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We present a theory of long-range phase-coherent effects in the transport properties of a normal-metal film
contacting two superconductors. It is shown that the phase-coherent correction to the conductance exists even
though the spacing between the two superconductors largely exceeds the coherence length and the critical
Josephson current is exponentially small. This effect can appear as a Shapiro step or large conductance
oscillation caused by the magnetic field. Moreover, it is shown that in the case of negligible Josephson
coupling between superconductors, the Josephson effect can arise in the system if an additional current flows
through the normal conductor and a dissipation takes gldissipative Josephson effeécthe amplitude of the
phase-coherent correction part of the conductance is discussed from the viewpoint of temperature, bias voltage,
magnetic field, and phase-breaking length dependéB64.63-18207)07741-2

[. INTRODUCTION ticular manifestation of the long-range effects—a possibility
to observe Shapiro steps in the absence of the dc Josephson
There has been a great deal of interest in studying theffect in the system shown in Fig(a—was studied theo-
transport properties of mesoscopic superconductor—normatetically in a recent work of the authot$.
metal (S/N) structures with dimensions less than the phase- It was noted that the critical Josephson curremntis de-
breaking lengthL, 17> Presumably some experimental termined by states with energies of the order of thermal ones:
works were stimulated by theoretical pap®fdn Ref. 7 the  e~mkgT. The condensate amplitud&| for such energies
effect of Andreev reflections on the weak localization cor-decays with distance from the S/N interface as
rections to the conductance was analyzed. It was predicted
that the conductance of this system oscillates with increasing
the phase difference between superconductors, and the oscil-
lation amplitude is of the order @?/h. The observed effect
turned out to be much largémore than one order of mag-
nitude. It was established later that the observed phenomena
are related to the proximity effeft’°A condensate induced
in the N film of an S/N systenisee Fig. 1 due to the prox-
imity effect leads to an increase in the N film conductance.
There are two contributions of the condensate to the
conductancé! first, the density of statg®0$) of the N film
is decreasedthis contribution diminishes the conductajice
and second, there is another contribution of the condensate to
the conductance which is similar, to some extent, to the
Maki-Thompson term in the fluctuation paraconductivity.
The last contribution equals the first one at zero enéigy;,
at zero voltag®/ and temperatur&) and exceeds it at higher
energies. Therefore the total change in the conductance due
to the condensate is positive and dependsvoand T in a
nonmonotonous wa¥: 41t is interesting that the effect of
the condensate on the conductance has a long-range charac
ter; that is, a ghange In th,e "?Ca' conductivity O_f the N _f"m FIG. 1. Schematic top view of mesoscopic S/N/S junctions with
(or a change in the e.Iectrlc field) does not vanish at dis- a symmetric configuration. The hatched areas are the contact ones
tances from the S/N interface much greater than the coheg; 4 superconductor and a normal-metal filfal Two supercon-
ence length in the N film given bgy= VAD/27kgT (hereD  ducting electrodes are formed on the normal-metal film and this
is the diffusion constant in the N film ang is supposed to film is terminated by normal reservoir&) A normal-metal film is
be shorter tharl ;). Long-range effects of this type were connected with an S/N loop in which magnetic flux is almost quan-
observed and analyzed in theoretical works!**°A par- tized.
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| Floc|exp( —Kq[x—=Laf)[cexp(—[x—=La|/én), adIst(ad [L1-m_()]}=—kwdy- 8(x=Ly). (D)

where Here

- 1 ~ ~ ~ ~
ke=\(—2ie+hy)/HD, Io(e)= 7 Tro(FRaFR-FA0,FA) - T )

\?vr;}?cghzi'sﬁlé?;’e;vr:g[e?’ ILS tEe _gigaéggguﬁ:ﬁg;ntr:2§<>,\|0f)”m is the supercurrent per unit energy in the N film d{ﬁj
. - . _ -1 . . .
Meanwhile, a condeﬁsated) contribution to the conductance i_e(rzllfr?i?(;?gag’ i\;vt:ﬁ;esgﬁ d:JScttit]/?[ySélf\l t;]netelilfa}(i:ltran;eisés:ﬁgce
caused not only by states with thermal energies, but also b§1ickness of the N film. and is the width of the S/N inter-
states with low energies of the order of the Thouless eNnergy. -« The current '
g =hD/L? At such energies the condensate functions®
spread over the full length of the mesoscopic N film, i.e., Ji=Jdy+dg, Jy=—2(bgt vve)f=—Gyf 3
over the lengthL which is supposed to be less than the ’ s
phase-breaking length, . The amplitude of the condensate determines the charge transfer across the S/N interface per
functions at such energies decays as efpfL,/L). As unit time. It consists of a dissipative currehf and a non-
shown in Ref. 16, a peculiarity in the N film conductancedissipative onel,. Here,Jy is the sum of two terms; one is
should appear at a voltage difference between supercondudhe subgap currenffirst term), and the other is the usual
ors Vs when the Josephson relation is fulfillellw=2eVs  quasiparticle current which is proportional to the product of
(where w is the frequency of the ac component of the biasthe densities of statesand vs. The functionbgy determines
voltage between superconductorsLong-range phase- the subgap conductan@e®**
coherent effects of a similar type should arise in the system A~ ma A
in Fig. 1 if the conductance of the N film is measured as a bsg= (L/8) Tr(FR+FA)(FE+F3). (4)
wf?iit%ogagf bt2ecfrﬁ??l?eg,lf]:‘grreg;gmbp?gv %?/naiugggi%gdlrjnc;g% an SIS(here_ | denotes an insula]c_mosephso_n junction, _
L . . the so-called interference current is proportional to this
netic field (in this case the superconductors should be con; T LT .
nected. Under condition 2 ,> £, the dc Josephson effect is funct.lon.f The .nond|SS|pat|ve partial current through the
negligible, but the conductance oscillations survive. S/N interfacel, is equal to
In this paper we present a theory of long-range phase-

—Tro CRER_ CAEA
coherent effects in the transport properties of mesoscopic Jo=Tro{2 fo(FTFs—FFs)

systems shown in Fig.(&). We calculate the temperature +(fso— fo) (FR+FA)(FR-FA)}
dependence of the Shapiro step and compare it with the cor-
responding dependence of the dc critical Josephson current. =Jeqt Jneq: (5)

We also calculate the temperature and magnetic field depe

dence of the conductance for the system shown in Rig. 1 N Y X d
Finally, we show by a simple model that the Josephson effe onequilibrium case when the distribution functions in S and
' films are different. In the case of a weak barrier transmit-

may arise even if the Josephson coupling is exponentiall - = . ;
small in Fig. Xa). The effect appears only if an additional ¥ance,fso(g)—tanh(sﬁ), B=1/(2kgT) (the electric potential

current! flows between two normal reservoirs. The critical " superconductors is taken to be zeand
current is proportional to the curreht

q'_he second term in EdY), J,q, differs from zero only in a

fo=[tanh e +eVy)B+tanhe —eVy)B]/2.

In the caselL > ¢y, the main contribution to the conduc-
tance of the N channel is caused by the second term on the
As in Refs. 10, 11, and 16, we restrict ourselves to thdeft in Eq.(1). The functionm_ is given by(see Refs. 11 and

dirty case(l< &y, wherel is the mean free patfand assume 12)

that the proximity effect is weak, that is, the amplitude of the A . . A
condensate induced in the N film by the proximity effect ism_=(1/8)Tr(FR—F*)2=(1/8) Tr[(FR)2+ (F*)2—2FRFA].
much smaller than the condensate amplitude in the supercon- (6)

ductors. This assumption is valid if the S/N interface resisThe first two terms in Eq(6) determine a change in the DOS

tance exceeds the resistance of the N film and allows one G iha N film due to the proximity effect. Indeed, the DOS in
carry out analytical calculations for any specific geometry ofp o N film equals ' '

the system. On the other hand, results obtained for the de-
pendence of. the conductance on differenF pgrameﬁtem- V:(1/4)Tr&z(éR_ éA)E1_(1/8)Tr[([‘:R)2+(|‘:A)2]_
peratureT, bias voltageV, applied magnetic fieldH, etc) (7)
remain qualitatively the same in case of a strong proximity
effect when the condensate amplitude in the S and N film¢n derivation of Eq. (7) we used the normalization
are comparable. conditiort” and assumed th#R™| are small. The last term
First we consider a stationary case when the phase diffein Eq. (6) is a function nonanalytical in both half-planes of
ence between the superconductors is constant in time. THbe variables (the so-called anomalous function in Gor’kov
equation for the distribution functiohdescribing the electric and Eliashberg's terminolod$). This term gives the main
field and the current has the fotfn contribution to the conductance under conditlof®> &y .

Il. THEORY
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Equation(1) must be complemented by the boundary con-  Knowing ER(A) (see Appendix A we can findJ(&) from

dition

f(e,L)=Fy(e)=[tani e +eVy)B—tanh e —eVy)B]/2.
8

Here we assumed that the functibte,L) has an equilib-

Eqg. (9) and calculate the currert We are interested in a
contribution S to the dimensionless conductancg
=R, dI/d(2Vy) which depends orp: §S«cosp, where R
=2L/0d and ¢ is the phase difference between the super-
conductors. This contribution is caused by the temm_)

rium form at the reservoirs corresponding to the electric poand terms inlg, . One can show that if the condition

tentials=Vy . Integrating Eq(1), we obtain
J(e)L(1+(m_))=Fn(e) — (kgwLy)Ign(L1+(m_)y).
©)
Here  (m_)=L"1f{dx m_(e,x) and (m_),
=L, fgtdx m_(e,x). The constantdgy iS Jyn=1Jneq
+Jy. The termsJg and Jeq~(k§w) cancel each other, an

g =hD/L2<kgT<A (11)

is fulfilled, the main contribution t@S is determined mainly
by the so-called anomalous pafm_),,, of (m_). One can

d show that the last term on the right-hand side of Ej.is

this can be checked using the explicit form of the functionsSmall under the condition of Eq11). Therefore, we obtain

FRA(g,x) (see below.

from Egs.(9) and(10)

The currentl through the N channel is expressed as an

integral over all energies from the partial currdt) (Refs.
11, 19, and 2lLby

(10

If we substituteJ(&) from Eq. (9) into Eq.(10), we find the

I =d(0'/2€)f del(e).

5s=—(ﬁ/2)f deF/(e)(m_). (12)

Here Fy=[cosh%(e+eVy)B+cosh?(e—eW)B)2, (m_)
=(M_)regt (M Yan, (M )= (1B)TK(FF)?+(FA)?), and

current-voltagd (V) characteristic of the system. To do this, (m_),,= —(1/4) T{FR(e,x)FA(e,x)). In the temperature
we must determingm_), i.e., we must find the spatial dis- regime satisfying Eq(11), one can neglect the pamn_) .

tribution of the functions=RA) (& x).

Using expressioitA4) for FR®)(g,x), one can easily find

A 2 sinh26;
_ . 1 _ . _

(M_)ar=—(r?8) m | 6]~ 2cosp| | sinhd, 2( T (|coshg| ~2—|sinhg| ~2)

sin2¢] coshpy|? |sinhey|?) (sinh2; sin26;

- -2 i -2 _ _

* g (|cosho| ™ |sinhg| 75 [ + coshg| | sinhg| 20' 20" ||’ (133
A2 sinh29 0

(MY o= —(rWS)Rem 6~ 2cosp sinhz02| T L (cosh 20— sinh26) + 71 (cosh20+sinh20)]

cosltg, sintte,
cositd sinite

sinh(265) —26,
260

)

|

(13b

Herer =wpL/(Rpnd) is the ratio of the N channel and S/N with A=1.5 meV was used. In Fig. 3S,,/r? and 5sreg/r2
interface resistances; this parameter is assumed to be smadte also plotted, wher8S= §S,+ 6S;eq, and6S,, and 6S;¢q
And T'g is the damping rate in the superconductor. Whenare the phase-dependent conductances which are due to the

kgT<A, the term|A/JAZ— (e +iT')?|? can be replaced by
1. The specific resistivity in the N film ig. The functioné is

dependent on energy and relatedkio 6=6'+16"=k_L,
01=KeL12, 015= 01 ,+i16] .

In Fig. 2 we plot the temperature dependenc@®fr? as
a function of temperaturkgT/e| . Here 6S was calculated
for D=54 cnf/sec,L;=0.5um, L=1 um, andy=Vy=0.
This value ofD is typical for Ag or Cu as the N filh® and
provideséy= (81 nm)AT, e, =3.6uV, and the mean free

(M_)a, and (m_) 4 terms, respectively. It is clearly seen
that 6S=0 at T=0 and §S shows a reentrant behavior
against temperature. This can be explained by follows. At
T=0 the increase in the conductance due to Maki-Tompson-
type fluctuation(8S,, term) is the same as the decrease due
to the decrease in the density of sta{éS,, term). Here
8S,, has a linear dependence @f ! while 0Sieq has an
exponential dependence of 1. Therefore,sS has a maxi-
mum value aroundl =g, /kg [see also Fig. @] and at
higher temperaturesS is almost the same a$S,,.

path| of about 40 nm. It is easily found that the system The critical current ;is easily found from Eqg2), (10),
satisfies the conditioh, L,>I. As the superconductor, Nb and(A4). Substituting expressio(A4) into Eq. (2) and en-
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FIG. 2. Temperature dependences of the phase-coherent con- FIG. 4. Critical current ¢;Ry /r? as a function of the bias volt-

ductances:$S (solid ling), 8S,,

(dashed ling and S, (dotted

line) for L=1 um andL,;=0.5um.

circling the integration contour in the upper haIf—pIaneI%&

and in the lower half-plane fd%A, we obtain the supercur-

rent

ls=lcsing, (149

where

ICJRL
- A? sinkP(6,L,/L)

— 2 n-2

(keI 2 Re fo ey 5? 5 sniva6)
(14b)
Here  6,=L[(2(wp+ieVy)+xy)/AD]Y? and w,

age Vy at x=L;. The critical current is calculated foa, T
=0.1K; b, 0.5 K; andc, 1 K and is normalized by its value for
VN=0.

function of temperatur&gT/e| for differentL; (from 0.5 to
0.8 um) and under the same condition for the calculation in
Fig. 2. It can be seen from the figure th&® diminishes
slowly with increasing temperaturt@s T~ in the limit 2L
> ¢n), wheread ; decreases exponentially. This means that
the phase coherency remains in the absence of the dc Joseph-
son effect. The phenomenon is related, as noted above, to the
contribution of low-energy states to the kinetic characteris-
tics of the system. The phase coherency for such states with
energiess<<g, is spread over the full length of the meso-
scopic systeml(<L ;).

We plot the dependenck-(V) in Fig. 4 for different
temperatures and nonzero values/gf. One can see that
changes sign with increasingy . If condition (11) is ful-

=wkgT(2n+1). By using this equation for the same valuesgjjjeq I, changes its sign at a characteristic voltage
of D, L, andA as used for the calculation @S and fory

=V\=0, we can plol -;as a function of temperature in Fig.

3(b). We also plot the temperature dependencé®t? as a

0.014

(a) L=1pum
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FIG. 3. Calculated amplitudes @& the correction to the con-
ductancesS and(b) critical dc Josephson curreht; as a function
of the normalized temperatuilg; T/ . They were calculated for
L,=0.5, 0.6, 0.7, and 0.gm (from top to bottom for both §S and

ch.

~(mwL/2L,)e VkgT/e . One of the authors considered in an
earlier study the case when distarice was smaller than
én(e) ate~A, ie., L;<JAD/A.%

In the calculation it is assumed that<L . In the case
whereL>L ,, 6S decreases &b increases, and the effect of
L, can be discussed by taking into accogrin the calcula-
tion, assuming. ,= VD/vy. Figure 5 shows’S as a function
of L, for the same values dD, L, andA as used for the
previous calculation oS and Vy=0. Here, §S decreases
rapidly whenL , becomes shorter tharL2=2 um. We turn
now to a nonstationary case.

A. Nonstationary case

We consider again the system shown in Figa) land
calculate the conductance of the N film for the case when a
dc and ac voltage/g(t)=Vy+V, cost) is applied be-
tween the superconductors. As before, we find a correction to
the N film conductance due to the proximity effect of the
order ofr? and we employ the same scheme of calculation as
presented above. In order to obtain the equation for the dis-
tribution function, we need to write down an equation for
Keldysh’s function G taking into account temporal
derivativest’ After averaging this equation over time and



11188 ANATOLY F. VOLKOV AND HIDEAKI TAKAYANAGI 56

0.04

| orre)?=3 L, =04um ZI n@FRA =0, (15)
a 0.03- s Heren; is the unit vector coming out of the node. Then we
& | 0.5 um | obtain for FR®),
B~ ~ ~
< 002 i FRA(g,x)=2{rF§™(e)/MR A (&)} sin{ kT A (L~ x)],
@ 0.6 um (16)

here O<x<Lg, r=(pLsw/Ry-d) is the ratio of the N chan-
0.01 0.7 um - nel resistance with a length; and a widthw [see Fig. 1b)]
- /f 0.8 um X to the S/N interface resistances, and
0 /—f ——— MRA)(g)=[ 5{2 cost¥z(coshy+ sinhd, - sinhd;)
0 2 4 6 8 10
Ly (um) + sinh@(sinhd + coshy, - sinhg, )} |RA)

where 6803 =KXAL, , and =6, + 6,.
The correction to the conductance due to the proximity
effect is determined again by E(l2) with

FIG. 5. CalculatedS as a function of the phase-breaking length
L, for various values ot ;.

thickness, we arrive at Eg.1) with the products (m_)y=(r2/2){|M|~?[sinh(2603)/265— sin(263)/20}
FRFRFRFA, etc., replaced by their time-averaged values e
FRER FRFA, etc. The equation foF R has the same form —ReM) [sinh(2603)/26;— 1]}(1+ cosp),
as Eq.(Al); the only difference is that the phasgeis time  \whereM is defined aboved; , 3=k.,L1,3 6=60"+i6", k,
dependent: ¢(t) =2eVot/fi+(2eV, /fhiw)sin@t)+¢o. Re- = [(2ie+7y)/AD, y=y,+Dk3, ky=2mHw/d,, and ¢
peating the calculations carried out in the previous sectionrzwq)/q)o_ Here® is the magnetic flux in the loop ars,
we again obtain forsS the formulas(12) and (13) with s the magnetic flux quanturisee Appendix B
Top=1J,(2eV,,/hw)cos ¢, at 2eVo=7iw andTosp=0 other- We calculated the dependence of the correction to the
wise, wherel, is the Bessel functio Therefore a Shapiro- conductancesS on temperaturel, magnetic fieldH, and
like step should appear on the dependence of the N channgjzg voltageV. In the calculationD = 120 cnf/sec, L;=L,
conductance as a function bf, if the Josephson relation is — L,=0.5um andw=0.15.m. These values are the same
fulfilled: Vo= w/2e.1°?°The step magnitude decreases with 5 those measured experimentally for the Ag/Al juncEh.
temperature a3 ~ !, whereas the dc Josephson critical cur-is also assumed that, /D = 102 m? which corresponds to
rent decays withl' exponentially as shown in Fig.(13. L,=1um. In Fig. 6,6S for H=0 as a function ofT is
plotted with changing the bias voltage It is found thatsS
o has a maximum as a function of temperature and the tem-
B. Conductance of the system in Fig. &) perature where5S shows a maximum increases ¥sin-

In this section we calculate the conductance of the systerareases. In this junctiore, is calculated to be about
shown in Fig. 1b) for a stationary case, i.e., the dependence32 neV=0.37 K, and this value almost agrees with the tem-
of the conductance on the applied magnetic field. The onlyperature whereSS shows a maximum. It is also found that
distinction from the case considered in Sec. Il A is that wesS has a behavior likd ~! asT increases and this tempera-
should take into account the conservation law for “flows” in ture dependence is, of course, the same as tha#Sodis-

each nod@ cussed in previous sections.
0.01 —
Nk
B
w© 4
FIG. 6. CalculatedS/r? as a function of tem-
0= perature with changing the bias voltage from 0 to
0.1 mv.
01.

]
0 0.5 1.0
Temperature (K)
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The bias voltage dependenced$ is much stronger than small. This assumption is not essential, but allows one to
the temperature dependend@S as a function ol is shown greatly simplify the calculations and to make the physics of
in Fig. 7(a) for H=0 and(b) for H=15 G. WhenT is low,  processes under consideration more transparent. Analyzing
8S also shows a maximum as a function\of These figures nonstationary processes, we admit an adiabatic approxima-
indicate thatsS should be measured at a low bias voltage,tion (eVsy<eg(). Then, all formulas obtained previously re-
since 8S becomes extremely small at a high bias voltage. main valid. Integrating Eq(1), we find

Next, §S as a function oH is shown for various values of
V in Fig. 8. Here S oscillates due to the interference caused
by the magnetic field through the relatigr=27®/®,. The (OF )[1—m_(x)]
amplitude ofsS corresponds to 26— 26£¥/h for the junction

with normal resistances of 106 assuming that=1. This | ye4rating Eq(17) again and taking into account the bound-
large oscillation has been confirmed experimentally for theary conditions of Eq{(8), we obtain for currents per unit
junction with the structure shown in Fig(H).% energy

Finally, the effect of the phase breaking lengthdhwas
calculated. Figure 9 showsS—H curves for various values
of yo/D atT=0.3 K. It was found thasS is greatly affected FnRpt (FN—F9) Ry

. J+J1_Js, O<X<Ll,
Y, L,<x<L. 17

by the phase-breaking length. (d/o)d= RoR+R.R, (183
IIl. JOSEPHSON EFFECTS IN THE ABSENCE FoRot (Fem FA)R
OF THE JOSEPHSON COUPLING (dlo)(3,—Jg) = s/t2 s— PN /X (18b)

. . . . RpR+R1R,
In this section we consider a more general case than in

Sec. Il A. Namely, we assume dc and ac components fojyhen obtaining Eqs(18a and (18b), we took into account
both currentsl andl,. It will be shown that even if the fjnite values of potentialst Vg at the superconductorshe
critical Josephson currei; is exponentially small and can potential atx=0 is taken to be zejo Therefore, instead of
be neglected_neg!igible Josephson couplipnglosephson ef- Eq. (3), one should writeJy=G\[Fs—f(L;)], where the
fects may arise in the systethThe dc and ac Josephson istribution functionF  in the superconductors is assumed to
effects arise if the current besides the currety, flows in  pe in equilibrium. Its form is determined by E) with Vy,
the system, and a dissipation takes place. replaced byVs. In the adiabatic approximatioreVs y<e,

In order to make the analysis more understandable, a sim- kgT), nonequilibrium component id, can be ne'glected.

tances of the N channel and the S/N interface differ slightly

from their normal state values. It is valid, e.g., in a case of .
gapless superconductors, i.e., when the functief$’ are J1=Jst+(dlo) R, [Fs—f(L1)], (19
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FIG. 8. CalculatedS/r? as a function of the
0 applied magnetic fields with changing tempera-
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where Ry ' = (W/Rpr)[ vvs+bggl. The quantityR,, is an Vs=IR;(¢)+11[Ry(@) +Ry( )],
energy-dependent S/N interface resistance. In the considered
case of small condensate functidr§”) andFR™®, this de- Vy=IR(¢)+11Ry(¢). (20)

pendence is weakv~const, vg~const, andbg,<1). The
energy dependences of the resistan@ds,=(L,p/d)(1  Here R(¢)=Ri(¢)+Ra(¢); RiA¢) and Ry(¢) are ex-

+(m_);,) andR=R,+ R, are also weak because the cor- Pressed througik, , andRy, as
rection due to the proximity effegim_), , is small. Integrat-

ing Egs.(18a and(18b) and taking into account E¢10), we R _ fwd . B cosh 2 Rt ~R+ o— SR+ €O

find the relations between the curreritsand 1,, and the 14¢) 0 e p (28)-Ra~Ru, 1L20%
voltagesVg y, in the adiabatic approximation (219
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FIG. 9. CalculatedsS/r? as a function of magnetic field for
Yo/D=1.5x10" 1x10%, and 510" m? (from top to botton.
These values correspondlig=1.4, 1.0, and 0.&m, respectively.

Rb(QD) = des -B COShﬁZ(SB) -Rp~=Rp— 5RbCOSp.
(21b
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FIG. 10. Current-voltage,— Vg, characteristics of the S-N-S
junction in Fig. 1a). (8) |,— Vg characteristics fof=0, 2, 4, and
6 in arbitrary units(from bottom to top. Each curve is calculated
for R;/R=0.1, R, /R;=0.1, 6R,/R,=0.01 andR,=1Q. Each
curve is shifted byiR; /(R;+Ry) in the current direction because
the -V curve shifts froml;=0 by —IR;/(R;+R,) as shown in

Equation(20) has an obvious physical meaning. The voltage). () Reall, - Vg, characteristics fot=6.

Vg equals the sum of voltage drops across the regioh.{,
and the S/N interface. The voltagé, equals the sum of
voltage drops across the regions [Q) and (L4, L). Each

resistance depends on the phase difference in an explicit

. |6R;- Ry— Ry - 6Ry|
c (Rp+Ry)?

(26)

form. The small parts of the condensate contribution to thedne can see thdl; is zero atl=0 and increases linearly
resistanceSR, , are proportional to the square of the conden-with | unless the voltage drogy~IR becomes comparable

sate functions and are connected wth_) via the relation

ORy 7= — Rl,ZIBJ:dS -cosh 2(e B)[{M_(¢))1.2

—(M_(7/2))1,].
The averagegm_), , are defined in Eqs(6) and(9). The

(22

with kgT/e (otherwise SR, decreases witlVy). The Joule
heating must also be negligible. If the condition

211> &(T) (27)

is fulfilled, the main contribution tR,, as we mentioned
before, is due to the anomalous tefm_),,, which de-
creases withT as T~. Meanwhile, the critical Josephson

distinctions ofR; , andR;, from their normal-state values are rrent| ; and R, are exponentially small. Indeed, kT

small and may be neglected.

<ys (ys is the spin-flip scattering rate in superconduckors

The voltageVg is related to the phase difference via the F§~ Féw —iAlfiys and the integral in Eq21b) can be cal-

Josephson relation

2Vg=tpl2e. (23)

Excluding Vy from Eg. (20) and taking into account the
relation of Eq.(23), we obtain forg

fauplde+[(1+1,) SR, +1,8R,]cosp= (1 +11)R;+ 1Ry .
(24)

culated by encircling integration with a contour in the upper
(or lowen half-plane ofe. The interference part disy [see
Eq. (4)] decays withe and the characteristic energy of this
function is g ;. Therefore, SR,~exd —2L,/&(T)]. At
R;16R,<Ry,6R; andR,>R;, we obtainlc~16R;/Ry,.

If the condition of Eq.(27) is violated, the Josephson
critical currentl o3 should be taken into account and the total
critical currentl £ is not zero at any currert

Equation(24) is analogous to the Josephson equation for a

RSJ(resistively shunted junctionintegrating Eq.(24), we
find the relation between the time-averaged volt¥geand
constant currents andl,, as

Veo=[{(I +11)Ry+11Re}2—{(1 +17) Ry + 1, SR} 2] M2
(25)

Thel 1—V_SO dependence for different valueslois shown in
Fig. 10. It has the form of the—V curve for a RSJ with the
critical currentl - which is equal, as follows from Ed25),
to

lE=\I2+12, (28)

This relation together with Eq26) determines the critical
current for any ratio betweeg and 2, .

Let us finally consider the problem concerning ordinary
Shapiro steps, i.e., concerning peculiarities on lthe Vg
curve in the presence of ac components of the currents

I(t)zl +|QCO§2t, (29)

|1(t)=|1+|190050t.
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Substituting these expressions into E84), we can easily
find the height of the first Shapiro stefy; on a part of the
I,— Vs curve where it differs from Ohm’s law only slightly

R16R,—Rp6Ry [[[110l],  10=0,
IRy +11(Rp+Ry)| [ Tal4l,

ol (Rp+Ry)= l,0=0.

(30)
It follows from Eq. (30) that, in the absence df(t), the
Shapiro step is absent if the condition of Eg7) is satisfied
and the Josephson critical currégy is negligible. However,
when either the dc or ac component of the curién) is not
zero, the Shapiro step arises on the-Vg characteristics.
One can easily find the form of thg —Vg curve near the
Shapiro step. Considering large enough curréntswe ob-
tain for Vg near the Shapiro step

Vs=Vo+[{Veo—Va}*—{l1alc(Ro+ R1)2/2Vs0}2]1/2(-31)

HereVo=%10/4e, andv_SO and | are determined by Egs.
(25 and (26), respectively. Therefore, the form of the
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— Vg characteristics is similar to a corresponding dependence
for a RSP

In our previous work® we analyzed the possibility to ob-
serve ac phase-coherent phenomena measuring Shapiro steps
on thel;—Vg curve (we assumed thaty,=0). Using Eq.
(20), it is easy to calculate the height of the Shapiro step as

SVy=(110l/Vg)|SR(Ry+Ry)—6R;-R|. (32

In the considered case of a large S/N interface resistRgce
the main contribution taVy is due to the first term in Eq.
(32). The value oféR was calculated for the case of super-
conductors with a nonzero energy gAp.

The magnitude of the critical curreh¢ is determined by
the interference part of the condensate contribution to the N
channel resistancéR; which can be found from Eq22).
Using the functions=R® in Eq. (A3), we find for the inter-
ference part

(M_)1in=(M_(¢))1—(M_(7/2))1,

(M_) 1= — (r?/8)(|F ¢l ?[sinhe, / || Py |[sinh(267)/207 + sin(267)/267] — |Py|*[ sinh(261)/26; — sin(267) /267 ]}

+ReF&sint? 6,/ 92{P7[sinh(26,)/26, + 1] — P sinh(26,)/26, — 11}).

Figure 11 showssR;/R;r? as a function of temperature
kgT/e_ for different L; (from 0.5 to 0.8 um) and L

=1 um. Similar to the case considered in Sec. Il, the mags,

nitude of SR, decreases wit asT ! in the order of mag-
nitude R, ~R;(r?/8)e ,/kgT (if A=#vg) provided that
condition(27) is fulfilled.

0.02
L=1um

0.015 - -
q

§ 0.01 - s
S

0.005 - -

0 L} L) L} L) L]
0 2 4 6 8 10
kgT/e;

(33

IV. CONCLUSIONS

In the dirty limit we have calculated the correctio to

e conductance of the N channel due to the proximity effect.
The proximity effect is assumed to be weak, that is, the con-
densate functions induced in the N film are small; this case is
realized if the S/N resistance exceeds the N channel resis-
tance. We have shown that the correctig oscillates with
increasing the phase difference between superconductors
even in the case when the dc Josephson effect is negligible
and the supercurrent in the S/N/S junction is absent.

The amplitude of8S oscillations decreases witlh as
T~1, whereas the magnitude of the Josephson critical current
diminishes exponentially;l c~exd —2L,/&(T)] at 2L,
>¢n(T). The phase coherency is related to the fact that the
main contribution taSS is due to the states with low energies
e~g =hD/L2 The condensate functions at such energies
spread over the full length of the mesoscopic system:
|FR®| ~ |exp(— kKE®x)|~exp(—x/L), where KR
~+¥2ie/fiD. The contribution to the critical curremt is
caused by thermal energies-kgT at which the condensate
functions decay exponentially over the coherence length. If
dc (Vo) and ac ¥ ,coswt) voltages are applied between su-
perconductors a Shapirolike step appears on the dependence
0S(Vy) atVo=rhw/2e. The amplitude of this step decreases

; -1
FIG. 11. Temperature dependence of the phase-dependent coMth T asT ™.

rection 5R, to the resistanc®;. The normalized valuéR, /R;r?
is plotted forL,=0.5, 0.6, 0.7 and 0.&m (from top to botton.

_ Using a simple model, in which the condensate functions
FRA and FR™ as well as the distinction of all resistances
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from their values in the normal state are supposed to be FRA=A/ERN  and R A= (e £iTg)?— A2, (A5)
small, we have also considered the behavior of the S/N/S ¢ °

system shown in Fig. (8 at different currents andl,. It  Then Eq.(Al) is valid under conditiom<1. In case of gap-
has been shown that the Josephson effects may arise even/@is superconductors
negligible Josephson couplind {~exd —2L; /&(T)]<<1). A
The effective critical currenitc is zero al =0 and increases FRA=+ —
with increasingl while | remains smaller thakgT/eR. The exiyg
conditions for observing Shapiro steps have also been foungyhere y. is the spin-flip scattering rate which is assumed to
be large as compared . In this case of smalF5™ | Eq.
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(A6)

throughout this work. [ax+(2ie/cﬁ)A]2|5E(A)— (ksR(A))ZIEE(A)
APPENDIX A =—2(kgw) S(x= L) F§. (B1)
In this appendix we present expressions for the condenMaking the transformation of the Green’s functions
sate functiongR¥(g,x). Using the expressions given here, 'EE(A): SHIER(A)S; , (B2)

one can easily calculaten ), ,[see Egs(6) and(9)]. In the
considered case of sm&R(®(g,x) these functions obey the we excludeA from Eq. (Al). The transformation matrig,

linear equatiorn(see Refs.10 and 11 has the form
52 FRA) _ (KR 2ER(A) S, =Cosyy +i5,Sinyy ,
— —2(Iew) S(x= L) (FRA—FRA)Y  (a)  Where
HerekR® = [(F 2ie + % y)/AD and the function&R™ are xu=—(elch) f:A dl.

defined in Eq{(2). The boundary conditions to E¢lL1) are

The functionsFR® contain the phasg. The total gauge-

CR(A — =
FR® (e, xL)=0. (A2) " invariant phasé is

In the presence of a magnetic field, }he vector potential YO)=x+xy.- (B3)
should be taken into accoufgee Appendix B i )
The solution of Eq.(A1) has the form[for brevity we N the N film[see Fig. 1a)] we have
omit indicesR(A) ] Ly
. }'(iLl)=X(iLl)—(e/cﬁ)J A dl. (B4)
F(e,X)=Fy(&,X)ioysin(@/2) +F(&,X)ioyc0g ¢/2), 0O(N)
(A3) In the presence of a magnetic field the phase difference
where =x(L1)—x(=Ly) is
L
r P,sinhd,sinh(k, x), 0<x<Lq, Ezgo—(e/ch)f X (B5)
5Fs P,sinhd;sintk (L—x), L,<x<L, ~hN)
(Ada)  Theindex N means that the integration is performed over the
N region. The condensate momentum in the superconducting

Fy(e,x)=

Fo(6.%) r . [Pysinhazcosk(ksx), 0<x<Lq, part is equal to
y(8:X)= 5 s p costy,sintk (L—x), L,<x<L. -
y . o ) 1 (Adb) Ps=dyx = dyx— (elch)A. (B6)
Integrating Eq.(B6) over the superconducting part, we ob-

Herer=pLw/Rynd is the ratio of the N channel and S/N
interface resistances,f=#60,+6,,0=k,L, 6;,=Kk.L1,,
L,=L-Lq, k.=+(2ie+%vy)/hD, P,=[sinhg+(r/ L1

6)sinhé, -sinhé,] 2, and  P,=[cosh9+(r/6)coshs; fs F’sde=<P—27Tn—(e/0ﬁ)f_L Adl. (B7)
-sinhg,] 1, where is the phase difference between the su- ® 1
perconductors. In the case of ordinary superconductors witkxcluding¢ from Egs.(B5) and(B7), we find the sought for
an energy gap, we have relationship betweep andH as

tain
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_ HerelLg is the length of the superconducting part. Here we
e=27m(®/Py+n)— f(S)Pde (B8  used the formula for the supercurrent at low temperatures
(kgT<A):Ig=(7/2)cAPg/e. The factor in front of sig is

Here @ is the magnetic flux through the S/N/S systedn, small, if I, is small enough. For example, in cdsg> &, we
=hc/2e is the flux quantum, and is an integer. The integral 56 from Eq(14b)

in Eq. (B8) is zero if either the magnetic flux does not pen-
etrate into the superconducting strips or the critical current in
the S/N/S system is very small. If the magnetic field pen-
etrates into thes strips uniformly, we obtain lc(2eLg/moA)=(r2Lg2&y)exp—2L,/&y). (B10)

f(S)PsdlzPSLS:ZeISLS/m’A:(zeLS/mTA)ICSin‘P' That is, the factor in Eq(B9) is small because<1 and

(B9)  2L,> &\ by assumption.
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