§ and «=0.704. The muffin-tin lower in energy with an increased electron/hole asymmetry

model is no better than the particle-hole symmetric model ifFig. 6b)]. Finally the larger peak becomes holeliKeig.

2. Local density of states
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FIG. 6. Differential conductivitfLDOS) calculated around a magnetic impurity wi@# vs= 0.5, ¢kp=449, (b) vs=0.875, ¢k =449,
(©) vs=1.75, (ke =449, (d) vs=0.875, é&k=10. All are calculated wittkkgT=0.13A, In the progression fronfa) to (c) the asymmetry

between the two peaks increases and the higher peak moves to lower energies, eventually becoming holelike. The LDOS is normalized by
the normal-state’s homogeneous DOS.

6(c)]. In all three cases the spectrum recovers to its bulkalmost identical to Fig. ®). Since the localized state is
value within a fewk;l, due to ther ~2? decay of the local- broadened by temperature through Eb), this is a manifes-
ized state(Eq. 43. The asymmetry between the electronlike tation of the proportionality of the spectral weight dpA
and holelike peaks becomes more pronouncedvasn-  [Eq. (43)]. Figure 7 shows the spectral weight at the origin
creases. We note that the larger peak is always associat@ést the/ =0 state and for the’=1 state at its first maximum
with the spin-up band, whereas the other is associated witfor v =0.875 as a function of the inverse of the coherence
the spin-down band. Despite the apparent differences in peakngth, which is proportional tdlyA,. Figure 8 shows the
size, the spatially integrated electron spectral weight of th%pectral weight for§=449<;1 as a function ofvg for the
quasiparticle is equal to the spatially integrated hole spectrapin-up and spin-down poles at the origin for the 0 state
weight. The localized quasiparticle is always half electrongng at the first maximum for thé=1 state. It is clear that a
and half hole for all potentials examined here. BQvy,  nonmagnetic potential is not necessary to obtain an electron-
the spin-up band amplitude is electronlike and the spin-dowihole asymmetry.
band amplitude is holelike. At%, (1.32 for a free-electron In Fig. 9 we show the asymmetry at the impurity as a
model of niobium, the spin-up component becomes holelikefunction of v for two values ofé—a long coherence length
and the spin-down component becomes electronlike, as reyppropriate for niobium, and a short coherence length. From
quired by the change in the spin of the excitation. Fig. 7 it should be evident that the asymmetry is not sensitive
Figure Gd) shows the LDOS for a markedly different to &. It is, however, predicted extremely well by the normal-
coherence lengtht=10k- !, andv=0.875. It is evaluated state spin-up and spin-down band spectral weight asymmetry
for the same value of\y/kgT as Figs. 6a,b,0 and looks at the impurity (also shown in Fig. ® We can therefore
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FIG. 7. Spectral weight at the impurity €0) for the first an- FIG. 9. Ratio of the spectral weight in the spin-up band and in

gular momentum channef,=0, and at the first maximum for the the spin-down band at the impurity £0) as a function of mag-
second angular momentum channék=1, for poles in both the netic potential strength. This is plotted for the normal-state0
spin-up and spin-down bands, as a function of the inverse coheRrojected Green’s functionigolid line) as well as for the localized

ence length, showing a linear behavior. The magnetic potentiaftates for niobiuméke =449, long dashed linefor ¢ke=10 (dot- -
strength isvs=0.875. dashed ling and for the muffin-tin model. The muffin-tin model is

only successful fov¢<0.5, but that is due to a breakdown in de-

conclude that as with the nonmagnetic impufiig. 4), the scribing the normal state. The normal-state electronic structure is a
. good predictor of the superconductor’s electronic structure for the

spatial structure of the spectral weight of the localized statentire range ob
around a magnetic impurity is a normal-state property. We s
further show in Fig. 10 fov = 0.875 the/'=0, spin-up band t
and spin-down band projections of the normal-state spectrelg,r : :
weight to compare with the localized state spin-up band an(iif?gtlal envelope can be seen directly from E(S) and
spin-down band spectral weights for two valueskg . The \
normal-state and long-coherence length calculation are prag
tically indistinguishable. The insets shawA(r), which re-
moves the rapid power-law decay of the state. The localize
states for all angular momentawill decay as the power law
r~2. For the short-coherence length calculation the effect o
an exponential envelope is also visible. In the analytic result ) 2r w2
the exponential envelope should have a range AJ (r;o,)= BAnU(r,/)ex;{ - (—) \/1- (A_)
R=7&/2\/1— (wy/Ay)?, which corrects to better than 1% ™ 0

e discrepancy in Fig. 10. The power-law falloff and expo-

We can summarize these comments with a general equa-
n, similar in concept to that for the nonmagnetic impurity,

g. (45). That is, for a localized quasiparticle state of spin
o', the spectral weight of a localized state with angular mo-
Pwentum/ would be

X6(w—0oo' w,), (47)
——— Spin up whereB is a normalization factor so that the spectral weight
0.0002 |~~~ Spindown - of the state integrates to one, aAd,(r,/) is the angular

momentum/” projection of thenormalstate spectral weight

in the spino band. We note that for smail there is an
approximate relationship between the superconducting

00000 ey T state’s spectral weight and the normal state’s spectral weight

in each spin band,

L]

1l
o
L

0.0001

Spectral weight (units of k.%)

0.00004 | o =1
| ——- Spin down 1 E
oo0002f - ] 2E | doAri@)=An(n), (48
0.0 : =" . , where Ag<E<ep. This, in connection with Eq(47), im-
' 00000.0 0.5 1.0 15 plies a dependence on the normal-state structure of the con-

Magnetic Potential Strength (v,) tinuum spectral weight around the magnetic impurity.

FIG. 8. Spectral weight at the impurity €0) for the /=0
channel forék=449 as a function of magnetic potential strength
for poles in both the spin-up and spin-down bands. The spectral We now return to the structure af(x). This quantity,
weight in the spin-up band pole of thé=0 localized state satu- Which is not directly observable, formed the focus of several
rates at largev,. Also shown are the spectral weights at the firstinvestigations of the local structure around a magnetic impu-
maximum for the/'=1 localized states. rity. The oscillation of the order parameter around a mag-

3. Structure of the inhomogeneous order parameter
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FIG. 10. Spectral weights fof =0 localized state in the up and

down bands fow=0.875. The solid line is the normal state=0 I e
projected spectral weight, the long-dashed line is the localized state §f 05 /,-" """ v, =0.70 |
in a superconductor witlike =449, and the dot-dashed line is for 3 ) T XS - 1gg
£ke=10. The inset shows the spectral weight multipliedrByto 00 ¥ o vS: 1'37 -
remove the algebraic decay. The normal-state and long-coherence L /ﬁl e Vs; 1'75

length results are practically indistinguishable. The deviation shown 05 _,{"1 = i
in the short-coherence length superconductor’s spectral weight is fit j/

to within 1% by the exponential decay factor described in the text.

Hence the spatial structure of the spectral weight of the supercon- ~ ~1:0 0o é ’ ‘1 é ‘ é 10
ductor’s localized state is well-predicted by the normal-state spec- o) r (units of kF_1)

tral weight.

netic impurity was first evaluated without self- _ _
ConsistenC}?.l_Z?’ A self-consistent calculation of the order FIQ. 11. Order parameters as a fur\ctlon of_ distance from the
parameter at the impurity and very far away feeakimpu- impurity r calculated for several magnetic potential strengths&or
fity potentials was done by Schlottmatth. ng=449 and(b) ¢kg=10. In both cases there is a dlsconn_n_uous
As shown in Fig. 1, for large values of,, A(x=0)<O0. change |rlthe order parameter whenpasses through the critical
Sign changes i\, as seen in pair tunneling, have been sug-Strengthvso'
gested for magnetic impurities in the barriers of Josephson
junctions®®-%8The sign change iA(0) occurs(at T=0) pre-  suppression from one quasiparticle is cancelled by the lack
cisely atvZ,. Due to the spin and frequency symmetries ofof suppression from its unexcited Kramers doublet partner.
Egs. (6)—(13), the anomalous spectral weight Fr,r,o) For a spin-dependent potential, however, the anomalous
associated with the spin-up pole is always equal and opposigpectral weight near the impurity may be almost entirely
to the anomalous spectral weight associated with the spirtontributed by the single low-energy localized state. When a

down pole. As the pole in the spin-up band goes from elecquasiparticle is present in the groun%state, the ground state
).

tronlike (w>0) to holelike @<0) and the pole in the spin- has sping up®>3 and a negative\(r).®” Exciting the low-

down band goes from holelike to electronlike the energy state fovs>v?, removes the spin-up quasiparticle,
contribution toA(0) changes sign abruptly &=0. TheA(r)  and thereforéncreasesA(0), whereas excitation of quasipar-
resulting from several values afs and two values of the ticles typically reduced(x) (which is the case fors<v,).
coherence length are shown in Fig.(4,b. The discontinu- Also, exciting the low-energy state alomeducesthe total
ity at vy, is more pronounced for shorter coherence lengthspin of the superconductor.
since the localized state’s spectral weight is more concen- The behavior ofA(r) for larger has not been evaluated
trated at the impurityEq. (47)]. A(0) as a function obbgis  numerically. We expect the contribution of the localized
shown in Fig. 12 for two values of the coherence length. Atstate to decay with a length determined by the exponential
T>0 the transition would be smoothed somewhat. expression in Eq(43), Ripe= m&/2\1— (wo/Ag)?. The con-
The behavior ofA(0) as a function oy comes from the tributions from the continuum states at a givenhave a
introduction atv ¥, of a quasiparticle into the ground state of w-dependent spatial oscillation and decay ras. When
the system. The spin-up quasiparticle localized near the imthose contributions are integrated fraly to wp, one ob-
purity in the ground state suppresses the local order parantains ar 3 sin(r/Ryn) decay, wherdRyon~ £Aq/ wp . Since
eter. For time-reversal invariant potentials one cannot mak&,.> R it would be possible to have first a
A(r) negative by inserting a single quasiparticle, since the ~2 exp(—r/R,.) decay, followed by an oscillatory™ 3 de-
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FIG. 12. Order parameters at the impurity<0) as a function FIG. 14. The energy of the spin-up pole is shown as a function

of magnetic potential strength for two values of the coherence of nonmagnetic potential strength fog=0.875 andtkg=449. The
length. The discontinuity in the order parametervd§ is much  energy of the spin-down pole is just the negative of the energy of
larger for the short-coherence-length superconductor. the spin-up pole. The analytic models do not perform particularly
well in reproducing the pole energies, although the muffin-tin
model does show a similar asymmetry arowne- 0 to the numeri-
cay. The oscillatory ~2 decay was pointed out in Ref. 24. cal calculations.

We emphasize that, although the order parameter appears to
recover to its bulk value over a length scale much shorter
than the coherence length, this is again a manifestation of th@/e find that it does change the asymmetry, which we show
r ~2 behavior of the normal and anomalous spectral weightsip Fig. 13 for a particulan g, but that once again this is a
When §A(r) is multiplied by the surface area of the spherengrmal-state property. The relationship between the normal-
at radiusr, one finds that the order parameter's recoverystate spectral weights and the superconducting-state spectral
length is on the order of the coherence length. weights of Eq.(47) still holds. Introducing, also alters the
localized-state energidsee Eq.(40)], which we show in
Fig. 14 forvs=0.875 andtkg=449. The presence of a non-
magnetic potential may affect the value «f, .38 We show

We now discuss the addition of a nonmagnetic potentialn Fig. 15 a partial diagram of the ground state as a function
to the magnetic potential. It has been suggeStatht intro-  of the parameters andv,, for ékg=449. We note that the
ducing av, with av¢ will provide electron-hole asymmetry. boundary between the two ground states is not shifted much

C. Combined magnetic and nonmagnetic potentials

b /ﬁ T T T
> 10| —— Normal St?te 7 |
= ——— £=449k, - , o
£} ----- Muffin—Tin Model .~ o | Localized Quasiparticle i
£ / =<
% = in the Ground State
< 8
= T
2 Eo]
z 5 S
[ £1F -
8 5 No Localized Quasiparticle
) 1 = | .
. ] in the Ground State
0 bk=sm=azc 1% . 1 N N N 1 N .
-1 0 1 o L— . e .
Nonmagnetic Potential Strength (v,) -1 0 1

Nonmagnetic Potential (v,)

FIG. 13. Ratio of the spectral weight at the impurity in the
spin-up band to the spin-down band foy=0.875 andékr =449 as FIG. 15. Calculated boundary between two ground states around
the nonmagnetic potential, varies. In a similar result to that seen the magnetic impurity foék:-=449. For a large enough magnetic
in Fig. 9, the normal-state spectral weights are good predictors afmpurity strength a quasiparticle is bound in the ground state. The
the superconducting state’s spectral weight. We note that the curvesinimum magnetic impurity strength depends on the nonmagnetic
are not symmetrical around,= 0, which results from a realistic impurity strength. For still larger magnetic impurity strengths there
band structure without particle-hole symmetry. would be ground states with more than one bound quasiparticle.
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SA(/A,

0 2 4 6 8 10
r (units of k)

i
<
o) L 1 1 1 FIG. 17. The change in order parameter around an attractive
= 2.0 7 7 nonmagnetic potential combined with a magnetic potential for
= &k =449. The order parameter is larger at the impurity than in the
- homogeneous superconductor, yet there exists a localized state in
Q th
O 1.5 e gap.
Q.
0p)

the impurity changes substantially in the presence of mag-
netic or nonmagnetic impurities, an experiment performed
using such a normalization procedure would yield impurity
parameters of questionable validity.

g
o

0.5 L

E. Relationship to Ginzburg-Landau theory

r (units of k. )

Although Ginzburg-Landau theory has a wide range of
applicability, it fails to describe the electronic structure near

FIG. 16. Spectral weights in the normal state as functions of th%hese impurities. Shown in Fig. 17 is the order parameter for
distance from the impurity for several combinations of magnetic . o ) L Lo
a mixed magnetic and nonmagnetic impurifys=7/8,

and nonmagnetic potentiala) only a magnetic potential, art) a - . >
fixed magnetic potential;=0.875 and a varying nonmagnetic po- vo=—7/4, and gk':,_449)' The order parameter is every-
tential. By making measurements around the impurity in the normaYVhere larger than in the homogeneous superconductor, how-

state(or integrating the superconductor's spectrum over a frequencVer: the presence of a localized state within the gap indi-
much larger thar o), information about the structure of the impu- cates that superconductivity has been weakened around the

impurity. Since the Ginzburg-Landau theory focuses on the

order parameter and ignores the quasiparticle structure, a
Ginzburg-Landau perspective would incorrectly predict an

enhancement of superconductivity in the region.

rity may be obtained.

from ¢éke=449 to éke=10, hence the condensation energy
is not very significant in determining this boundary.

F. Pairing suppression

D. Connection to normal-statedl/dV spectra - . .
P The pairing potential,(x) in Eq. (14), may also have

The normal state may provide some guidance for attemptgpatial structure. When this parameter is changed it induces a
to extract impurity potentials in the superconducting state
from STM measurements. Figure 16 showsrmal-state — T T
d1/dV’s for various potentials. These curves should also rep-
resent the frequency-averaged spectral weight measured in 1.0
the superconducting stafsee Eq.(48)].7

The enhancement or suppression of spectral weight near
the origin is particularly sensitive tog. A measurement of
this quantity, the energy of the localized state and the asym-
metry of the electron and hole amplitudes at the impurity
overconstraingy andvg, given an assumption of the shape
of the potential. To extract information about the potential's
detailed shape would require a fitting procedure using the
differential conductivity at various positions. If, for some
reason, the spin-down amplitude were too small to measure, 0.0
it may remain possible to constrain the potential strength y
using the frequency-integrated spectral weight and the r (units of k. )
localized-state energy.

It seems appropriate to mention again the tendency to FIG. 18. Order parameter as a function of distancom a
normalize spectra according to the LDOS measured at enegtefect with a suppressed pair potential, but no single-particle poten-
gies much larger thaa,. Since the normal-state LDOS near tial.

APY/A,

0.5 -1 .
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change in the order parameter which produces an off-
diagonal potential felt by the quasiparticles. We set }
vs=vo=0 so that there is no magnetic or nonmagnetic po-
tential to compete with the order-parameter change. Figure
18 shows the order parameter around a short-range suppres-
sion,
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y(x)=[1—e k&*]y,, (49)

for two values of the coherence length. The order parameter
is strongly suppressed and singg) =0, A(0)=0. For long
coherence lengths, this change in the order parameter has no
effect on the local density of statéshown in Fig. 19a)]. It

is possible to localize quasiparticle states, however, at shorter
coherence lengths. These can produce features in the local
density of states which are visible. One such case is shown in
Fig. 19b). The energy of the localized state is
wo=(1—4%x10"%)A,. Whereas a nonmagnetic potential
changes the local density of states without significantly
changing the energy gap, a pairing suppression has a very ) 0
weak effect on both, especially in the long-coherence length
limit.
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V. STRONG-COUPLING
AND ANISOTROPIC ORDER PARAMETERS

A few observations are in order concerning the extension
of this formalism to systems where the homogeneous order
parameter has important frequency or spatial structure. The
Gor’kov equation Eq. (6)] changes due to the more general
form for the off-diagonal potential originating from the order
parameter. Taking this opportunity to generalize,

f dx//dx/u[é(x_x//) 5(X”_Xm)

=g, X"; 0)V(X" X" 0) ]G(X" X" ; 0) =0g(X,X"; ),

(50) : 2 1 3 O
where () eV/ A 0 )
V(X" X", w) FIG. 19. Differential conductivit(LDOS), normalized by the
normal-state’s homogeneous DOS, around a defect with a sup-
Ve (X" 0) (X" —X") SA(X" X" ) pressed pair potential, but no single-particle potentiéd)
= SA(X" X" ) Vi (X @) S(X"—X") : Eke=449,kgT=Ay/7.5—there is no evidence of any change in the

(51) spectrum due to the order parameter suppression shown in Fig. 18.
(b) ékg=10, kgT=A/100—a localized state very near the con-

The diagonal terms are general potentials, possiblyinuum enhances the continuum edge seen in tunneling near the
frequency-dependent, effective on spin-up electrovs; )  defect.
and spin-up holes\{,;) for >0. Since this potential is
diagonal in frequency, as is the Gor'kov equation, the fre-d-wave order parameters possibly appropriate for high-
qguency structure of the order parameter does not add artgmperature superconductors, merely by considering pairing
additional complication to numerically solving the Gor’kov with nearest neighbors on a square tight-binding lattice. This
equation. However, the addition of spatial structure to themodel has been implemented with the BdG formalism for
pairing has added another integral over the volume to th@onmagnetic impuritie¥?~3 magnetic impuritie$® and
Gor’kov equation, and thus dramatically increased the size ofortices’* in d-wave superconductors. When formulated on a
the matrix which needs to be inverted. Fortunately, the rangéattice the addition of nearest-neighbor pairing multiplies the
of the order parameter jix—x’| is truncated by the range of rank of the matrixM"~"(w) by 1+ z, wherez is the coor-
the pairing interaction. For the isotropic-gap superconductodination number of the lattice.
we have considered for most of this paper, the effective pair- The order parameter’s frequency dependence complicates
ing interaction is modeled by & function in space. It is the self-consistency equatidieg. (14)]. It must now be
possible to obtain anisotropic order parameters, including theolved for each frequency:
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o nential whose range is determined by the energy of the lo-
A(r,r’;w)Z(r,r’;w)=J den(e)[ReF(r,r';e)] calized state. Since the spin-up band LDOS in the normal
o state differs from the spin-down band LDOS in the normal
X (K (r,r';e,w)—Uy), state, the electronlike pole of the localized quasiparticle will
have different spatial structure than the holelike pole of the
% localized quasipatrticle.
w[1=-Z(r,r"e)]= f_mden(e)[ReG(r,r’;e)] The self-consistent calculations described here have been
performed with a powerful Koster-Slater technique which
XK_(r,r'";€,w), (52) allows the Gor’kov equation to be solved in principle ex-

actly. Although we have only presented calculations for
. S weak-coupling isotropic order parameters within a free-
ferent for each mechanism of superconductivity. They can bgoctron model, we have formulated the extension of this

determined from the homogeneous solutitl. is & Cou-  yachnique to strong-coupling paiting and general band struc-
lomb factor.Z, the quasiparticle weight, is solved for self- ,.ac and order-parameter symmetries.

consistently. Incorporating these strong coupling effects al-

lows a determination of the effect of the frequency

dependence of the pairing interaction on the electronic struc- ACKNOWLEDGMENTS
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whereK .. are kernals of the pairing interaction and are dif-

VI. SUMMARY APPENDIX

The local electronic structure around a defect reflects both 1,4 expansion of the Green’s functions of E&5) suit-

the properties of the defect and the medium it is embeddedy,e for 4 three-dimensional spherically symmetric situation

In. For a strong nonmagnetic or magnetic impurity in @ SU-5re detajled here. The homogeneous Green’s functions de-

perconductor, the distortion of the normal-state properties b}Send onr andr’ throughr, r’, and cosy=(r -r')/rr . Then

the strong impurity plays a vital role in the response of they o Green’s functions can be expanded in Legendre poly-
superconducting medium. The LDOS for the inhomogeneouaominmSP (cos)

superconductor can be related to the LDOS for the inhomo- ’ '

geneous normal metal via equations like E@&) and (47). g(r,r';0)=g(r,r',cosy; )

In the case of a nonmagnetic impurity with no localized

states around it, the LDOS for the inhomogeneous supercon- 2/+1 .

ductor is merely the normalized LDOS for the inhomoge- = an Z g/(r,r';w)P,(cosy) (A1)

neous normal metal multiplied by the homogeneous super-
conductor’s density of states. This should suggest somand
caution regarding the method used to normalize STM spectra
taken at different places on a superconductor’s surface. . 1 .
For the case of a localized stafguch as around a mag- goAr.r ,w)szfﬁlP/(x)g(r,r X w). (A2)
netic impurity) with angular momenturd’, the LDOS for the
state is the angular-momentwhiprojected LDOS of the in- Evaluating Eq.(A2) for both the normal and anomalous
homogeneous normal metal multiplied by a decaying expoGreen’s functions of Eq(15) yields

71_3

g/(f,f';w)z—\/? \/%)

_<1_ \rczu_l)%ﬂ/z({l— Vo = LgrHHZ p({1- Ve’ = 1/gr7) |, (A3)

3

1+

3, 1{1+ Vol=LEr HHD) {1+ Vo= 1/gr)

i 1
~ = e {0t LT HE {1+ o - 1)
+3, 1 12{1= V0= gl HHEZ] f({1- Vo’ = 1/8r7)], (A4)
whered,, H® | andH® are standard Bessel functions; (r~) is the smallelarge of r andr’, w is in units of Ao and

r andr’ are in units ofk-*. The Green’s functions are in units bk .
The Gor’kov equation, Eq6), can now be written in a form diagonal if,

G (rr'iw)=g (r,r';o)+ J; Fadrag (1,1 @)V (M) G (ry,r'; o). (A5)

fArr o=
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Thus the three-dimensional integral has been reduced to reduction to a one-dimensional integral dramatically in-
one-dimensional radial integral. Since the numerical invercreases the speed of this calculation over a calculation for a
sion procedure depends on inverting a matrix whose rank ithree-dimensional potential which is not spherically symmet-
proportional to the number of spatial points considered, thigic.
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