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Local electronic structure of defects in superconductors
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The electronic structure near defects~such as impurities! in superconductors is explored using a fully
self-consistent technique. This technique exploits the short-range nature of the impurity potential and of the
induced change in the superconducting order parameter to calculate features in the electronic structure down to
the atomic scale with unprecedented spectral resolution. Magnetic and nonmagnetic static impurity potentials
are considered, as well as local alterations in the pairing interaction. Extensions to strong-coupling supercon-
ductors and superconductors with anisotropic order parameters are formulated.@S0163-1829~97!04537-2#
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I. INTRODUCTION

Low-temperature superconductors almost always hav
high concentration of nonmagnetic impurities. Even in t
dirty limit, however, where the mean free path is shorter th
the coherence length, superconductivity endures.1 This phe-
nomenon can be understood by generalizing BCS pairing2 to
be between degenerate Kramers-partnered states in a
reversal invariant system.3 Magnetic impurities, which do
break time-reversal invariance, have more profound effe
on the superconductor in dilute concentrations than nonm
netic impurities, lowering the critical temperatureTc ~Refs.
4–6! and producing localized states within the gap7–13which
at sufficient concentrations hybridize to produ
gaplessness.14 In the course of the investigation of the effec
of impurities on superconductivity during the last four d
cades, the primary emphasis has been the influence of im
rities on bulk properties. These effects have been trea
within a strong-coupling formalism~e.g., Ref. 15!, but only
very recently self-consistently and beyond the Bo
approximation.16 The above work was primarily concerne
with bulk or impurity-averaged characteristics and ignor
the spatial structure of electronic properties near to the
purity.

Among the first local properties calculated in the vicin
of an impurity in a superconductor were the structures
screening clouds around a charged impurity17,18 and a mag-
netic impurity18,19 in a superconductor~characterized by ex
ponentially decaying Friedel-like20 oscillations!. The oscilla-
tion of the order parameter around a magnetic impurity w
first evaluated without self-consistency.21–23 A self-
consistent calculation was reported for the order paramet
the impurity and very far away forweakmagnetic impurity
potentials by Schlottmann,24 and far away from nonmagneti
impurities by Fetter.25

Interest in local properties near impurities in superco
ductors has been revived by the capability of scanning t
neling microscopy~STM! to perform localized spectroscop
measurements. The differential conductivity measured a
point x, voltageV, and temperatureT can be related to the
local density of states~LDOS! at the tip location as follows
560163-1829/97/56~17!/11213~19!/$10.00
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dI~x,V,T!

dV
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e2

h E
2`

`

dv
]nSTM~v!

]v (
s

S Im Gs~x,x;v!

p D .

~1!

Here e is the charge of the electron andnSTM(v) is the
Fermi function in the STM tip

nSTM~v!5F11expS v2eV

kBT D G21

. ~2!

The local density of states is proportional to the imagina
part of the retarded Green’s function fully dressed by
interaction of the electronic system with the impurity.

The spatially dependent differential conductivity around
nonmagnetic impurity at the surface of a superconductor
been considered theoretically26 for both isotropic and aniso
tropic order parameters. In Ref. 26 the impurity was mode
as a point defect, and spatial oscillations in the LDOS
various voltages were calculated. These oscillations are
superconductor’s analog of oscillations in the LDOS crea
by step edges and defects on noble-metal surfaces.27,28 The
superconductor’s LDOS oscillations would allow one
measure the anisotropy of the superconductor’s order par
eter. The conductance oscillations for voltages just abov
gap minimum or maximum are strongly pronounced in t
real-space directions corresponding to the momenta of
gap minimum and maximum. Calculations followed whic
considered sharp energy features in the scattering proc
such as resonant states.29,30 Nevertheless, an important as
sumption of these calculations has remained unchecke
detail, that the electronic distortions induced by the impur
are local, including the deformation of the order parame
Self-consistent calculations using the Bogoliubov–
Gennes ~BdG! equations31 followed for two-dimensional
systems,32–35 but have been hampered by finite-size effec

A magnetic impurity differs from a nonmagnetic impurit
in that a localized state exists around it.7–13,36The first cal-
culations of the LDOS of the localized and continuum sta
around a magnetic impurity were performed recently b
with a simplified analytic model and numerically via the se
consistent technique37 described in this paper. Calculation
11 213 © 1997 The American Physical Society
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11 214 56MICHAEL E. FLATTÉ AND JEFF M. BYERS
of the LDOS of the localized state with angular momentu
quantum numberl 50 were performed with a slightly dif-
ferent analytic model and numerically in two dimensions
the self-consistent BdG equations.38 These calculations wer
motivated by reports of experimental measurements aro
Mn and Gd atoms on a niobium surface. The experime
results, which have now appeared in Ref. 39, indicate:~1!
discrete states are evident within the energy gap and
LDOS associated with them is asymmetric with volta
aroundV50, and~2! the LDOS becomes indistinguishab
from the bulk density of states within a distance greater t
the Fermi wavelength but much less than the cohere
length.

Another type of defect is a local change in the pairi
interaction. The resulting spatially dependent order para
eter can then distort the LDOS. An order-parameter supp
sion can even localize states, as in a vortex core.40,41

The local electronic properties of all of these defects c
be calculated self-consistently from the Gor’kov equatio42

without further approximation with the technique introduc
in Ref. 37. Our technique for calculating the electronic str
ture around a defect in a superconductor is related to
Koster-Slater inversion techniques for determining the lo
electronic structure of impurities in metals.43,44 Since its
original application to localized vibrational modes,45 this al-
gorithm has been applied to numerous problems includ
deep levels in semiconductors46 and impurity states in
magnets.47 The Koster-Slater technique separates sp
around the defect into two regions: the near field and the
field. The far field is a region distant enough from the def
that the potential is insignificant and the order parameter
relaxed back to its homogeneous value. The near field is
region close to the defect where the potential is finite or
order parameter is distorted. In essence, the Gor’kov eq
tion that determines the Green’s functions of the inhomo
neous superconductor is inverted in the real-space regio
the near field. This paper describes the technique in de
expands on an analytic model introduced in Ref. 37 and
ports several calculations of the properties of the defects
scribed above.

In constrast to the Koster-Slater technique presented h
some other formalisms for inhomogeneous superconduc
ity, such as Ginzburg-Landau theory48 or the Eilenberger
equations,49 treat the spatial degrees of freedom as coa
grained over the superconductor’s coherence length. Coa
grained approximations are not appropriate for conside
electronic structure on the atomic scale near a defect. Th
approximations are not made, however, in deriving the B
equations. These equations are generalized Schro¨dinger
equations for the electron and hole wave functions of a q
siparticle, and are valid for a superconductor with an ar
trarily varying order parameter, only constrained by the
lidity of BCS theory.

Unfortunately, the BdG equations have significant pra
cal difficulties as well. Despite qualitative success model
STM measurements of a single vortex in superconduc
NbSe2 ,50 calculations of the electronic structure51–55 using
the BdG equations are hampered by the difference in en
scales between the Fermi energy and the order param
Since the BdG equations are solved numerically for a fin
system, the difficulty of the calculation is determined by t
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necessary spectral resolution. The key energy scale w
must be resolved is the superconducting gap. Thus, the
merical difficulty increases as the ratio of the Fermi ene
to the gap becomes large. Hence the band structure assu
for the superconductor must be somewhat unrealistic~for
Refs. 54, 55 the Fermi wavelength was approximately 1
Å, which is inappropriately large56!. This limitation extends
to calculations of the interaction between a vortex and
impurity,57 the characteristics of the vortex lattice,58,59 and
work on a nonmagnetic impurity32–35 and a magnetic
impurity38 in a two-dimensionals-wave ord-wave supercon-
ductor. In contrast, the computational requirements of
Koster-Slater technique are determined by the range of
impurity potential, rather than the necessary spectral pr
sion.

In Sec. II of this paper we first describe the BdG forma
ism for local defect potentials and then compare with
Koster-Slater formalism. Section III describes an analy
model, based on ad-function potential, which reproduce
some of the quantitative behavior of the numerical resu
Section IV discusses the results of the numerical calculati
for magnetic impurities, nonmagnetic impurities, impuriti
incorporating both magnetic and nonmagnetic potentials,
inhomogeneities in the pairing interaction. A heuristic p
ture of the electronic structure near these impurities will
presented here, and the calculations will be compared w
the analytic model of Sec. III. Section V generalizes the f
malism of Sec. II to the case of strong-coupling and ani
tropically paired superconductors.

II. FORMALISM

A. Bogoliubov–de Gennes equations

To place our formalism in context we will contrast it wit
the BdG equations, which are Schro¨dinger-like equations for
the electron and hole components of the quasiparticle w
functionsu(x) andv(x), respectively. These are, for a free
electron band structure with massm, the positive-energy (E)
solutions to

F2
~\¹!2

2m
2E1V0~x!1sVS~x!Gus~x!1D~x!vs~x!50,

F ~\¹!2

2m
2E2V0~x!1sVS~x!Gvs~x!1D* ~x!us~x!50.

~3!

HeresVS is a position-dependent, spin-dependent poten
such as one originating from an impurity with a classic
spin. V0 is a position-dependent nonmagnetic potential a
D~x! is the inhomogeneous order parameter.D~x! can be
chosen real since the defect potential is real.60 The quantiza-
tion direction of the electronic spins in the superconduc
(s561/2) is chosen parallel to the classical spin. A clas
cal spin has no quantum dynamics, and cannot flip the q
siparticle spin. Hence spin is a good quantum number for
quasiparticles and only two coupled equations@Eqs.~3!# are
required. The combinationssVS6V0 have physical signifi-
cance:sVS1V0 is the potential felt by an electron of spins,
while sVS2V0 is the potential felt by a hole of spins.
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The spatially dependent order parameter is determi
self-consistently:

D~x!5(
ns

g~x,Ens!uns~x!vns* ~x!tanhS Ens

2kBTD , ~4!

wheren labels the states for each spins, T is the tempera-
ture, andkB is Boltzmann’s constant.g(x,Ens) is the effec-
tive electron-electron interaction potential, which is

g~x,Ens!5g0 , Ens,\vD,

50, Ens.\vD . ~5!

For a spherically symmetric defect the wave functions
eigenstates of angular momentum with quantum numberl
andm. Typically the defect is placed in a sphere of radiusR
with appropriate boundary conditions. The value ofR is de-
termined by the spectral resolution necessary for accura
evaluating Eq.~4! and the spectral width of features meas
able by, for example, the STM. The typical complicatio
resulting from approximating an infinite system by a finit
size system apply, such as discrete states above the en
gap and the heavy investment of computer time required
large values ofR. For example, in the calculations for th
vortex in NbSe2 ,54,55 eF /D0532 was the largest ratio of th
Fermi energy to the homogeneous order parameter con
ered. This value is unrealistic, and is a result of inappro
ately fitting the coherence length and upper critical field
NbSe2 to a free-electron model. A more realistic ban
structure56 has a bandwidth to energy gap ratio at least
order of magnitude greater, and a highly anisotropic Fe
velocity. Niobium has aneF /D05705, rendering its LDOS
numerically inaccessible for most potentialsVS andV0 .

B. Koster-Slater inversion formalism

We now introduce a self-consistent method which wo
within a sphere whose radius is determined by the rang
the defect’s potential and utilizes the continuum spectrum
the homogeneous superconductor. In essence, we inver
Gor’kov equation in real space. The Gor’kov equation42 for a
defect in a superconductor can be written in the Nam
formalism61 as

E dx9@d~x2x9!2g~x,x9;v!V~x9!#G~x9,x8;v!

5g~x,x8;v!, ~6!

whereg is the homogeneous Green’s function,V is the po-
tential, and the inhomogeneous retarded Green’s functio

G~x,x8;v!5S G↑~x,x8;v! F~x,x8;v!

F* ~x,x8;2v! 2G↓* ~x,x8;2v!
D . ~7!

The elements of this matrix are

G↑~x,x8;v!52 i E
2`

`

dteivtu~ t !^0u$c↑~x8;t !,c↑
†~x;0!%u0&,

~8!
d
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F~x,x8;v!52 i E
2`

`

dteivtu~ t !^0u$c↑~x8;t !,c↓~x;0!%u0&,

~9!

F* ~x,x8;2v!52 i E
2`

`

dteivtu~ t !

3^0u$c↓
†~x8;t !,c↑

†~x;0!%u0&, ~10!

2G↓* ~x,x8;2v!52 i E
2`

`

dteivtu~ t !

3^0u$c↓
†~x8;t !,c↓~x;0!%u0&. ~11!

The explicit subscripts↑ and↓ do not refer to the spin of the
excitation in the superconductor but rather to the spin b
of the normal state used to construct the excitation. The
concept is that the spin-up band contains bothup electrons
and down holes just as the spin-down band contains both
downelectrons andup holes. The convention employed he
is standard in the theory of semiconductors where a spin
electron excited above the Fermi energy leaves a spin-d
hole below the Fermi energy. This is convenient for ma
netic potentials since if spin-up electrons are attracted t
magnetic impurity spin-down holes should be repelled by
impurity. In the presence of a single classical impurity sp
the quasiparticle spin is a good quantum number des
electron-hole mixing. Our convention determines the com
sition of a spin-up quasiparticle to be part spin-up elect
and part spin-up hole, rather than part spin-up electron
part spin-down hole.

For v.0, G(x,x8;v) describes spin-up excitations, in
volving the mixing of electrons in the spin-up band wi
holes in the spin-down band. Forv,0, G(x,x8;v) describes
spin-down excitations, involving the mixing of electrons
the spin-down band with holes in the spin-up band. Sin
spin is a good quantum number it is not necessary to us
434 formalism, such as that of Ref. 62. The notation he
has been simplified and improved relative to Ref. 37.

The homogeneous Green’s function is independent os,
so

g~x,x8;v!5S g~x,x8;v! f ~x,x8;v!

f * ~x,x8;2v! 2g* ~x,x8;2v!
D . ~12!

The potential

V~x9!5S VS~x9!1V0~x9! dD~x9!

dD~x9! VS~x9!2V0~x9!
D , ~13!

wheredD(x)5D(x)2D0 andVS , V0 , andD~x! have simi-
lar meaning above as in the BdG equations. The facto
one-half from the electron spin has been incorporated
the potentialVS . To be concrete, and without loss of gene
ality, the spin direction attracted by the potential will b
called spin up, and the spin direction repelled will be call
spin down.63 The self-consistency equation for the order p
rameter is

dD~x!5E
2`

`

dvg~x,v!n~v!Im F~x,x;v!2D0 , ~14!
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11 216 56MICHAEL E. FLATTÉ AND JEFF M. BYERS
wheren(v) is the Fermi occupation function at temperatu
T.

For a BCS superconductor with an isotropic gap in a pa
bolic band, forv much smaller than the Fermi energy,

g~x,x8;v!52
pN0

kFr
e2~D0

2
2v2!1/2r /pD0j

3S coskFr 1
v

AD0
22v2

sin kFr D ,

f ~x,x8;v!52
pD0N0

kFrAD0
22v2

e2~D0
2
2v2!1/2r /pD0j sin kFr ,

~15!

wherer 5ux2x8u andN0 is the density of states for each sp
at the Fermi level. The coherence lengthj5\vF /pD0 ,
wherevF is the Fermi velocity. These expressions are va
for v above and belowD0 so long as the imaginary parts o
both f andg are multiplied by sgnv.

One strength of this formalism is its reliance on the sho
range nature of the defect’s potential. Solution of Eq.~6!
requires inverting the frequency-dependent real-space m

M ~x,x8;v!5d~x2x8!2g~x,x8;v!V~x8! ~16!

to obtain G(x,x8;v), so G5M21g. The structure of
M (x,x8;v) allows for a precise description of the differen
between the near field and the far field. We require that
defect’s potentialV~x! is zero foruxu.R. The spaceuxu.R
belongs to the far field, whereas the spaceuxu<R belongs to
the near field. We can then separate any real-space matA
symbolically into four pieces:

A5S An→n An→ f

A f→n A f→ f D , ~17!

wheren and f label the near-field region and far-field regio
respectively. The particular example ofM is block triangu-
lar:

M5S I2gn→nV 0

2gf→nV I D ,

M215S ~ I2gn→nV!21 0

gf→nV~ I2gn→nV!21 I D . ~18!

It is clear from Eq.~18! that the computational effort in
inverting M , and thus finding the inhomogeneous electro
structure, is entirely determined by the complexity of inve
ing Mn→n. The inhomogeneous Green’s functions in t
near and far fields are

Gn→n5~ I2gn→nV!21gn→n, ~19!

Gn→ f5~ I2gn→nV!21gn→ f , ~20!

Gf→n5gf→n~ I2gn→nV!21, ~21!

Gf→ f5gf→ f1gf→nV~ I2gn→nV!21gn→ f . ~22!
-

d

-

rix

e

c
-

We thus obtain the useful result that the electronic struct
in the far field is easily determined once the electronic str
ture in the near field is known. The connection to theT
matrix formalism is straightforward, as from Eq.~22!,

T5V~ I2gn→nV!21. ~23!

Certain features of the above equations simplify their n
merical implementation. Each angular momentum chan
constitutes an independent block-diagonal submatrix
M ~v!. Since the bare Green’s functions in Eqs.~15! have
analytic expansions in spherical harmonics,M ~v! can be cal-
culated quickly. These expansions are detailed in the App
dix.

The value ofR is governed by the longest-range potenti
In this paper that is determined, not by the shorter-ran
magnetic and nonmagnetic potentials, but by the s
consistently determineddD~x!. We modelVS and V0 with
Gaussians of radiuskF

21 and evaluate Eq.~14! at T50.
The dD~x! for vs5pN0u*dxVS(x)u51.75 and v0
5pN0u*dxV0(x)u50 is shown in Fig. 1. While oscillating
with wavelength;pkF

21 , dD~x! falls off to a negligible po-
tential within 10kF

21 . A typical radial grid of 100 points
provides a numerically robust solution. The self-consist
solution depends on the value of

N0D0 /kF
35~2p3jkF!215~4p2eF /D0!21, ~24!

which for niobium is 3.631025 ~Ref. 64!. This is the single
dimensionless parameter required to parametrize the f
electron model of a superconductor.

In contrast to the Koster-Slater technique described h
which exploits a physical distinction between the near fi
and the far field to accelerate the numerical calculation,
BdG equations treat the near field and the far field on
same level. A largeR is desired for decent spectral resol
tion, but the possible size ofR is limited by numerical con-
straints. Hence a numerical implementation of the BdG eq
tions, by comparison, is typically slower and substantia
less accurate than the Koster-Slater technique.

C. Connection to the Born approximation

In Ref. 26 it was argued that calculations within the Bo
approximation for thespatial structure of thedI(r ;V)/dV
would remain accurate for strong potentials, so long as
potential was short ranged. In this section we explicitly ma
the connection between the result from the Born approxim

FIG. 1. Change in the local order parameter,dD~x!, for a mag-
netic potential strengthvs5pN0u*dxVS(x)u51.75 as a function of
the distance from the impurityr . The change becomes negligib
beyond 10kF

21 .
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tion and the result from the Koster-Slater technique in
limit that self-consistency can be ignored and that the siz
the potential approaches a point.

In this limit Eq. ~22! is

2
1

p (
s

Im Gs~x,x;v!52
1

p
Im$2g~x,x;v!

1@g~x,0;v!Veff~v!g~0,x;v!#11

2@g* ~x,0;2v!

3Veff* ~2v!g* ~0,x;2v!#22%,

~25!

where Veff(v)5V@ I2g(0,0;v)V#21. The inhomogeneous
part of the right-hand side of Eq.~25! has the following form
if the off-diagonal elements ofVeff(v) can be ignored~this is
appropriate when self-consistency is not important!:

2
1

p
Im$„@Veff~v!#112@Veff* ~2v!#22…„g~x,0,v!g~0,x,v!

2 f ~x,0,v! f ~0,x,v!…%. ~26!

In the Born approximation the Green’s functions appear
the same combinations but the prefactor is the nonmagn
potentialV0 . Hence the spatially dependent features repor
in Ref. 26, which are determined by the Green’s-functio
combinations, are qualitatively retained in our more co
plete model.

There would be no inhomogeneous structure for a m
netic potential in the Born approximation, however, since

Veff~v!5S VS 0

0 VS
D , ~27!

so the distortions in the LDOS of the two spin directions a
equal and opposite.

D. Self-consistent potentials

In addition to the self-consistent order parameter, s
consistent spin-dependent and charge-dependent pote
can also be constructed forV~x! using the calculated spatia
structure of the spins(x) and charger~x! around the defect

s~x!5
1

2E2`

`

dvn~v!S 2
Im@G↑~x,x;v!2G↓~x,x;v!#

p D ,

~28!

r~x!5(
s

E
2`

`

dvn~v!S 2
Im Gs~x,x;v!

p D . ~29!

Since these self-consistent quantities are unlikely to cha
much between the normal and superconducting state,31 no
calculations are reported for such potentials in this pape
e
of

n
tic
d
s
-

-

e

f-
ials

ge

III. ANALYTIC SOLUTION OF THE POINT POTENTIAL

A. Magnetic and nonmagnetic point potentials

Approximating the local potential by ad function

V~x!5Vd~x!5S VS1V0 0

0 VS2V0
D d~x! ~30!

leads to a simple expression for Eq.~6!,

S 12g~0,0;v!~VS1V0! 2 f ~0,0;v!~VS2V0!

2 f * ~0,0;2v!~VS1V0! 11g* ~0,0;2v!~VS2V0!
D

3G~0,0;v!5Mn→n~v!G~0,0;v!

5g~0,0;v!. ~31!

In principle M ~v! can be found from the Green’s function
in Eq. ~15!, however there is a divergence in the real part
g(r ;v) asr→0. This divergence is coped with in Ref. 8 b
discarding the divergent piece. This approximation is ess
tially an assumption ofstrict particle-hole symmetry@not
merely linearizinge(k) aroundeF#. We now discuss the ef
fects of this approximation on the local properties of t
system in thenormalstate. The heuristics will be simpler fo
the normal state, but the conclusions also apply to the su
conducting state.

B. Particle-hole symmetry in the normal state

In order to focus on the spin-dependent potential, the n
magnetic potential will be set to zero. The normal-state pr
erties can be obtained from Eq.~15! for D050. That yields a
Green’s function appropriate for an outgoing wave:

g~x,x8;v!52
pN0

kFr
eikFr , ~32!

where v is considered close to the Fermi surface so
change in momentum due tovÞ0 is negligible. Theinho-
mogeneouslocal density of states obtained for ad-function
potential using this Green’s function is unphysical, since
diverges atr 50. Now we examine the local density of stat
when the divergent real part ofg is ignored:

2
1

p
Im Gs~x,x;v!5N0S 12F ~pN0VS!2

11~pN0VS!2G sin2 kFr

~kFr !2 D .

~33!

This expression yields the pathological behavior that the
cal density of states near a spin-dependent potential is
actly the same for spin-up electrons as for spin-down e
trons. A spatial response in the LDOS to a spin-depend
potential that is identical for up and down spin electronsonly
occurs for certain band structures witheF at special energies
~e.g., half-filled tight-binding models!. The local density of
states forvs5pN0uVSu50.1 is plotted in Fig. 2 as a function
of distance from the potential. Although it is somewhat d
torted from its homogeneous value, it does not show
spin-dependent asymmetry of a more realistic model. An
act calculation for a Gaussian of rangekF

21 is also shown in
Fig. 2 for comparison.
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A more realistic approach to coping with the divergen
in Eq. ~32! without yielding the pathological result of Eq
~33! is to average thev-symmetric real part ofg over a range
given by the assumed range of the potential. That yield
finite value for the local density of states at the potential,
does not control the behavior for smallr . To perform that
task, we consider a ‘‘muffin-tin’’ Green’s function. Thi
function has the form

g~x,x8;v!52
pN0

kFr
eikFr , r .R0

52 ipN02pa, r ,R0 , ~34!

wherea is the average of thev-symmetric real part ofg over
the range of the potential, andR0 is chosen so that the spa
tially integrated spectral weight of the Green’s function
unchanged~as required by probability conservation!. We
show in Fig. 2 the local density of states calculated with t
Green’s function. In particular, the asymmetry in the
sponse of spin-up electrons and spin-down electrons
spin-dependentd-function potential is governed by this phe
nomenological parametera. The agreement with the exac
solution is good at the origin and far from the impurity. Th
muffin-tin Green’s function is discontinuous, unfortunate
but yields a better approximation of the response of the s
tem than the particle-hole symmetric approximation~dis-
carding thev-symmetric real part of the Green’s function!.

It is also possible to generate an asymmetry betw
spin-up and spin-down electrons by adding a nonmagn
potentialv0 with thevs to parametrize the impurity, but stil
maintaining a particle-hole symmetric band structure. Si

FIG. 2. Spectral weight in the normal state around a magn
impurity with vs50.1 as a function of the distance from the imp
rity r . The solid lines are exact solutions for spin-up~attracted by
the impurity! and spin-down~repelled by the impurity! electrons for
a Gaussian potential of rangekF

21 in a metal with a free-electron
dispersion relation. The dashed line, which is the same for b
spin-up and spin-down electrons, is the calculated spectral we
for the particle-hole symmetricd-function potential model. The dot
dashed line is the result for ad-function potential calculated usin
the muffin-tin Green’s functions. The muffin-tin Green’s functio
fix the pathological result of the symmetric model that the spec
weight is the same for spin-up and spin-down electrons. T
muffin-tin parameter,a50.704, is determined by the range of th
Gaussian potential and is therefore not a free parameter.
a
t

s
-
a

,
s-

n
tic

e

the response of a particle-hole symmetric system to a po
tial does not depend on the sign of that potential, thev0 is
required to distinguish between electrons and holes.
spin-up electron feels a potentialvs1v0 , whereas a spin-up
hole feels a potentialvs2v0 . This additional nonmagnetic
potential only breaks particle-hole symmetry locally~within
the range of the potential!, whereas for a realistic band struc
ture the particle-hole symmetry is broken everywhere in
solid.

For a Gaussian potential with rangea,

a5
2

ApkFa
F11 (

n52

`
1

~2n23!!! S 2
~kFa!2

2 D n21G .

~35!

For the Gaussian potentials numerically calculated in t
paper,a5kF

21 , soa50.704.

C. Self-consistency within the analytic model

As seen from Fig. 1, the distortion of the order parame
is short-ranged around an impurity. We may then consi
the effect of the order-parameter distortion on the electro
structure to be parametrized by an effectived-function po-
tential dDd~x! similarly motivated to thed-function poten-
tials for the magnetic and nonmagnetic potentials. The
tential V~x! is changed in the following way:

V~x!5Vd~x!5S VS1V0 dD

dD VS2V0
D d~x!. ~36!

The relative effect of thedD compared to the other two po
tentials is likely to be small for the potentials considered
this paper. TypicallyN0VS /kF

3;1 or N0V0 /kF
3;1, and for a

free-electron model of niobiumN0D0 /kF
353.631025. Even

for a small coherence length of j510kF
21 ,

N0D0 /kF
351.631023. For convenience we defin

d05pN0dD.

D. Energies of localized states in the superconductor

The energies of the localized states of angular momen
l correspond to the positive energiesv l 5uVu, where

det Mn→n~V!50, ~37!

and the solution is traced to thel -channel block ofM ~see
Appendix!. For the analytic model,Mn→n(v) is the matrix
shown in Eq.~31!, whereg(0,0;v) in the superconducting
state is constructed similarly to that of the normal state,

g~0,0;v!52pN0S a1
v

AD0
22v2D . ~38!

The anomalous Green’s function is given by Eq.~15!, since
it does not have a divergence problem asr→0,

f ~0,0;v!52pN0S D0

AD0
22v2D . ~39!

This analytic model only has localized states in thel 50
angular momentum channel, as expected for ad-function po-
tential. Those energies are
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v05Uvsd06@~vsd0!22~vs
21g2!~d0

22g2!#1/2

vs
21g2 UD0 ,

~40!

where

g5@~11a2!~vs
22v0

22d0
2!22av021#/2. ~41!

Equation~40! reduces to a result obtained by Shiba8 when
v05a5d050, a result obtained by Rusinov9 when
a5d050, a result obtained by us37 whenv05d050, and a
result obtained by Salkola, Balatsky, and Schrieffer38 when
a50.

One solution of Eq.~40! is a spin-up quasiparticle and th
other is a spin-down quasiparticle. There may be only o
real solution to Eq.~40!; then only onel 50 localized state
exists around the impurity. This occurs for largevs . When
vs50 the localized states are due to order-parameter
pression, and the energies of the two spin states are de
erate. This follows from time-reversal symmetry in the a
sence of a magnetic potential. For smallvs the two energies
are split by an amount
-t
nc
ow

ld
w
lf
fi

w
tic
e

p-
en-
-

Dv05
2vsd0D0

vs
21g2 . ~42!

E. Spectral weight asymmetry in the analytic model

A spin-up quasiparticle consists of amplitudes for
spin-up electron~electron in a spin-up state!, and a spin-up
hole~electron missing from a spin-down state!. Therefore the
spectral weight of a spin-up localized state will be divid
between an electronlike pole in the spin-up band atv5v0
@with weightA↑(r ;v0)] and a holelike pole in the spin-dow
band atv52v0 @with weightA↓(r ;2v0)#. These two types
of excitation are independently resolvable by a scanning t
neling microscope, since at positive sample voltage rela
to the tip the STM places electrons in the sample, wherea
negative sample voltage the STM places holes in the sam
We define the energy of the pole in the spin-up band to
v↑ and in the spin-down band to bev↓ . Even thoughv0 is
always positive, v↑ can be positive or negative, an
v↑52v↓ .

The spatial structure of the spectral weights of the spin
band and spin-down band components of the localized s
are given by
As~r ;v!5
pN0D0

2vs
d~v2vs!

AD0
22v2

D0
F ~v02vs!D0

21~v01vs!v
21~v01vs!a

2~D0
22v2!

D0
2

1
2~v01vs!avAD0

22v22~11a2!~v0
22vs

2!~a~D0
22v2!1vAD0

22v2!

D0
2 G , r ,R0

5
pN0D0

~kFr !2

~D0
22v2!3/2

2vsD0
3 expF2

2r

pj
SAD0

22v2

D0
D Gd~v2vs!F S vs

D0
21v2

D0
22v22v01~vs

22v0
2!

3H a2
v

AD0
22v2 J D sin2~kFr !1~vs1v0!S 11~vs2v0!H v

AD0
22v2

2aJ D cos2~kFr !

12~vs1v0!S v02vs1@12a~v02vs!#
v

AD0
22v2D sin~kFr !cos~kFr !G , r .R0 .

~43!
in
nd

ve.
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en-
a

the
The above expression is set up for use as a muffin
Green’s function. The construction of such a Green’s fu
tion requires that the spectral weight integrates to one. H
ever, ignoring the contribution fromr ,R0, the above ex-
pression can be integrated over all space, and still yie
one-half for the spin-up band and one-half for the spin-do
band to orderD0 /eF . Hence the quasiparticle is one-ha
electron and one-half hole. This provides additional con
dence in the above expressions.

The frequency-integrated weight at the defect of the t
types of excitation can be calculated within the analy
model, and is~for d050!

A↑~r50!

A↓~r50!
5

112a~v02vs!1~11a2!~v02vs!
2

112a~v01vs!1~11a2!~v01vs!
2 .

~44!
in
-
-

s
n

-

o

For a spin-down quasiparticle there is an electronlike pole
the spin-down band and a holelike pole in the spin-up ba
and the relative weight is still given by the expression abo
This expression forv050 was reported in Ref. 37.

In the following section these results are compared w
numerical calculations of properties in the superconduct
stateand in the normal state.

IV. COMPARISON WITH NUMERICAL RESULTS
AND DISCUSSION

A. Nonmagnetic impurity

Even strong nonmagnetic impurities at moderate conc
trations will not suppress the critical temperature of
superconductor.3 Nevertheless, it was recognized early on25

that the local order parameter may be affected. In Ref. 25
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11 220 56MICHAEL E. FLATTÉ AND JEFF M. BYERS
effect of the nonmagnetic impurity was calculated in the
field by modeling the impurity potential with a phase shi
The phase shifts were evaluated for two models: a sphe
square-well potential and ad-shell potential. Self-
consistency was ignored by only focusing on regions
from the impurity where the change in the order paramete
small compared to its homogeneous value. The ord
parameter change due to the impurity was found to oscil
with the Fermi wavelength, and decay asr 22 for r ,j. For
r .j, expressions in Ref. 25 indicate a decay ofr 23.

Figure 3 shows the spectral weightA(r ;v) at several fre-
quencies above the energy gap near a strong nonmag
impurity with a Gaussian potential of rangekF

21 and strength
v057/8, calculated self-consistently for a superconduc
with jkF5449 ~a free-electron parametrization of niobium!.
The spectral weights are suppressed to approximately
of their homogeneous value at the center of the poten
Only continuum states are shown since no localized st
were found for this potential. The curves showing the sp
tral weight have been displaced from each other so that
may be distinguished. Also shown displaced in Fig. 3 is
spectral weight in the normal state, normalized to the sp
tral weight in the homogeneous metal.All the quantities plot-
ted in Fig. 3 areidentical to the accuracy of the calculation
Figure 3 is an illustration of a relationship between the sp
tral weight in the normal state and the spectral weight in
superconducting state,

A~r ;v!5
An~r !

2N0
Asc~v!, ~45!

where An(r ) is the spectral weight in the inhomogeneo
normal state for energies near the Fermi surface andAsc(v)
is the homogeneoussuperconductor’s spectral weight as
function of frequency. 2N0 is the normal state’s spectra

FIG. 3. Comparison of the spectral weight in the supercond
ing state at several frequencies to the spectral weight of the no
state and the spatial dependence of the order parameter. All of t
curves are indistinguishable, but they have been displaced for b
visibility. The spectral weights are normalized to their value at la
distances from the impurityr , and the order parameter is norma
ized to the homogeneous order parameterD0 . This figure indicates
that normal-state properties drive the spatially dependent featur
the superconductor’s spectrum.
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weight far from the impurity. This expression is valid fo
small r and smallv, the regime of interest for STM on a
superconductor. Forv of order D0 , Eq. ~45! is valid for
r ,j.

We further illustrate the relationship of Eq.~45! in Fig.
4~a!, which shows the LDOS for this nonmagnetic impuri
normalized by the normal-state DOS, as a function of vo
age and position calculated from Eq.~1! with
T5 (0.13)D0 /kB . This temperature corresponds to 2 K for
niobium. There is no change in the energygap due to this
nonmagnetic potential. Figure 4~a! shows that it is merely
the local amplitude of the spectral weight which is reduced
this would manifest itself in a locally reduced oscillat
strength for an optical transition, or the reduction in the tu

t-
al
se

ter
e

of

FIG. 4. Differential conductivity~LDOS! as a function of volt-
age and position calculated around a nonmagnetic impurity w
v050.875. The LDOS is normalized by the homogeneous DOS
the normal state. The spectrum is suppressed substantially in
vicinity of the impurity. The temperature is0.13D0/kB , which for
niobium corresponds to about 2 K.~a! A coherence length appro
priate for niobium,jkF5449. ~b! A much shorter coherence length
jkF510.
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neling current for an STM, which is directly proportional
the LDOS shown in Fig. 4~a!. Figure 4~b! is an identical
calculation for a shorter coherence length,j510kF

21 . There
appears to be little difference, although here a localized s
exists near the continuum.

Figures 3 and 4~a,b! show for the nonmagnetic impurit
that the normal-state electronic structure determines thespa-
tial dependence of the superconductor’sA(r ;v) for all fre-
quencies including near the energy gap. The poten
strength of the impurity is orders of magnitude greater th
D0 , and thus locally mixes in states far from the Fermi s
face in the homogeneous metal. These states are requir
construct probability densities which are suppressed by 7
near the impurity. The spatial structure of the spectral wei
in the normal state is essentially identical to that seen in F
3 over an energy range around the Fermi surface whic
orders of magnitude greater thanD0 .

Once the normal-state band structure has been disto
by the presence of the nonmagnetic impurity, supercond
tivity is a small perturbation within a narrower frequen
range. The formation of the gap in the single-particle exc
tion spectrum in the superconducting state is character
by the ‘‘mixing’’ of electron and hole amplitudes to form
quasiparticles near the gap edge. These quasiparticles, t
fore, are constructed from single-particle eigenstates of
metal which have already been strongly distorted by the
purity potential.

Equation~45! has important implications for spectroscop
on a superconductor, for one of the procedures for norm
izing spectra taken at different lateral positions on a sup
conducting surface is to assume that the LDOS at a partic
voltage much larger thanD0 is the same. This is an attemp
to correct for possible changes in the tip-surface dista
upon moving the tip laterally. A small change in the ti
surface distance can have a strong effect on the tunne
current. Unfortunately this procedure will prevent an expe
ment from seeing changes in the LDOS due to a nonm
netic impurity, including the conductance oscillations d
scribed in Ref. 26.

We now discuss the properties of the order parame
D~r ! is self-consistently determined, and is shown in Fig
for small r to be identical in spatial structure to the norma
state spectral weight,

D~r !

D0
5

An~r !

2N0
5

A~r ;v!

Asc~v!
. ~46!

Since a nonmagnetic potential repulsive to electrons attr
holes, andD~r ! depends equally on electron and hole amp
tudes, one might expect a nonmagnetic potential to h
little effect on the spatial dependence of the order parame
However the allowable maximum spectral density of ho
depends on the spectral density of the electron band w
the holes reside, so if most electrons are excluded from
site, holes will be effectively excluded as well. To emphas
this point we note that the scaled anomalous spectral we
Im F(r ,r ;v) is identical to the scaledA(r ;v) for the fre-
quencies shown in Fig. 3@and for all relevant frequencies fo
the self-consistency equation Eq.~14!#. Since ImF(r ,r ;v) is
proportional to the product of electron and hole amplitud
and A(r ;v) is proportional to the electron amplitud
te
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squared, the spatial structure of the electron and hole spe
weights must be similar. They are, since the normal-s
spectral weightAn(r ;v) is roughly frequency independen
around the Fermi energy over an energy range much gre
thanD0 .

We now comment on the lack of localized states near
nonmagnetic impurity forjkF5449 and the small binding
energy of the quasiparticle forjkF510. The suppression o
the order parameter near the impurity may be considere
form an attractive off-diagonal potential which may bin
quasiparticles. Localized states created by order-param
suppression would be doubly degenerate, due to the two
sible spin states@see Eq.~40!#. Since the quasiparticle is ha
hole and half electron, if the electron part is attracted and
hole part is repelled, one might expect the effects of suc
nonmagnetic potential on the quasiparticle to cancel. Ho
ever the binding energy of the localized state is an orde
magnitude smaller@v05(12231024)D0# than that found
in Sec. IV D for a suppressed order parameter via pair
suppression. This may be explained by the well-known
pulsive effect~quantum reflection! of a strong attractive po-
tential on a quantum-mechanical particle. We find also t
in the case of the magnetic impurity that a large enou
nonmagnetic potential of either sign will suppress the bin
ing of a quasiparticle to the impurity. We note here that t
ratio of the nonmagnetic potential to the off-diagonal pote
tial @dD(r )# is much larger (v0 /N0D0;104) than the ratios
of the nonmagnetic potentials to the magnetic potentials c
sidered below.

B. Magnetic impurity

Recently, we have presented calculations of the LD
~and thus the differential conductivity in an STM expe
ment! in the vicinity of a magnetic impurity.37 These calcu-
lations indicated that the spatial structure of the electron a
plitude of the localized state differed strongly from the ho
amplitude of the localized state. A further result was that
spectrum should recover to the homogeneous spect
within a few atomic spacings. Similarly motivated calcul
tions of the LDOS due to thel 50 localized state have bee
presented since then,38 although these calculations did no
address the continuum LDOS. The two models used in R
38 were ~1! a d-function model solved using particle-hol
symmetric Green’s functions, but not self-consistently, a
~2! self-consistent calculations for a two-dimensional tig
binding s-wave superconductor within the BdG equation
The first method can only model the normal-state proper
properly for a particle-hole symmetric band structure, su
as at the Van Hove singularity in a two-dimensional tigh
binding band structure. The second method must cont
with numerical finite-size effects, which make it difficult t
calculate the continuum states. A result obtained from
first method which is only true for special band structures
that the spatial structure of the electron and hole compon
of the quasiparticle are the same. The authors of Ref. 38
raise the possibility of an additional nonmagnetic potentia
a source of electron-hole amplitude asymmetry in the spa
structure of the localized state. We found37 and will explore
below that there is, for realistic band structures, electron-h
asymmetry without a nonmagnetic potential.69
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1. Energy and character of localized states

We will begin with a discussion of the energies of t
localized states around a magnetic impurity and the s
character of those states. Solutions to Eq.~37! can be evalu-
ated numerically. Figure 5 shows the dependence of the
ergies of the localized state poles for the first two angu
momentum channels on the strength of the magnetic po
tial. Results for a short coherence length (j510kF

21) are
shown ~solid line! as well as results for a long coheren
length (j5449kF

21). The localized quasiparticle state fo
smallvs is the spin state attracted to the classical spin, wh
we will label up (↑).63 As the potential strength increase
the excitation energy of each angular momentum state
creases. At some critical valuevsl

* the localized state be
comes a spin-down excitation, the energy changes abru
and then increases with increasingvs . This behavior can be
extracted from the analytic model@Eq. ~40!# as well.

Evident from Eq.~7! is that thel -channel electron pole
involves entirely single-particle states within the spin-
band when thel -channel solution to Eq.~37!, V.0. This
occurs forvs,vsl

* . However, forV,0 (vs.vsl
* ), the elec-

tron pole involves entirely states within the spin-down ba
The holelike pole always involves single-particle states
the opposite spin band from the electronlike pole. The sou
of the quasiparticle amplitude for the various poles is in
cated in Fig. 5.

Also shown in Fig. 5 are the analytic results for the po
energies fora50 ~Ref. 8! and a50.704. The muffin-tin
model is no better than the particle-hole symmetric mode

FIG. 5. Energies of the quasiparticle poles as a function of
magnetic potential strengthvs for the first two angular momentum
states around the impurity. The spin-up and spin-down labels r
to the band that the excitation resides in—an excitation with ne
tive energy~holelike! in a spin-up band is a spin-down hole. Th
solid line corresponds tojkF510, the long-dashed line to
jkF5449, the short dashed line to the symmetric model of Sh
and the dot-dashed line to the result calculated with muffin
Green’s functions anda50.704. At a critical value ofvs5vs0* , the
up poles cross to negative energies and the down poles cro
positive energies, indicating a change in the character of the gro
state. The kink evident in the solid and long-dashed lines is r
and due to the discontinuous~at T50! change inD~x! at vs0* . The
unimportance of self-consistency can be gauged by the small
ference between the short-coherence length result and the
coherence length result.
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predicting the localized state energies. The muffin-tin mo
will prove more successful at predicting the spatial asymm
try between the electron and hole amplitudes of the locali
state.

The unimportance of self-consistency for determining
energies of the localized states can be gauged by the s
difference between the short-coherence length result and
long-coherence length result. The most important featur
determines in Fig. 5 is the size of the discontinuity in t
localized state energy atvs0* . This discontinuity is due to a
discontinuous change in the order parameter at this magn
potential strength, a result pointed out in Ref. 37 which w
be discussed more below.

As seen in Fig. 5, the value ofvs0* is mostly independen
of the value of the coherence length. We present the follo
ing justification of that observation. The decrease in the q
siparticle energy by the classical spin is proportional to
overlap of the atomic-scale potential and the impurity s
The state is, aside from ar 22 falloff, extended over a volume
given by the range of the exponential envelope of the loc
ized state @Eq. ~43!#, R5pj/2A12(v0 /D0)2. Thus the
overlap, and consequently the quasiparticle’s energy red
tion, is proportional tovsD0 . When this energy exceeds th
energy required to create a quasiparticle (D0), the ground
state contains a quasiparticle. Hencevs* is approximately
independent ofD0 , and is determined primarily by the
normal-state properties of the superconductor.

A more complete interpretation of the energetic diagr
of Fig. 5 requires an understanding of the threshold energ
create a pair of excitations, such as in an optical experim
The pairing is suppressed local to the impurity since an
spin electron is attracted to the impurity and its time-rever
partner, the down-spin electron, is repelled. Therefore,
energy needed to break a pair and create a localized qu
particle with angular momentuml in the vicinity of the
magnetic impurity, whenvs,vsl

* , is reduced from 2D0 to
D01v l . One member of the broken pair is a delocaliz
spin-down quasiparticle at the gap edge~with energyD0!.
The other member of the broken pair is alocalizedspin-up
quasiparticle with energyv l . For vs.vsl

* there is a spin-up
quasiparticle with angular momentuml in the ground state
of the superconductor.65 An essential point about the groun
state of a superconductor containing classical magnetic
purities is that atT50 whenvs,vsl

* ~for all l ! the ground
state is composed entirely of paired electrons. Whenvs.vsl

*
for any l then theT50 ground state contains localized qu
siparticles as well as pairs and there are new low-ene
excitations including the reformation of a pair as well as t
excitation of a localized quasiparticle to a higher energy
calized or continuum state~which requires an energy les
than anyD01v l !.

2. Local density of states

We now focus on our results for the local density of sta
near the impurity. Figures 6~a!, 6~b!, and 6~c! show LDOS
results forvs50.5, 0.875, and 1.75 respectively. They sho
the state split off from the continuum, with a larger electro
like amplitude than holelike amplitude@Fig. 6~a!#, and then
lower in energy with an increased electron/hole asymme
@Fig. 6~b!#. Finally the larger peak becomes holelike@Fig.
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FIG. 6. Differential conductivity~LDOS! calculated around a magnetic impurity with~a! vs50.5, jkF5449, ~b! vs50.875,jkF5449,
~c! vs51.75, jkF5449, ~d! vs50.875, jkF510. All are calculated withkBT50.13D0 In the progression from~a! to ~c! the asymmetry
between the two peaks increases and the higher peak moves to lower energies, eventually becoming holelike. The LDOS is norm
the normal-state’s homogeneous DOS.
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6~c!#. In all three cases the spectrum recovers to its b
value within a fewkF

21 , due to ther 22 decay of the local-
ized state~Eq. 43!. The asymmetry between the electronli
and holelike peaks becomes more pronounced asvs in-
creases. We note that the larger peak is always assoc
with the spin-up band, whereas the other is associated
the spin-down band. Despite the apparent differences in p
size, the spatially integrated electron spectral weight of
quasiparticle is equal to the spatially integrated hole spec
weight. The localized quasiparticle is always half electr
and half hole for all potentials examined here. Forvs,vs0*
the spin-up band amplitude is electronlike and the spin-do
band amplitude is holelike. Atvs0* ~1.32 for a free-electron
model of niobium!, the spin-up component becomes holeli
and the spin-down component becomes electronlike, as
quired by the change in the spin of the excitation.

Figure 6~d! shows the LDOS for a markedly differen
coherence length,j510kF

21 , andvs50.875. It is evaluated
for the same value ofD0 /kBT as Figs. 6~a,b,c! and looks
lk

ted
ith
ak
e
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almost identical to Fig. 6~b!. Since the localized state i
broadened by temperature through Eq.~1!, this is a manifes-
tation of the proportionality of the spectral weight toN0D0

@Eq. ~43!#. Figure 7 shows the spectral weight at the orig
for thel 50 state and for thel 51 state at its first maximum
for vs50.875 as a function of the inverse of the coheren
length, which is proportional toN0D0 . Figure 8 shows the
spectral weight forj5449kF

21 as a function ofvs for the
spin-up and spin-down poles at the origin for thel 50 state
and at the first maximum for thel 51 state. It is clear that a
nonmagnetic potential is not necessary to obtain an elect
hole asymmetry.

In Fig. 9 we show the asymmetry at the impurity as
function of vs for two values ofj—a long coherence length
appropriate for niobium, and a short coherence length. F
Fig. 7 it should be evident that the asymmetry is not sensi
to j. It is, however, predicted extremely well by the norma
state spin-up and spin-down band spectral weight asymm
at the impurity ~also shown in Fig. 9!. We can therefore
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conclude that as with the nonmagnetic impurity~Fig. 4!, the
spatial structure of the spectral weight of the localized s
around a magnetic impurity is a normal-state property.
further show in Fig. 10 forvs50.875 thel 50, spin-up band
and spin-down band projections of the normal-state spec
weight to compare with the localized state spin-up band
spin-down band spectral weights for two values ofjkF . The
normal-state and long-coherence length calculation are p
tically indistinguishable. The insets showr 2A(r ), which re-
moves the rapid power-law decay of the state. The locali
states for all angular momental will decay as the power law
r 22. For the short-coherence length calculation the effec
an exponential envelope is also visible. In the analytic re
the exponential envelope should have a ran
R5pj/2A12(v0 /D0)2, which corrects to better than 1%

FIG. 7. Spectral weight at the impurity (r 50) for the first an-
gular momentum channel,l 50, and at the first maximum for the
second angular momentum channel,l 51, for poles in both the
spin-up and spin-down bands, as a function of the inverse co
ence length, showing a linear behavior. The magnetic poten
strength isvs50.875.

FIG. 8. Spectral weight at the impurity (r 50) for the l 50
channel forjkF5449 as a function of magnetic potential streng
for poles in both the spin-up and spin-down bands. The spec
weight in the spin-up band pole of thel 50 localized state satu
rates at largevs . Also shown are the spectral weights at the fi
maximum for thel 51 localized states.
te
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d
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the discrepancy in Fig. 10. The power-law falloff and exp
nential envelope can be seen directly from Eqs.~15! and
~43!.

We can summarize these comments with a general e
tion, similar in concept to that for the nonmagnetic impuri
Eq. ~45!. That is, for a localized quasiparticle state of sp
s8, the spectral weight of a localized state with angular m
mentuml would be

As
s8~r ;v l !5BAns~r ,l !expF2S 2r

pj DA12S v l

D0
D 2G

3d~v2ss8v l !, ~47!

whereB is a normalization factor so that the spectral weig
of the state integrates to one, andAns(r ,l ) is the angular
momentuml projection of thenormal-state spectral weigh
in the spins band. We note that for smallr there is an
approximate relationship between the superconduc
state’s spectral weight and the normal state’s spectral we
in each spin band,

1

2E E
2E

E

dvAs~r ;v!5Ans~r !, ~48!

whereD0!E!eF . This, in connection with Eq.~47!, im-
plies a dependence on the normal-state structure of the
tinuum spectral weight around the magnetic impurity.

3. Structure of the inhomogeneous order parameter

We now return to the structure ofD~x!. This quantity,
which is not directly observable, formed the focus of seve
investigations of the local structure around a magnetic im
rity. The oscillation of the order parameter around a ma

r-
al

al

t

FIG. 9. Ratio of the spectral weight in the spin-up band and
the spin-down band at the impurity (r 50) as a function of mag-
netic potential strength. This is plotted for the normal-statel 50
projected Green’s functions~solid line! as well as for the localized
states for niobium~jkF5449, long dashed line!, for jkF510 ~dot-
dashed line!, and for the muffin-tin model. The muffin-tin model i
only successful forvs,0.5, but that is due to a breakdown in d
scribing the normal state. The normal-state electronic structure
good predictor of the superconductor’s electronic structure for
entire range ofvs .
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netic impurity was first evaluated without sel
consistency.21–23 A self-consistent calculation of the orde
parameter at the impurity and very far away forweakimpu-
rity potentials was done by Schlottmann.24

As shown in Fig. 1, for large values ofvs , D(x50),0.
Sign changes inD, as seen in pair tunneling, have been su
gested for magnetic impurities in the barriers of Joseph
junctions.66–68The sign change inD~0! occurs~at T50! pre-
cisely atvs0* . Due to the spin and frequency symmetries
Eqs. ~6!–~13!, the anomalous spectral weight ImF(r ,r ,v)
associated with the spin-up pole is always equal and oppo
to the anomalous spectral weight associated with the s
down pole. As the pole in the spin-up band goes from el
tronlike (v.0) to holelike (v,0) and the pole in the spin
down band goes from holelike to electronlike th
contribution toD~0! changes sign abruptly atT50. TheD~r !
resulting from several values ofvs and two values of the
coherence length are shown in Fig. 11~a,b!. The discontinu-
ity at vs0* is more pronounced for shorter coherence leng
since the localized state’s spectral weight is more conc
trated at the impurity@Eq. ~47!#. D~0! as a function ofvs is
shown in Fig. 12 for two values of the coherence length.
T.0 the transition would be smoothed somewhat.

The behavior ofD~0! as a function ofvs comes from the
introduction atvs0* of a quasiparticle into the ground state
the system. The spin-up quasiparticle localized near the
purity in the ground state suppresses the local order par
eter. For time-reversal invariant potentials one cannot m
D~r ! negative by inserting a single quasiparticle, since

FIG. 10. Spectral weights forl 50 localized state in the up an
down bands forvs50.875. The solid line is the normal statel 50
projected spectral weight, the long-dashed line is the localized s
in a superconductor withjkF5449, and the dot-dashed line is fo
jkF510. The inset shows the spectral weight multiplied byr 2 to
remove the algebraic decay. The normal-state and long-coher
length results are practically indistinguishable. The deviation sho
in the short-coherence length superconductor’s spectral weight
to within 1% by the exponential decay factor described in the t
Hence the spatial structure of the spectral weight of the super
ductor’s localized state is well-predicted by the normal-state sp
tral weight.
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suppression from one quasiparticle is cancelled by the l
of suppression from its unexcited Kramers doublet partn
For a spin-dependent potential, however, the anoma
spectral weight near the impurity may be almost entir
contributed by the single low-energy localized state. Whe
quasiparticle is present in the ground state, the ground s
has spin-12 up65,38 and a negativeD~r !.37 Exciting the low-
energy state forvs.vs0* removes the spin-up quasiparticl
and thereforeincreasesD~0!, whereas excitation of quasipa
ticles typically reducesD~x! ~which is the case forvs,vs0* !.
Also, exciting the low-energy state alonereducesthe total
spin of the superconductor.

The behavior ofD~r ! for large r has not been evaluate
numerically. We expect the contribution of the localize
state to decay with a length determined by the exponen
expression in Eq.~43!, Rloc5pj/2A12(v0 /D0)2. The con-
tributions from the continuum states at a givenv have a
v-dependent spatial oscillation and decay asr 22. When
those contributions are integrated fromD0 to vD , one ob-
tains ar 23 sin(r/Rcont) decay, whereRcont;jD0 /vD . Since
Rloc.Rcont it would be possible to have first
r 22 exp(2r/Rloc) decay, followed by an oscillatoryr 23 de-

te
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n
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n-
c-

FIG. 11. Order parameters as a function of distance from
impurity r calculated for several magnetic potential strengths for~a!
jkF5449 and~b! jkF510. In both cases there is a discontinuo
change in the order parameter whenvs passes through the critica
strengthvs0* .
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cay. The oscillatoryr 23 decay was pointed out in Ref. 24
We emphasize that, although the order parameter appea
recover to its bulk value over a length scale much sho
than the coherence length, this is again a manifestation o
r 22 behavior of the normal and anomalous spectral weig
WhendD(r ) is multiplied by the surface area of the sphe
at radiusr , one finds that the order parameter’s recove
length is on the order of the coherence length.

C. Combined magnetic and nonmagnetic potentials

We now discuss the addition of a nonmagnetic poten
to the magnetic potential. It has been suggested38 that intro-
ducing av0 with a vs will provide electron-hole asymmetry

FIG. 12. Order parameters at the impurity (r 50) as a function
of magnetic potential strengthvs for two values of the coherenc
length. The discontinuity in the order parameter atvs0* is much
larger for the short-coherence-length superconductor.

FIG. 13. Ratio of the spectral weight at the impurity in th
spin-up band to the spin-down band forvs50.875 andjkF5449 as
the nonmagnetic potentialv0 varies. In a similar result to that see
in Fig. 9, the normal-state spectral weights are good predictor
the superconducting state’s spectral weight. We note that the cu
are not symmetrical aroundv050, which results from a realistic
band structure without particle-hole symmetry.
to
r

he
s.

y

l

We find that it does change the asymmetry, which we sh
in Fig. 13 for a particularvs , but that once again this is
normal-state property. The relationship between the norm
state spectral weights and the superconducting-state spe
weights of Eq.~47! still holds. Introducingv0 also alters the
localized-state energies@see Eq.~40!#, which we show in
Fig. 14 forvs50.875 andjkF5449. The presence of a non
magnetic potential may affect the value ofvs0* .38 We show
in Fig. 15 a partial diagram of the ground state as a funct
of the parametersvs andv0 for jkF5449. We note that the
boundary between the two ground states is not shifted m

of
es

FIG. 14. The energy of the spin-up pole is shown as a funct
of nonmagnetic potential strength forvs50.875 andjkF5449. The
energy of the spin-down pole is just the negative of the energy
the spin-up pole. The analytic models do not perform particula
well in reproducing the pole energies, although the muffin-
model does show a similar asymmetry aroundv050 to the numeri-
cal calculations.

FIG. 15. Calculated boundary between two ground states aro
the magnetic impurity forjkF5449. For a large enough magnet
impurity strength a quasiparticle is bound in the ground state.
minimum magnetic impurity strength depends on the nonmagn
impurity strength. For still larger magnetic impurity strengths the
would be ground states with more than one bound quasiparticl
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from jkF5449 to jkF510, hence the condensation ener
is not very significant in determining this boundary.

D. Connection to normal-statedI /dV spectra

The normal state may provide some guidance for attem
to extract impurity potentials in the superconducting st
from STM measurements. Figure 16 showsnormal-state
dI/dV’s for various potentials. These curves should also r
resent the frequency-averaged spectral weight measure
the superconducting state@see Eq.~48!#.70

The enhancement or suppression of spectral weight
the origin is particularly sensitive tov0 . A measurement of
this quantity, the energy of the localized state and the as
metry of the electron and hole amplitudes at the impu
overconstrainsv0 andvs , given an assumption of the shap
of the potential. To extract information about the potentia
detailed shape would require a fitting procedure using
differential conductivity at various positions. If, for som
reason, the spin-down amplitude were too small to meas
it may remain possible to constrain the potential stren
using the frequency-integrated spectral weight and
localized-state energy.

It seems appropriate to mention again the tendency
normalize spectra according to the LDOS measured at e
gies much larger thanD0 . Since the normal-state LDOS ne

FIG. 16. Spectral weights in the normal state as functions of
distance from the impurity for several combinations of magne
and nonmagnetic potentials~a! only a magnetic potential, and~b! a
fixed magnetic potentialvs50.875 and a varying nonmagnetic po
tential. By making measurements around the impurity in the nor
state~or integrating the superconductor’s spectrum over a freque
much larger thanD0!, information about the structure of the impu
rity may be obtained.
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the impurity changes substantially in the presence of m
netic or nonmagnetic impurities, an experiment perform
using such a normalization procedure would yield impur
parameters of questionable validity.

E. Relationship to Ginzburg-Landau theory

Although Ginzburg-Landau theory has a wide range
applicability, it fails to describe the electronic structure ne
these impurities. Shown in Fig. 17 is the order parameter
a mixed magnetic and nonmagnetic impurity~vs57/8,
v0527/4, andjkF5449!. The order parameter is every
where larger than in the homogeneous superconductor, h
ever, the presence of a localized state within the gap in
cates that superconductivity has been weakened around
impurity. Since the Ginzburg-Landau theory focuses on
order parameter and ignores the quasiparticle structur
Ginzburg-Landau perspective would incorrectly predict
enhancement of superconductivity in the region.

F. Pairing suppression

The pairing potential,g~x! in Eq. ~14!, may also have
spatial structure. When this parameter is changed it induc

e
c

al
y

FIG. 17. The change in order parameter around an attrac
nonmagnetic potential combined with a magnetic potential
jkF5449. The order parameter is larger at the impurity than in
homogeneous superconductor, yet there exists a localized sta
the gap.

FIG. 18. Order parameter as a function of distancer from a
defect with a suppressed pair potential, but no single-particle po
tial.
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11 228 56MICHAEL E. FLATTÉ AND JEFF M. BYERS
change in the order parameter which produces an
diagonal potential felt by the quasiparticles. We s
vs5v050 so that there is no magnetic or nonmagnetic
tential to compete with the order-parameter change. Fig
18 shows the order parameter around a short-range sup
sion,

g~x!5@12e2~kFr !2
#g0 , ~49!

for two values of the coherence length. The order param
is strongly suppressed and sinceg(0)50, D(0)50. For long
coherence lengths, this change in the order parameter ha
effect on the local density of states@shown in Fig. 19~a!#. It
is possible to localize quasiparticle states, however, at sho
coherence lengths. These can produce features in the
density of states which are visible. One such case is show
Fig. 19~b!. The energy of the localized state
v05(12431023)D0 . Whereas a nonmagnetic potenti
changes the local density of states without significan
changing the energy gap, a pairing suppression has a
weak effect on both, especially in the long-coherence len
limit.

V. STRONG-COUPLING
AND ANISOTROPIC ORDER PARAMETERS

A few observations are in order concerning the extens
of this formalism to systems where the homogeneous o
parameter has important frequency or spatial structure.
Gor’kov equation@Eq. ~6!# changes due to the more gene
form for the off-diagonal potential originating from the ord
parameter. Taking this opportunity to generalize,

E dx9dx-@d~x2x9!d~x92x-!

2g~x,x9;v!V~x9,x-;v!#G~x-,x8;v!5g~x,x8;v!,

~50!

where

V~x9,x-;v!

5S Ve↑~x9;v!d~x92x-! dD~x9,x-;v!

dD~x9,x-;v! Vh↑~x9;v!d~x92x-!
D .

~51!

The diagonal terms are general potentials, poss
frequency-dependent, effective on spin-up electrons (Ve↑)
and spin-up holes (Vh↑) for v.0. Since this potential is
diagonal in frequency, as is the Gor’kov equation, the f
quency structure of the order parameter does not add
additional complication to numerically solving the Gor’ko
equation. However, the addition of spatial structure to
pairing has added another integral over the volume to
Gor’kov equation, and thus dramatically increased the siz
the matrix which needs to be inverted. Fortunately, the ra
of the order parameter inux2x8u is truncated by the range o
the pairing interaction. For the isotropic-gap superconduc
we have considered for most of this paper, the effective p
ing interaction is modeled by ad function in space. It is
possible to obtain anisotropic order parameters, including
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d-wave order parameters possibly appropriate for hi
temperature superconductors, merely by considering pai
with nearest neighbors on a square tight-binding lattice. T
model has been implemented with the BdG formalism
nonmagnetic impurities,32–35 magnetic impurities,38 and
vortices71 in d-wave superconductors. When formulated on
lattice the addition of nearest-neighbor pairing multiplies t
rank of the matrixMn→n(v) by 11z, wherez is the coor-
dination number of the lattice.

The order parameter’s frequency dependence complic
the self-consistency equation@Eq. ~14!#. It must now be
solved for each frequency:

FIG. 19. Differential conductivity~LDOS!, normalized by the
normal-state’s homogeneous DOS, around a defect with a
pressed pair potential, but no single-particle potential.~a!
jkF5449, kBT5D0/7.5—there is no evidence of any change in t
spectrum due to the order parameter suppression shown in Fig
~b! jkF510, kBT5D0/100—a localized state very near the co
tinuum enhances the continuum edge seen in tunneling nea
defect.
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D~r ,r 8;v!Z~r ,r 8;v!5E
2`

`

den~e!@Re F~r ,r 8;e!#

3~K1~r ,r 8;e,v!2Uc!,

v@12Z~r ,r 8;v!#5E
2`

`

den~e!@Re G~r ,r 8;e!#

3K2~r ,r 8;e,v!, ~52!

whereK6 are kernals of the pairing interaction and are d
ferent for each mechanism of superconductivity. They can
determined from the homogeneous solution.Uc is a Cou-
lomb factor.Z, the quasiparticle weight, is solved for se
consistently. Incorporating these strong coupling effects
lows a determination of the effect of the frequen
dependence of the pairing interaction on the electronic st
ture around a defect. While selecting the particular locat
of the STM tip is similar to selecting the momentum of t
quasiparticles of interest, selecting the STM voltage in
cates which order-parameter frequency one wishes to pr

VI. SUMMARY

The local electronic structure around a defect reflects b
the properties of the defect and the medium it is embed
in. For a strong nonmagnetic or magnetic impurity in a s
perconductor, the distortion of the normal-state properties
the strong impurity plays a vital role in the response of
superconducting medium. The LDOS for the inhomogene
superconductor can be related to the LDOS for the inhom
geneous normal metal via equations like Eqs.~45! and ~47!.
In the case of a nonmagnetic impurity with no localiz
states around it, the LDOS for the inhomogeneous super
ductor is merely the normalized LDOS for the inhomog
neous normal metal multiplied by the homogeneous su
conductor’s density of states. This should suggest so
caution regarding the method used to normalize STM spe
taken at different places on a superconductor’s surface.

For the case of a localized state~such as around a mag
netic impurity! with angular momentuml , the LDOS for the
state is the angular-momentum-l -projected LDOS of the in-
homogeneous normal metal multiplied by a decaying ex
e

l-

c-
n

i-
e.

th
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y

e
s
-

n-
-
r-
e
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nential whose range is determined by the energy of the
calized state. Since the spin-up band LDOS in the norm
state differs from the spin-down band LDOS in the norm
state, the electronlike pole of the localized quasiparticle w
have different spatial structure than the holelike pole of
localized quasiparticle.

The self-consistent calculations described here have b
performed with a powerful Koster-Slater technique whi
allows the Gor’kov equation to be solved in principle e
actly. Although we have only presented calculations
weak-coupling isotropic order parameters within a fre
electron model, we have formulated the extension of t
technique to strong-coupling pairing and general band st
tures and order-parameter symmetries.
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APPENDIX

The expansion of the Green’s functions of Eq.~15! suit-
able for a three-dimensional spherically symmetric situat
are detailed here. The homogeneous Green’s functions
pend onr andr 8 throughr , r 8, and cosg5(r•r 8)/rr 8. Then
the Green’s functions can be expanded in Legendre p
nominalsPl (cosg).

g~r ,r 8;v!5g~r ,r 8,cosg;v!

5
2l 11

4p (
l

gl ~r ,r 8;v!Pl ~cosg! ~A1!

and

gl ~r ,r 8;v!52pE
21

1

Pl ~x!g~r ,r 8,x;v!. ~A2!

Evaluating Eq.~A2! for both the normal and anomalou
Green’s functions of Eq.~15! yields
gl ~r ,r 8;v!52
p3

Arr 8
F i S 11

v

Av221
D Jl 11/2~$11Av221/j%r ,!H l 11/2

~1! ~$11Av221/j%r .!

2S 12
v

Av221
D Jl 11/2~$12Av221/j%r ,!H l 11/2

~2! ~$12Av221/j%r .!G , ~A3!

f l ~r ,r 8;v!52
ip3

Arr 8

1

Av221
@Jl 11/2~$11Av221/j%r ,!H l 11/2

~1! ~$11Av221/j%r .!

1Jl 11/2~$12Av221/j%r ,!H l 11/2
~2! ~$12Av221/j%r .!#, ~A4!

whereJl , H l
(1) , andH l

(2) are standard Bessel functions,r , (r .) is the smaller~larger! of r andr 8, v is in units ofD0 and
r and r 8 are in units ofkF

21 . The Green’s functions are in units ofN0 .
The Gor’kov equation, Eq.~6!, can now be written in a form diagonal inl ,

Gl ~r ,r 8;v!5gl ~r ,r 8;v!1E
0

`

r n
2drngl ~r ,r n ;v!V~r n!Gl ~r n ,r 8;v!. ~A5!
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Thus the three-dimensional integral has been reduced
one-dimensional radial integral. Since the numerical inv
sion procedure depends on inverting a matrix whose ran
proportional to the number of spatial points considered,
ys

tt.

v
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be
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a
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reduction to a one-dimensional integral dramatically
creases the speed of this calculation over a calculation f
three-dimensional potential which is not spherically symm
ric.
.

v.

i,

d J.

ev.

rd,
.:

ett.

er-
for

n of
or
1M. Ma and P. A. Lee, Phys. Rev. B32, 5658~1985!.
2J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.106,

162 ~1957!; 108, 1175~1957!.
3P. W. Anderson, Phys. Rev. Lett.3, 325 ~1959!.
4B. T. Matthias, H. Suhl, and E. Corenzwit, Phys. Rev. Lett.1, 92

~1958!.
5C. Herring, Physica~Amsterdam! 24, S 184~1958!.
6H. Suhl and B. T. Matthias, Phys. Rev.114, 977 ~1959!.
7L. Yu, Acta Phys. Sin.21, 75 ~1965!.
8H. Shiba, Prog. Theor. Phys.40, 435 ~1968!.
9A. I. Rusinov, JETP Lett.9, 85 ~1969!.

10J. Zittartz and E. Mu¨ller-Hartmann, Z. Phys.232, 11 ~1970!.
11E. Müller-Hartmann and J. Zittartz, Z. Phys.234, 58 ~1970!.
12E. Müller-Hartmann and J. Zittartz, Phys. Rev. Lett.26, 428

~1971!.
13O. Sakaiet al., J. Phys. Soc. Jpn.62, 318 ~1993!.
14A. A. Abrikosov and L. P. Gor’kov, Zh. Eksp. Teor. Fiz.39, 1781

~1962! @ Sov. Phys. JETP12, 1243~1961!#.
15F. Marsiglio, J. P. Carbotte, A. Puchkov, and T. Timusk, Ph

Rev. B53, 9433~1996!.
16M. Jarrell, D. S. Sivia, and B. Patton, Phys. Rev. B42, 4804

~1990!; W. Chung and M. Jarrell, Phys. Rev. Lett.77, 3621
~1996!.

17R. Prange, Phys. Rev.129, 2495~1963!.
18J. P. Hurault, J. Phys.~Paris! 26, 252 ~1965!.
19P. W. Anderson and H. Suhl, Phys. Rev.116, 898 ~1959!.
20J. Friedel, Nuovo Cimento Suppl.7, 287 ~1958!.
21T. Tsuzuki and T. Tsuneto, Prog. Theor. Phys.37, 1 ~1967!.
22J. Heinrichs, Phys. Rev.168, 451 ~1968!.
23R. Kummel, Phys. Rev. B6, 2617~1972!.
24P. Schlottmann, Phys. Rev. B13, 1 ~1976!.
25A. L. Fetter, Phys. Rev.140, A1921 ~1965!.
26J. M. Byers, M. E. Flatte´, and D. J. Scalapino, Phys. Rev. Le

71, 3363~1993!.
27Y. Hasegawa and P. Avouris, Phys. Rev. Lett.71, 1071~1993!.
28M. F. Crommie, C. P. Lutz, and D. M. Eigler, Nature~London!

363, 524 ~1993!.
29C. H. Choi, Phys. Rev. B50, 3491~1994!.
30M. I. Salkola, A. V. Balatsky, and D. J. Scalapino, Phys. Re

Lett. 77, 1841~1996!.
31See, e.g., P. G. de Gennes,Superconductivity of Metals and A

loys ~Addison-Wesley, Reading, MA, 1989!.
32T. Xiang and J. M. Wheatley, Phys. Rev. B51, 11 721~1995!.
33M. Franz, C. Kallin, and A. J. Berlinsky, Phys. Rev. B54, R6897

~1996!.
34Y. Onishi, Y. Ohashi, Y. Shingaki, and K. Miyake, J. Phys. So

Jpn.65, 675 ~1996!.
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