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Flux penetration in slab-shaped type-I superconductors
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We study the problem of flux penetration into type-l superconductors with a high demagnetization factor
(slab geometry We analyze the process by which flux invades the sample as the applied field is increased
slowly from zero, concentrating on the role of demagnetization. We find that flux does not penetrate gradually.
Rather there is an instability in the process and the flux penetrates from the boundary in a series of bursts,
accompanied by the formation of isolated droplets of the normal phase, leading to a multiply connected
flux-domain structure similar to what is seen in experimef86163-18207)06238-3

When a type-l superconductor is placed in a magnetidween the domains. This is unlike the case for a cylindrical
field less than the bulk upper critical field it exhibits a phasesample, wherdapart from small fringing effecisscreening
with interpenetrating domains of the normal and superconeurrents in a superconducting domain only affect the field
ducting state called the intermediate state. Despite over 5@side that domain. Landau restricted his analysis to a com-
years of work, a complete description of the physics of thigparison between the free energy of the Meissner state and the
phenomenon has been elusive. The earliest theoretical wofkee energy of a configuration with long straight laminar do-
on this problem goes back to Landamho studied the prob- mains, alternating between superconducting and normal. Af-
lem of the equilibrium configuration of an infinite supercon-ter Landau’s work, other configurations of flux domains,
ducting slab of thicknessl placed in an applied magnetic sample geometries, etc., have been studied experimentally
field Bpp. Whend is much larger than the penetration depthand theoreticall§/® (and references therginin fact, in most
A and the coherence length he showed that the Meissner experiments the regular structures envisioned by Landau are
state is unstable to a configuration of alternating supercoryarely seen. Instead one sees complicated patterns which are

ducting and normal laminae. The gross physical picture ok ongly dependent on the sample temperature, disorder, and
this phenomenon is that the screening currents set up by thg,q history.

superconducting sample generate magnetic fields that extend In the last few years considerable progress has been made

into the regions above and be!ow .the sample. The Meissney, understanding a related problem: flux penetration {oto
state occurs when the reduction in free energy due to th

formation of the superconducting condensate is greater th gnxpulsmn from long cylindrical samples oriented parallel to

. . 15 .
the increase in the free energy due to the energy stored in t he r;a:?nencdﬁgldl.d Frf%m,t Lé!la(;l,t:nd Dtgrséy?nd L":
magnetic field. Since for a slab-shaped sample a larg ondetlo, and t>oldentetustudie € motion ot an Inter-

amount of magnetic energy is stored outside the sampld2c® between normal.and ;uperconducting regions in cylip-
whereas the superconducting condensate only exists insidg'ca| sgmp_les_, f0||0W_lng af|_e|d q_uench: When the magsnenc
the sample, the Meissner state is less favorable. On the othfigld varies in time(as it does in this cageit can be Sh(_)"‘(h
hand, if the sample has normal regions with high magneti(from Maxwell equations that the magnetic field satisfies the
field interspersed with superconducting regiowith the av-  diffusion equation with the diffusion constabt= c?lamo?.
erage magnetic field being equal to the applied magnetitierec is the speed of light and, is the normal-state con-
field), the field will approach its externally applied value ductivity. It can also be shown that the appropriate bound-
only a short distance above and below the sample, resultingry conditions for solving the diffusion equation reduce this
in a large reduction in the magnetic field energy, with aproblem to essentially that of solid growth into undercooled
relatively small decrease in the superconducting condensatkquids® Much of the work on solid growth then carries over
As outlined in the above discussion, it has been cleamto this case. In particular, when the superconducting phase
since the work of Landau that the interpenetrating domaingrows into the normal phagas would occur when the field
seen in experiments on slab-shaped type | superconductogsiench is to a field,,;<H., with H. being the bulk upper
can be explained as arising from a competition between theritical field), it can be shown that a planar interface is un-
magnetic field energy and the condensation energy of thetable to long-wavelength perturbations. In contrast, the re-
superconducting region§There is also a surface energy as- verse process of the normal phase growing into the super-
sociated with the interfaces between the normal and supeconducting phaséas would occur when the field quench is
conducting regions, which needs to be included in any quarto a fieldB,,=H.) is completely stable. Although interest-
titative calculation of domain widthsOn the other hand, it ing flux patterns can be seen taansientsin the response to
is apparent why the actual shapes of the domains are very quench for a cylindrical sample, this is different from the
hard to calculate theoretically. The screening supercurrentsteady-state interpenetrating domains seen in the intermedi-
in one superconducting region give rise to magnetic fieldsate state of slab-shaped samples: Steady-state patterns arise
over the entire sample. In calculating the energy of a condue to demagnetization, which does not exist for cylindrical
figuration, there is effectively a long-range interaction be-samples.
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Very recently, Goldstein, Jackson, and DorségJD) at-  the externally applied magnetic field, they obtain results nu-
tempted to analyze the influence of demagnetization on theerically close to Landau’s, which they argue suggests that
formation of flux structures for slablike type-1 superconduct-their approximation is a reasonable one. With their approxi-
ors. They assumed that transient currents in the normal donation, it is possible to calculate the free energy of compli-
mains decay very fast. From the expression quoted in theated patterns that are not amenable to Landau’s approach.
previous paragraph for the diffusion constant for the mag- Our approach is similar to that of GJD in that we also
netic field in the normal regions, this is equivalent to theassume thati) the transient currents in the normal regions
assumption that the normal-state conductivity is negligibledecay very fast, so that the dynamics is a simple gradient
In such a case, specifying the shape and location of the sulescent in free energy, afid) the free energy can be written
perconducting regions is enough to completely determine thas Eq.(1). However, we performed a careful analysis of the
free energy of a configuration. When a superconducting domagnetic part of the free energy, and as we show below, this
main changes its shape, the normal regions respond almoahalysis indicates that the interaction between superconduct-
instantaneously, and the shape change occurs if it leads toimg domainscannotbe expressed in terms of current carrying
lowering of the free energy. Thus GJD argued that one caioops (at least for low fields and results in qualitatively
then think of the dynamics as a simple gradient descent ddifferent behavior(Late stages of flux invasion, when the
the free energy. In calculating the free energy of a particulasupercondcting domains are tall and thin, are discussed
domain configuration, things are simplified if the scale of thelater) It is not difficult to see why superconductors and fer-
domains is much larger than the superconducting coherencefluids are so different. When a thin layer of a ferrofluid of
length & (as is indeed true in experimepts$n this case, the thicknessd and a characteristic transverse linear exterit of
interface between the normal and superconducting regions is placed in an applied magnetic fiel},,,, to leading order
quite sharp. The free energy for a sample in an applied fieléh d/L the B field inside(and outsidgthe ferrofluid is equal
Bapp Can then be expressed as the sum of three terms: t0 Bpp. This uniform field induces a uniform magnetization

within the sample, which [using the equation
F(BgppA)=Fg+ Fct+ Fs. (1) VXB=(47/C)jeyt4mVXM]gives rise to a small fringing
B field near the sample edge@he fringing field in turn

Here the first term denotes the magnetic free energy, thiduces a higher-order nonuniform magnetizatioro lead-
second term the condensation energy whichk- H§/8w per ing order ind/L the induced currents consist of a ribbon
unit volume in the superconducting regions, and the third thélowing around the boundary of the ferrofluid, causing a
interfacial energy which i$12AA/87. (A is the surface en- long-range interaction between different parts of the bound-
ergy parameter which is of the order of the coherence lengtR"Y- On the other hand, for a thin superconductor in the in-
¢, H, is the bulk upper critical field, and is the area of the ~ termediate phase is not even approximately equal By,
interfaces between the normal and superconducting regions?€ar the superconducting regions. Outside the sample, just
Both the second and third terms in E@) are easy to calcu- 2Pove or below a superconducting domanis parallel to
late for any pattern of domains. On the other hand, the maghe surface, while inside the dométnis zero. In addition to
netic field has to be determined by the conditions that thdibbons of current along the side walls of the superconduct-
field inside the superconducting regions be zero and thdf'd regions, there are also large current sheets on the top and
there should be no current flowin@n steady statein the  bottom surfaces, dominating the interdomain interaction.
normal regions. Although these conditions are enough td Nus while the basic GJD idea of long-range interactions
completely determine the magnetic field, from whiggcan ~ destabilizing regular patterns is correct, the actual descrip-
in principle be calculated, as discussed earlier this is 40N of the experimental patterns is more complicated. The
lengthy nonlocal computation. numerics we report in this paper show flux invading in

GJD (Ref. 7) assumedhat (in addition to a bulk terithe ~ PUrsts, pinching off from the boundaries to form droplets.
magnetic part of the free energy could be written as a |ong]—h|S IS gualltatlvely different from the continuous evolution
range interaction between current loops localized on the in®f GJD: _ _ _ _
terfaces between the normal and superconducting regions. W€ now considetfg in detail. For an arbitrary sample
This made the problem very similar to the problem of thePlaced in an applied magnetic fielk,,, the magnetic free
dynamics of two-dimensional ferrofluid droplets in a mag-€nergy !
netic field. For the ferrofluid case it is knofvthat regular
shapes evolveontinuouslyinto labyrinthine patterns when
the applied field is increased adiabatically. In the case of
superconductors, GJD showed that a circular flux droplet in a
sea of superconducting materiaith an area much larger HereB is the magnetic inductiortd is the magnetic field,
than the equilibrium argachanges into a many-armed struc- and the integral is over all of three-dimensional space. It is
ture with threefold-coordinated nodes. Such convolutedconvenient to cast this equation in a slightly different form.
structures are indeed seen in some experinféhfdthough  sinceVxH=VxB... the difference betweeH and gapp

they were unable to derive their approximate form for the. Lo =
maénetic free energy from the basﬂg Ginzburg-Landau de” @ purely Iong|tU(1|naLf|eI9. On the other hariljs a trans-
scription, GJD(Ref. 7 argued that their assumption was a V€'S€ fleld., so tha - (H—Bp) 'ntegfat_ed over all space Is
good approximation by computing the equilibrium periodic- zero, and in Eq(2) one can replacel with B,p,. Adding a

ity for a laminar structure within their description, and com- B-independent termngJSW to the free-energy density

paring with the exact result due to Landau. For all values ofyields

1 I
]—"B=gf d®x(B2—2B-H). @)
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dent. In this limit the slab-shaped sample reduces to a plate,
which we choose to lie in the=0 plane.

The potential¢ is continuous(and satisfies Laplace’s
equation everywhere except across the parts of the plate that
correspond to the superconducting regions. The boundary
condition (i) above must be applied even in this two-
dimensional representation. #(x,y,z) satisifies Laplace’s
(b) equation with the boundary condition, so does
— ¢(x,y,—2), from which it is clear that$(x,y,z=0)=0
except for the superconducting regiof¥hus, the normal
parts of thez=0 plane are equipotential, and by symmetry,
we can choose that potential to be zero. See Hig.]10ne
1 can thus obtain the potential by solving Laplace’s equation
]:st_f d3X(B—Bapp)2- ®) in the upper half plane, W|th_ the b_oundary condition

m d,¢= —Bgpp in the superconducting regions awd=0 ev-
erywhere else, and then usiggx,y,z) = — ¢(X,y,—2). The
resulting potential is discontinuous across the superconduct-
ing regions, with¢(z=0")=— ¢(z=0"). In fact, it is only
necessary to solve fap for z=07 rather than in the entire
upper half plane in order to compufg;. Using the bound-
ary conditiond,¢(z=0")=— Bapp for the superconducting

—
//I
- -

FIG. 1. B field for a slab-shapeds) superconducting domain
and (b) ferrofluid in a vertical applied field. The distortion of the
field is small only for(b).

In order to evaluateFy, one has to find the magnetic
inductionB for a given applied field,,. For the supercon-
ducting regions, wherdB=0, the contribution toFg is
simple. In cylindrical samples the magnetic field is equal to
applied field everywhere except in the superconducting re
gions so that the calculation dfs is trivial. However, this is . . N
not the case in a slab geometas indicated in Fig. )1 This ~ '€910ns and the conditiogy(z=0")=—¢(z=0") in Eq.
is the key difference between cylindrical and slab geometrie§4) yields
and it precludes the existence of an intermediate state for the B
former. We now discuss the procedure for finding the mag- ]-‘B:ﬂ’f drép(z=0%r), (5)
netic energy in the slab geometry. Outside the superconduct- 4m

ing regions, one can _definze a magr_letic scalar po_teaz)tila& wherer is a two-dimensional vector. The integral is per-
B—Bapy= V ¢, salisfyingV=4=0. Given any configuration ormeq only over the superconducting regions.
of superconducting and normal regions we then have to solve To obtaing(z=0") we must solve Laplace’s equation in

Laplace’s equation outside th? superconducting region%e upper half-space with the mixed boundary conditions
fSlnceﬂthe normal (zjomponeTthfls zero at tlhf_e boundaries, iven in the previous paragraph. While such problems are
for a flat superconducting slab in a vertica 'e_B%ﬁp POINt- 16t as familiar as the Dirichlet-Neumann boundary-value
ing upwards, the boundary conditions @ed,¢=*Bap,0n  yronlems, they occur quite naturally in some engineering
the tqp and bottom surf_aces of the superconducting reg'orﬁroblemsl.o We now sketch how we can solve this boundary-

and (i) d,¢=0 on the interfaces between the normal andy 5|, problem in our case. If one chooses the Green'’s func-
superconducting regions, whe#g is the normal derivative. ion to vanish on the=0 plane(Dirichlet boundary condi-

(We.have assumed that the interfaces are vertical, ignoringons)' Laplace’s equation can be written in integral form as
fanning out of flux at the top and bottom surfaces. The va-

lidity of this is discussed later in this paper, when we turn to R 1 . R ..

the numerical calculations and the parameters used therein.¢(z,r)= EJ dr'¢(z'=0",r")9,,G(z—2',r—r") ,
Unfortunately, it is very hard to solve the above Z’:%G)

boundary-value problem. Even though the boundary condi-

tions are quite simple, the Neumann Green’s funciap- whereG is the Green’s functiorfvanishing onz=0). The

propriate for these boundary conditioris very difficult to  integral on the right-hand side is over only the superconduct-

compute even for simple shapes. Instead, at this stage, weg regions sincep=0 in the normal regions. Now, differ-

use the quasi-two-dimensional nature of the problem to reentiating this equation with respectzdand taking the limit

duce its computational complexity. For a thin-sample, mosz—0"), it is straightforward to show thap(z=0",r) and

of Fg is stored outside the sampland in the normal re- d,6(z=0",r’) are related through the following integral

gions. In the thin sample approximation, the magnetic freeequation:

energy is then (1/8)fd3x(V ¢)?, where the integral ex-

cludes the superconducting regions. Integrating by parts then

gives 3z¢(2=0+7F)=—JdF’K(F—F’)¢(Z=O+,F’). )

1 Here,K is given by
Fomg= | dsting, @

8mls A o
where the integral runs over the top and bottom surfaces of K(r—=r ):imﬁ [|F— ;,|z+22]5/2 8
the superconducting region@n the side walls, the normal
derivative of ¢ is zero) In evaluating the surface integral, and its (two-dimensiongl Fourier transform is given by
for a thin sample the top and bottom surfaces of the supetk|/27. Now, since we know tha#,¢(z=0",r)=—B,ypin

conducting regions can be treated as approximately coincthe superconducting regioriand since, as stated above, the
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integral on the right is only over the superconducting re-discussed later Both possibilities need to be allowed for in
gions, we can in principle solve fors(z=07,r) in the su-  order allow for droplet formation. A plaquette is flipped if
perconducting regions, and obtain the magnetic part of théhere is a force that favors the move; the force is the gradient
free energy by using E¢5). Note that sinc is convoluted  of the free energy, which is given by the sum in EY. The
with ¢, which is a smooth function, it can be replaced by surface tension forcérom F,) is calculated by smoothing
Lo Lo Lo the lattice interface and computing the local curvature.
K(r=r")y=—=112a|r—r'|3],|r—r'|>¢, ©) Trying single-plaquette moves requires a special treat-
ment of surface tension in the dynamics, since flipping a
. D . S single plaquette corresponds to a small sharp protrusion of
in the limit e—0. (For the numerics presented in this paper’thegint(frfaqce, with rougEIy the same forward a?ng lateral ex-

thel Cu:]()ff;.'s effect||ve|:_ly _the Iatrt]|ce S'?}' duced th | tent. For a small lattice constant such a move will always
In the thin-sample limit, we have thus reduced the calCUe,q; 4 |arge surface energy compared to the energy gained
lation of the magnetic part of the free energy to a computa

) h b ; d ol | di idbsth from the magnetic and condensation terms. Thus in the lat-
tion that can be performed entirely in two dimensighsth oo 4ynamics whenever the force on a segment of the inter-
finding ¢ and then evaluating~g), and can in fact be re-

) : ) face favors flipping a plaquette, it is likely that at the next
stricted further to the superconducting regions. Unfortu-e step it will be favorable to revert the plaquette to its

nately, no further simplifications are possible, like reducingqiqina state. This is because in a lattice approximation the

the.expressmn to integrals over'domam boundane;. For afterface is forced to make larger excursions than it would
arbitrary pattern of superconducting and normal regions, ongyq 14 it would be better for a segment of the interface to
can only evaluateFg numerically using the prescription qye forward by only a fraction of a plaquette, and then let
abo_ve. The special case of a single circular SuDerCO_ndUCt'”rgeighboring segments catch up. We use a simple prescription
region can be solved analyticafty For afam.ple ofradiuB 5 cyre this lattice effect: When a plaquette is flipped, it is
one finds that the potentiaky(z=0") is given by ot ajlowed to flip back at theery nextime step, although it
(2Bapy/ m)V(R°—T7), for r<R, leading to a magnetic free can flip back thereafter. This should give rise to errors in the
energyB,,R°/3w. (We used these results as a check on theyattern only of the order of a lattice constant.
numerics) _ . _ We start withB,,=0, when the whole sample is super-
We now discuss the numerics. Since the experimental patsonducting. We raise the field until one plaquette on the
terns depend a great deal on the field history of the sampl@oundary becomes normal. Flipping this plaguette can make
we concentrate on the following question: If one slowly in-j; favorable to flip other plaquettes, in which case we let the
creases the field from zero, how does flux penetrate thgystem evolve until it reaches a stationary state. At this point
sample? Note that the flux will enter the sample from theihe field is raised again. This process simulates the adiabatic
edges since the magnetic pressure is the highest tR@e  jncrease of the magnetic field that we wish to study. Isolated
1). In fact, in the limit where the sample thickness is muchgrgplets have to be handled differently, since the flux in them
less than its cross-sectional dimension, the magnetic fieldg conserved. In our simulations this constraint is obeyed
and the magnetic pressure on the side walls becomes inﬁ”itﬁpproximately: Once a droplet is formed, we move it rigidly
whereas the magnetic fields on the top and bottom surfacgg the direction of the force on it until the force is zero. At
remair) finite [This is implicit in the two—dimgnsional repre- this stage we adjust the number of plaquettes in the droplet
sentation we use, because the condensation energy per Ug§ that the flux in it is as close as possible to its original
area isH2d/(8), so that all externally applied fields scale yajye. AsB,,,is increased further, we continue to adjust the
asvd/L, whereL is the linear dimension of the samgl&/e  droplet size so that the flux in it stays constant.
choose a sample with a thicknesds:12A and linear dimen- We now discuss our results. When the field is raised just
sionL=10d (as stated befora is essentially the coherence above the lower critical field, one plaguette becomes normal.
length £). In experiments the flux domains branch near theif the penetration of flux were gradual, one would expect to
surfaces ford>0(800A), and type-ll behavior is seen for have to raise the field further for more flux to enter. Instead
d<<O(A). Our choice ofd avoids both these regimes. Be- we found that at a field just slightly above the lower critical
causeL>>d, we can use the two-dimensional formulation field, the flux penetrates a distance into the sample of the
of the magnetic boundary value problem to fiig. A typi- order of 20 times the coherence length before the first droplet
cal value for type-l superconductord,=1500 A, corre- pinches off. Increasing the field further produces similar be-
sponds toL=15um. Although this is much smaller than havior: Much of the evolution is in the form of bursts of
experimental sample sizes, qualitative aspects of our resulteagnetic flux penetrating from the boundary which then
should apply to larger samples as well, since we see isolatgainch off to form droplets. This reflects an instability in the
droplets much smaller than the sample size. process of flux penetration and is the main result of our
We divide the sample into lattices of various sizes; for awork. In Fig. 2a) we show the patterns seen flor=61 at a
61X 61 lattice the lattice constant is approximatelyl.9he field only moderately above the field of first flux penetration.
plaquettes in the lattice are either superconducting or normaDn the coarser lattices we saw droplets with somewhat dif-
Apart from isolated normal droplets, the superconductingferent detailed shapes, which we attribute to our approximate
normal boundary consists of an outer interface close to th&reatment of surface tension. However, the rough sizes of the
sample edges. There are two basic moves in the numericdroplets in the patterns and the magnetic fields at which they
changing any one superconducting plaquette on the outemter the sample are similar for the various lattices. The
interface to a normal plaquette or vice ver6ehe dynamics droplets form near the boundary of the sample and then
of the droplets are different, due to flux conservation, and arenove towards the center of the sample, leaving a region near

with a compensating function of strength ¥ at the origin,
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TR order ofl?/D and the second of the order ©f/D, wherel is

the typical linear extent of a dropleh, is the penetration
depth, andD the diffusion constant. Withl=10"% m,
A=500 ARef. 13 andD=10"2 m?/s typical values for
type-1 superconductors, we find the time scales te=i® °
and=10 12s. The time it takes for electromagnetic fields to
propagate across the sample above or below it is of the order
of 10719 — 10 1 s. These three time scales have to be com-
pared to the time scale of the flux invasion process. This is
controlled by the time it takes to convert a superconducting
region to normal(or vice vers® which we expect to be a

e much slower process.

The formation of droplets is promoted by the discontinu-
SR ous nature of the flux invasion, which causes relatively large
r amounts of flux to enter the system at low magnetic fields. A
large amount of flux penetration reduces the magnetic forces
which tend to drive further flux into the system. It is then
possible for a normal region to find it favorable to revert to
being superconducting, which is how droplets are formed. At
(@) later stages when the applied field is higher such reversion to
a superconducting state is less likely. Further flux coming in
from the boundary would then probably coalesce with the
existing droplets, leading to the labyrinthine patterns seen in
some experiments, like the patterns obtained by GBBw-
ever, since the superconducting regions become thinner at
higher fields, it is not clear whether quasi-two-dimensional
descriptions are valid here.

Although the existence of droplets is fairly ubiquitous in
the experiments, the actual shape of the droplets varies rather
widely, from compact droplets for mercury in the early
stages of flux penetration to long laminae for Iéa&arrell,
Huebener, and Kampwirthreported experiments in monoc-
rystalline mercury plates of varying thicknesses and found
patterns with compact droplets at lower fields which evolved

lattice and(b) experiments on mercur§Ref. 13. Normal regions to laminar structure at higher fields. Their photograph of the

are black in(a) and white in(b). The flux front near the top ifb) low-field pattgrqs is shown in Fig.(IZ).. This IC_JOkS "’}t least
is due to finite sample thickness. moderately similar to what we see in our simulations. The

edge structure seen at top of the figure is attributed to the

the boundary flux free, similar to what is seen in experi-finite thickness of the sampfe”® Similar experiments by
ments. We also saw that the droplets typically shrink wherKiendl and Kirchnet* on lead foils of varying thickness also
one puts in flux conservation, though this observation mayound isolated domains at low fields, although the domains
not have much experimental significance in view of the factwere long and thin instead of being drop like. The details of
that we deal with the collective motion of the droplet ap-the domain shapes in a particular sample will depend on its
proximately. Finally, we should emphasize that the instabilinaterial parameters; moreover, a complete understanding of
ity in the process of flux penetration is robust and is inde-domain shapes would need a continuum description, which
pendent of the lattice size. would allow a more accurate treatment of effects of surface

At this point we would like to comment on why the qua- tension and flux conservation within the droplets. There have
sistatic approximation should be valid in a situation wherealso been experiments showing the influence of lattice struc-
the flux penetrates in bursts The quasistatic approximatioture, field history, disorder, etc., on the intermediate state
assumes that transient currents die out very fast, so thaatterns. Many of these have been discussed in Refs. 3 and 2.
knowing which regions are normal and which superconductOnce again, it would be necessary to develop a continuum
ing completely determines the state of the system. The redescription to understand these issues. Finally, there are ex-
evant time scales to compare the dynamics with(@ré¢he  periments at low sample thickness which show flux spots
time it takes flux to diffuse through a normal region of sizegrowing into laminae and experiments at high thickness
comparable to the dropletsj) the time it takes for super- which show branching of domairfisAs mentioned earlier,
conducting shielding currents to be set up in response to when we discussed the choice of parameters for the numeri-
change in field, andiii) the time it takes for the magnetic cal simulations, both these regimes have been excluded from
field to propagate outside the sample, from one region of theur analysis.
sample to anothefthereby establishing the effectively non-  To conclude, we have developed a description of the
local interaction. The first two are controlled by the normal- problem of flux penetration into slab-shaped type-I supercon-
state diffusion constant for the fldg,the first being of the ductors based on the sharp interface approximation. Lattice

FIG. 2. Droplet state fofa) numerical simulations on a &161
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simulations show that as the applied magnetic field is inthe process of flux penetration in all experiments, indepen-
creased, flux enters in bursts, forming isolated normal dropdent of the actual shape of the droplets.

lets. While the multiply connected nature of the patterns has \ye thank Alan Dorsey, Daniel Fisher, Tanya Kurosky
been emphasized in the literatiréhe instability that we  carsten Wengel, and Peter Young for useful discussions. H.
have noticed does not seem to have been reported so fa. was supported by NSF Grant No. DMR-9411964 and
This instability should be apparent in real-time imaging of O.N. in part by the A.P. Sloan Foundation.
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