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Flux penetration in slab-shaped type-I superconductors
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We study the problem of flux penetration into type-I superconductors with a high demagnetization factor
~slab geometry!. We analyze the process by which flux invades the sample as the applied field is increased
slowly from zero, concentrating on the role of demagnetization. We find that flux does not penetrate gradually.
Rather there is an instability in the process and the flux penetrates from the boundary in a series of bursts,
accompanied by the formation of isolated droplets of the normal phase, leading to a multiply connected
flux-domain structure similar to what is seen in experiments.@S0163-1829~97!06238-3#
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When a type-I superconductor is placed in a magn
field less than the bulk upper critical field it exhibits a pha
with interpenetrating domains of the normal and superc
ducting state called the intermediate state. Despite ove
years of work, a complete description of the physics of t
phenomenon has been elusive. The earliest theoretical w
on this problem goes back to Landau1 who studied the prob-
lem of the equilibrium configuration of an infinite superco
ducting slab of thicknessd placed in an applied magneti
field Bapp. Whend is much larger than the penetration dep
l and the coherence lengthj, he showed that the Meissne
state is unstable to a configuration of alternating superc
ducting and normal laminae. The gross physical picture
this phenomenon is that the screening currents set up by
superconducting sample generate magnetic fields that ex
into the regions above and below the sample. The Meiss
state occurs when the reduction in free energy due to
formation of the superconducting condensate is greater
the increase in the free energy due to the energy stored in
magnetic field. Since for a slab-shaped sample a la
amount of magnetic energy is stored outside the sam
whereas the superconducting condensate only exists in
the sample, the Meissner state is less favorable. On the o
hand, if the sample has normal regions with high magn
field interspersed with superconducting regions~with the av-
erage magnetic field being equal to the applied magn
field!, the field will approach its externally applied valu
only a short distance above and below the sample, resu
in a large reduction in the magnetic field energy, with
relatively small decrease in the superconducting condens

As outlined in the above discussion, it has been cl
since the work of Landau that the interpenetrating doma
seen in experiments on slab-shaped type I supercondu
can be explained as arising from a competition between
magnetic field energy and the condensation energy of
superconducting regions.~There is also a surface energy a
sociated with the interfaces between the normal and su
conducting regions, which needs to be included in any qu
titative calculation of domain widths.! On the other hand, it
is apparent why the actual shapes of the domains are
hard to calculate theoretically. The screening supercurr
in one superconducting region give rise to magnetic fie
over the entire sample. In calculating the energy of a c
figuration, there is effectively a long-range interaction b
560163-1829/97/56~17!/11195~6!/$10.00
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tween the domains. This is unlike the case for a cylindri
sample, where~apart from small fringing effects! screening
currents in a superconducting domain only affect the fi
inside that domain. Landau restricted his analysis to a co
parison between the free energy of the Meissner state and
free energy of a configuration with long straight laminar d
mains, alternating between superconducting and normal.
ter Landau’s work, other configurations of flux domain
sample geometries, etc., have been studied experimen
and theoretically2,3 ~and references therein!. In fact, in most
experiments the regular structures envisioned by Landau
rarely seen. Instead one sees complicated patterns whic
strongly dependent on the sample temperature, disorder,
field history.

In the last few years considerable progress has been m
in understanding a related problem: flux penetration into~or
expulsion from! long cylindrical samples oriented parallel t
the magnetic field.4,5 Frahm, Ullah, and Dorsey4 and Liu,
Mondello, and Goldenfeld5 studied the motion of an inter
face between normal and superconducting regions in cy
drical samples, following a field quench. When the magne
field varies in time~as it does in this case!, it can be shown4,5

from Maxwell equations that the magnetic field satisfies
diffusion equation with the diffusion constantD5c2/4psn

2 .
Herec is the speed of light andsn is the normal-state con
ductivity. It can also be shown4,5 that the appropriate bound
ary conditions for solving the diffusion equation reduce th
problem to essentially that of solid growth into undercool
liquids.6 Much of the work on solid growth then carries ov
into this case. In particular, when the superconducting ph
grows into the normal phase~as would occur when the field
quench is to a fieldBapp<Hc , with Hc being the bulk upper
critical field!, it can be shown that a planar interface is u
stable to long-wavelength perturbations. In contrast, the
verse process of the normal phase growing into the su
conducting phase~as would occur when the field quench
to a fieldBapp>Hc) is completely stable. Although interes
ing flux patterns can be seen astransientsin the response to
a quench for a cylindrical sample, this is different from t
steady-state interpenetrating domains seen in the interm
ate state of slab-shaped samples: Steady-state patterns
due to demagnetization, which does not exist for cylindri
samples.
11 195 © 1997 The American Physical Society
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Very recently, Goldstein, Jackson, and Dorsey7 ~GJD! at-
tempted to analyze the influence of demagnetization on
formation of flux structures for slablike type-I supercondu
ors. They assumed that transient currents in the normal
mains decay very fast. From the expression quoted in
previous paragraph for the diffusion constant for the m
netic field in the normal regions, this is equivalent to t
assumption that the normal-state conductivity is negligib
In such a case, specifying the shape and location of the
perconducting regions is enough to completely determine
free energy of a configuration. When a superconducting
main changes its shape, the normal regions respond al
instantaneously, and the shape change occurs if it leads
lowering of the free energy. Thus GJD argued that one
then think of the dynamics as a simple gradient descen
the free energy. In calculating the free energy of a particu
domain configuration, things are simplified if the scale of t
domains is much larger than the superconducting cohere
lengthj ~as is indeed true in experiments!. In this case, the
interface between the normal and superconducting region
quite sharp. The free energy for a sample in an applied fi
Bapp can then be expressed as the sum of three terms:

F~Bapp,D!5FB1Fc1Fs . ~1!

Here the first term denotes the magnetic free energy,
second term the condensation energy which is2Hc

2/8p per
unit volume in the superconducting regions, and the third
interfacial energy which isHc

2AD/8p. (D is the surface en-
ergy parameter which is of the order of the coherence len
j, Hc is the bulk upper critical field, andA is the area of the
interfaces between the normal and superconducting regio!
Both the second and third terms in Eq.~1! are easy to calcu
late for any pattern of domains. On the other hand, the m
netic field has to be determined by the conditions that
field inside the superconducting regions be zero and
there should be no current flowing~in steady state! in the
normal regions. Although these conditions are enough
completely determine the magnetic field, from whichFB can
in principle be calculated, as discussed earlier this i
lengthy nonlocal computation.

GJD ~Ref. 7! assumedthat ~in addition to a bulk term! the
magnetic part of the free energy could be written as a lo
range interaction between current loops localized on the
terfaces between the normal and superconducting regi
This made the problem very similar to the problem of t
dynamics of two-dimensional ferrofluid droplets in a ma
netic field. For the ferrofluid case it is known8 that regular
shapes evolvecontinuouslyinto labyrinthine patterns when
the applied field is increased adiabatically. In the case
superconductors, GJD showed that a circular flux droplet
sea of superconducting material~with an area much large
than the equilibrium area! changes into a many-armed stru
ture with threefold-coordinated nodes. Such convolu
structures are indeed seen in some experiments.2,3 Although
they were unable to derive their approximate form for t
magnetic free energy from the basic Ginzburg-Landau
scription, GJD~Ref. 7! argued that their assumption was
good approximation by computing the equilibrium period
ity for a laminar structure within their description, and com
paring with the exact result due to Landau. For all values
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the externally applied magnetic field, they obtain results
merically close to Landau’s, which they argue suggests
their approximation is a reasonable one. With their appro
mation, it is possible to calculate the free energy of comp
cated patterns that are not amenable to Landau’s approa

Our approach is similar to that of GJD in that we al
assume that~i! the transient currents in the normal regio
decay very fast, so that the dynamics is a simple grad
descent in free energy, and~ii ! the free energy can be writte
as Eq.~1!. However, we performed a careful analysis of t
magnetic part of the free energy, and as we show below,
analysis indicates that the interaction between supercond
ing domainscannotbe expressed in terms of current carryin
loops ~at least for low fields!, and results in qualitatively
different behavior.~Late stages of flux invasion, when th
supercondcting domains are tall and thin, are discus
later.! It is not difficult to see why superconductors and fe
rofluids are so different. When a thin layer of a ferrofluid
thicknessd and a characteristic transverse linear extent oL
is placed in an applied magnetic fieldBapp, to leading order
in d/L theB field inside~and outside! the ferrofluid is equal
to Bapp. This uniform field induces a uniform magnetizatio
within the sample, which @using the equation
¹3B5(4p/c) j ext14p¹3M # gives rise to a small fringing
B field near the sample edges.~The fringing field in turn
induces a higher-order nonuniform magnetization.! To lead-
ing order in d/L the induced currents consist of a ribbo
flowing around the boundary of the ferrofluid, causing
long-range interaction between different parts of the bou
ary. On the other hand, for a thin superconductor in the
termediate phase,B is not even approximately equal toBapp
near the superconducting regions. Outside the sample,
above or below a superconducting domain,B is parallel to
the surface, while inside the domainB is zero. In addition to
ribbons of current along the side walls of the supercondu
ing regions, there are also large current sheets on the top
bottom surfaces, dominating the interdomain interacti
Thus while the basic GJD idea of long-range interactio
destabilizing regular patterns is correct, the actual desc
tion of the experimental patterns is more complicated. T
numerics we report in this paper show flux invading
bursts, pinching off from the boundaries to form drople
This is qualitatively different from the continuous evolutio
of GJD.7

We now considerFB in detail. For an arbitrary sample
placed in an applied magnetic fieldBapp, the magnetic free
energy is9

FB5
1

8pE d3x~B222BW •HW !. ~2!

Here B is the magnetic induction,H is the magnetic field,
and the integral is over all of three-dimensional space. I
convenient to cast this equation in a slightly different for
Since¹3HW 5¹3BW app, the difference betweenHW and BW app

is a purely longitudinal field. On the other hand,BW is a trans-
verse field, so thatBW •(HW 2BW app) integrated over all space i
zero, and in Eq.~2! one can replaceHW with BW app. Adding a
B-independent termBapp

2 /8p to the free-energy density
yields
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FB5
1

8pE d3x~B2Bapp!
2. ~3!

In order to evaluateFB , one has to find the magneti
inductionB for a given applied fieldBapp. For the supercon-
ducting regions, whereB50, the contribution toFB is
simple. In cylindrical samples the magnetic field is equal
applied field everywhere except in the superconducting
gions so that the calculation ofFB is trivial. However, this is
not the case in a slab geometry~as indicated in Fig. 1!. This
is the key difference between cylindrical and slab geomet
and it precludes the existence of an intermediate state fo
former. We now discuss the procedure for finding the m
netic energy in the slab geometry. Outside the supercond
ing regions, one can define a magnetic scalar potentialf by
B2Bapp5,f, satisfying¹2f50. Given any configuration
of superconducting and normal regions we then have to s
Laplace’s equation outside the superconducting regio
Since the normal component ofB is zero at the boundaries
for a flat superconducting slab in a vertical fieldBapp point-
ing upwards, the boundary conditions are~i! ]nf56Bappon
the top and bottom surfaces of the superconducting reg
and ~ii ! ]nf50 on the interfaces between the normal a
superconducting regions, where]n is the normal derivative.
~We have assumed that the interfaces are vertical, igno
fanning out of flux at the top and bottom surfaces. The
lidity of this is discussed later in this paper, when we turn
the numerical calculations and the parameters used ther!

Unfortunately, it is very hard to solve the abov
boundary-value problem. Even though the boundary con
tions are quite simple, the Neumann Green’s function~ap-
propriate for these boundary conditions! is very difficult to
compute even for simple shapes. Instead, at this stage
use the quasi-two-dimensional nature of the problem to
duce its computational complexity. For a thin-sample, m
of FB is stored outside the sample~and in the normal re-
gions!. In the thin sample approximation, the magnetic fr
energy is then (1/8p)*d3x(¹f)2, where the integral ex-
cludes the superconducting regions. Integrating by parts
gives

FB5
1

8pES
dsf]nf, ~4!

where the integral runs over the top and bottom surface
the superconducting regions.~On the side walls, the norma
derivative off is zero.! In evaluating the surface integra
for a thin sample the top and bottom surfaces of the su
conducting regions can be treated as approximately coi

FIG. 1. B field for a slab-shaped~a! superconducting domain
and ~b! ferrofluid in a vertical applied field. The distortion of th
field is small only for~b!.
o
-

s
he
-

ct-

ve
s.

ns

g
-

n.

i-

we
-
t

en

of

r-
i-

dent. In this limit the slab-shaped sample reduces to a p
which we choose to lie in thez50 plane.

The potentialf is continuous~and satisfies Laplace’s
equation! everywhere except across the parts of the plate
correspond to the superconducting regions. The bound
condition ~i! above must be applied even in this tw
dimensional representation. Iff(x,y,z) satisifies Laplace’s
equation with the boundary condition, so do
2f(x,y,2z), from which it is clear thatf(x,y,z50)50
except for the superconducting regions.@Thus, the normal
parts of thez50 plane are equipotential, and by symmet
we can choose that potential to be zero. See Fig. 1~a!.# One
can thus obtain the potentialf by solving Laplace’s equation
in the upper half plane, with the boundary conditio
]zf52Bapp in the superconducting regions andf50 ev-
erywhere else, and then usingf(x,y,z)52f(x,y,2z). The
resulting potential is discontinuous across the supercond
ing regions, withf(z501)52f(z502). In fact, it is only
necessary to solve forf for z501 rather than in the entire
upper half plane in order to computeFB . Using the bound-
ary condition]zf(z506)52Bapp for the superconducting
regions and the conditionf(z501)52f(z502) in Eq.
~4! yields

FB5
Bapp

4p E drWf~z501,rW !, ~5!

where rW is a two-dimensional vector. The integral is pe
formed only over the superconducting regions.

To obtainf(z501) we must solve Laplace’s equation i
the upper half-space with the mixed boundary conditio
given in the previous paragraph. While such problems
not as familiar as the Dirichlet-Neumann boundary-va
problems, they occur quite naturally in some engineer
problems.10 We now sketch how we can solve this bounda
value problem in our case. If one chooses the Green’s fu
tion to vanish on thez50 plane~Dirichlet boundary condi-
tions!, Laplace’s equation can be written in integral form

f~z,rW !5
1

4pE drW8f~z8501,rW8!]z8G~z2z8,rW2rW8!U
z850

,

~6!

whereG is the Green’s function~vanishing onz50). The
integral on the right-hand side is over only the supercondu
ing regions sincef50 in the normal regions. Now, differ
entiating this equation with respect toz ~and taking the limit
z→01), it is straightforward to show thatf(z501,r ) and
]zf(z501,r 8) are related through the following integra
equation:

]zf~z501,rW !52E drW8K~rW2rW8!f~z501,rW8!. ~7!

Here,K is given by

K~rW2rW8!5 lim
z→0

1

2p

2z22urW2rW8u2

@ urW2rW8u21z2#5/2
~8!

and its ~two-dimensional! Fourier transform is given by
uku/2p. Now, since we know that]zf(z501,r )52Bapp in
the superconducting regions~and since, as stated above, t
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11 198 56HEMANT BOKIL AND ONUTTOM NARAYAN
integral on the right is only over the superconducting
gions!, we can in principle solve forf(z501,r ) in the su-
perconducting regions, and obtain the magnetic part of
free energy by using Eq.~5!. Note that sinceK is convoluted
with f, which is a smooth function, it can be replaced by

K~rW2rW8!521/@2purW2rW8u3#,urW2rW8u.e, ~9!

with a compensatingd function of strength 1/e at the origin,
in the limit e→0. ~For the numerics presented in this pap
the cutoffe is effectively the lattice size.!

In the thin-sample limit, we have thus reduced the cal
lation of the magnetic part of the free energy to a compu
tion that can be performed entirely in two dimensions~both
finding f and then evaluatingFB), and can in fact be re
stricted further to the superconducting regions. Unfor
nately, no further simplifications are possible, like reduc
the expression to integrals over domain boundaries. Fo
arbitrary pattern of superconducting and normal regions,
can only evaluateFB numerically using the prescriptio
above. The special case of a single circular superconduc
region can be solved analytically.11 For a sample of radiusR
one finds that the potentialf(z501) is given by
(2Bapp/p)A(R22r 2), for r<R, leading to a magnetic free
energyBappR

3/3p. ~We used these results as a check on
numerics.!

We now discuss the numerics. Since the experimental
terns depend a great deal on the field history of the sam
we concentrate on the following question: If one slowly i
creases the field from zero, how does flux penetrate
sample? Note that the flux will enter the sample from
edges since the magnetic pressure is the highest there~Fig.
1!. In fact, in the limit where the sample thickness is mu
less than its cross-sectional dimension, the magnetic fi
and the magnetic pressure on the side walls becomes infi
whereas the magnetic fields on the top and bottom surfa
remain finite.@This is implicit in the two-dimensional repre
sentation we use, because the condensation energy pe
area isHc

2d/(8p), so that all externally applied fields sca
asAd/L, whereL is the linear dimension of the sample.# We
choose a sample with a thicknessd.12D and linear dimen-
sion L510d ~as stated beforeD is essentially the coherenc
length j). In experiments the flux domains branch near
surfaces ford.O(800D), and type-II behavior is seen fo
d,O(D). Our choice ofd avoids both these regimes. Be
causeL..d, we can use the two-dimensional formulatio
of the magnetic boundary value problem to findFB . A typi-
cal value for type-I superconductors,D.1500 Å, corre-
sponds toL.15mm. Although this is much smaller tha
experimental sample sizes, qualitative aspects of our res
should apply to larger samples as well, since we see isol
droplets much smaller than the sample size.

We divide the sample into lattices of various sizes; fo
61361 lattice the lattice constant is approximately 1.9D. The
plaquettes in the lattice are either superconducting or norm
Apart from isolated normal droplets, the superconducti
normal boundary consists of an outer interface close to
sample edges. There are two basic moves in the nume
changing any one superconducting plaquette on the o
interface to a normal plaquette or vice versa.~The dynamics
of the droplets are different, due to flux conservation, and
-
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discussed later.! Both possibilities need to be allowed for i
order allow for droplet formation. A plaquette is flipped
there is a force that favors the move; the force is the grad
of the free energy, which is given by the sum in Eq.~1!. The
surface tension force~from Fs) is calculated by smoothing
the lattice interface and computing the local curvature.

Trying single-plaquette moves requires a special tre
ment of surface tension in the dynamics, since flipping
single plaquette corresponds to a small sharp protrusio
the interface, with roughly the same forward and lateral
tent. For a small lattice constant such a move will alwa
cost a large surface energy compared to the energy ga
from the magnetic and condensation terms. Thus in the
tice dynamics whenever the force on a segment of the in
face favors flipping a plaquette, it is likely that at the ne
time step it will be favorable to revert the plaquette to
original state. This is because in a lattice approximation
interface is forced to make larger excursions than it wo
like to; it would be better for a segment of the interface
move forward by only a fraction of a plaquette, and then
neighboring segments catch up. We use a simple prescrip
to cure this lattice effect: When a plaquette is flipped, it
not allowed to flip back at thevery nexttime step, although it
can flip back thereafter. This should give rise to errors in
pattern only of the order of a lattice constant.

We start withBapp50, when the whole sample is supe
conducting. We raise the field until one plaquette on
boundary becomes normal. Flipping this plaquette can m
it favorable to flip other plaquettes, in which case we let t
system evolve until it reaches a stationary state. At this po
the field is raised again. This process simulates the adiab
increase of the magnetic field that we wish to study. Isola
droplets have to be handled differently, since the flux in th
is conserved. In our simulations this constraint is obey
approximately: Once a droplet is formed, we move it rigid
in the direction of the force on it until the force is zero. A
this stage we adjust the number of plaquettes in the dro
so that the flux in it is as close as possible to its origin
value. AsBapp is increased further, we continue to adjust t
droplet size so that the flux in it stays constant.

We now discuss our results. When the field is raised j
above the lower critical field, one plaquette becomes norm
If the penetration of flux were gradual, one would expect
have to raise the field further for more flux to enter. Inste
we found that at a field just slightly above the lower critic
field, the flux penetrates a distance into the sample of
order of 20 times the coherence length before the first dro
pinches off. Increasing the field further produces similar b
havior: Much of the evolution is in the form of bursts o
magnetic flux penetrating from the boundary which th
pinch off to form droplets. This reflects an instability in th
process of flux penetration and is the main result of o
work. In Fig. 2~a! we show the patterns seen forL561 at a
field only moderately above the field of first flux penetratio
On the coarser lattices we saw droplets with somewhat
ferent detailed shapes, which we attribute to our approxim
treatment of surface tension. However, the rough sizes of
droplets in the patterns and the magnetic fields at which t
enter the sample are similar for the various lattices. T
droplets form near the boundary of the sample and t
move towards the center of the sample, leaving a region n
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56 11 199FLUX PENETRATION IN SLAB-SHAPED TYPE-I . . .
the boundary flux free, similar to what is seen in expe
ments. We also saw that the droplets typically shrink wh
one puts in flux conservation, though this observation m
not have much experimental significance in view of the f
that we deal with the collective motion of the droplet a
proximately. Finally, we should emphasize that the insta
ity in the process of flux penetration is robust and is ind
pendent of the lattice size.

At this point we would like to comment on why the qu
sistatic approximation should be valid in a situation whe
the flux penetrates in bursts The quasistatic approxima
assumes that transient currents die out very fast, so
knowing which regions are normal and which supercondu
ing completely determines the state of the system. The
evant time scales to compare the dynamics with are~i! the
time it takes flux to diffuse through a normal region of si
comparable to the droplets,~ii ! the time it takes for super
conducting shielding currents to be set up in response
change in field, and~iii ! the time it takes for the magneti
field to propagate outside the sample, from one region of
sample to another~thereby establishing the effectively non
local interaction!. The first two are controlled by the norma
state diffusion constant for the flux,12 the first being of the

FIG. 2. Droplet state for~a! numerical simulations on a 61361
lattice and~b! experiments on mercury~Ref. 13!. Normal regions
are black in~a! and white in~b!. The flux front near the top in~b!
is due to finite sample thickness.
-
n
y
t

l-
-

e
n
at
t-
l-

a

e

order ofl 2/D and the second of the order ofl2/D, wherel is
the typical linear extent of a droplet,l is the penetration
depth, andD the diffusion constant. Withl .1024 m,
l.500 Å~Ref. 13! and D.1022 m2/s,4 typical values for
type-I superconductors, we find the time scales to be.1026

and.10212 s. The time it takes for electromagnetic fields
propagate across the sample above or below it is of the o
of 10210 – 10211 s. These three time scales have to be co
pared to the time scale of the flux invasion process. Thi
controlled by the time it takes to convert a superconduct
region to normal~or vice versa!, which we expect to be a
much slower process.

The formation of droplets is promoted by the discontin
ous nature of the flux invasion, which causes relatively la
amounts of flux to enter the system at low magnetic fields
large amount of flux penetration reduces the magnetic for
which tend to drive further flux into the system. It is the
possible for a normal region to find it favorable to revert
being superconducting, which is how droplets are formed.
later stages when the applied field is higher such reversio
a superconducting state is less likely. Further flux coming
from the boundary would then probably coalesce with
existing droplets, leading to the labyrinthine patterns see
some experiments, like the patterns obtained by GJD.7 How-
ever, since the superconducting regions become thinne
higher fields, it is not clear whether quasi-two-dimension
descriptions are valid here.

Although the existence of droplets is fairly ubiquitous
the experiments, the actual shape of the droplets varies ra
widely, from compact droplets for mercury in the ear
stages of flux penetration to long laminae for lead.14 Farrell,
Huebener, and Kampwirth13 reported experiments in monoc
rystalline mercury plates of varying thicknesses and fou
patterns with compact droplets at lower fields which evolv
to laminar structure at higher fields. Their photograph of
low-field patterns is shown in Fig. 2~b!. This looks at least
moderately similar to what we see in our simulations. T
edge structure seen at top of the figure is attributed to
finite thickness of the sample.2,15 Similar experiments by
Kiendl and Kirchner14 on lead foils of varying thickness als
found isolated domains at low fields, although the doma
were long and thin instead of being drop like. The details
the domain shapes in a particular sample will depend on
material parameters; moreover, a complete understandin
domain shapes would need a continuum description, wh
would allow a more accurate treatment of effects of surfa
tension and flux conservation within the droplets. There h
also been experiments showing the influence of lattice st
ture, field history, disorder, etc., on the intermediate st
patterns. Many of these have been discussed in Refs. 3 a
Once again, it would be necessary to develop a continu
description to understand these issues. Finally, there are
periments at low sample thickness which show flux sp
growing into laminae and experiments at high thickne
which show branching of domains.3 As mentioned earlier,
when we discussed the choice of parameters for the num
cal simulations, both these regimes have been excluded f
our analysis.

To conclude, we have developed a description of
problem of flux penetration into slab-shaped type-I superc
ductors based on the sharp interface approximation. Lat
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simulations show that as the applied magnetic field is
creased, flux enters in bursts, forming isolated normal dr
lets. While the multiply connected nature of the patterns
been emphasized in the literature,3 the instability that we
have noticed does not seem to have been reported so
This instability should be apparent in real-time imaging o
rs

.
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-
-
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the process of flux penetration in all experiments, indep
dent of the actual shape of the droplets.
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