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Phase diagrams of the three-dimensional semi-infinite Blume-Emery-Griffiths model
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Within a real-space renormalization-group framework based on the Migdal-Kadanoff recursion relations, we
investigate the three-dimensional semi-infinite Blume-Emery-Griffiths model with nearest-neighbor interac-
tions, both bilinear and biquadratic, and with a crystal-field interaction. According to the values of the inter-
actions on the surface and in the bulk of the system, we determine the various generic types of phase diagrams
in the case of repulsive biquadratic interactions. Our analysis has led to a classification scheme with eleven
fundamental types of phase diagrams describing a large variety of phase transitions associated with the surface
and multicritical topologies.S0163-18207)05837-2

I. INTRODUCTION connection to thé-J model of electronic conductidf and
through the applicability to ordering in semiconductor
The Blume-Emery-Griffiths(BEG) modet is a spin-1  alloys!®

Ising model with bilinear J) and biquadratic K) nearest- In the last few years some attention has been devoted to

neighbor pair interactions in which a single-ion anisotropythe study of the BEG model over semi-infinite lattices, with

parameter(A) is included. First studiedin the context of different couplings at the surface and in the bulk. A special

superfluidity and phase separation in helium mixtures, thigase of this model has been studfebly Benyoussef, Boc-

model has been extended to describe phase transitions gara, and Saber. They use MFA to discuss the possible phase

simpl€ and multicomponent fluidd! microemulsions,and  diagrams of the model fok=0 [which corresponds to the

semiconductor alloy8. . . ~ semi-infinite Blume-Cape{BC) modef’*¥. However, they
The infinite BEG model is described by the following use a single order paramet¢he magnetizationto charac-
reduced Hamiltonian: terize the different phases, and do not allow for the full spa-

tial variation of the magnetization. A few other works have
carried out the same investigation by means of a real-space
—BH=32 SS+KX SS'+AD &, (1)  renormalization-grougdRSRG framework!® and a cluster
(ij) (i) i variation methodCVM).2° Some applications of the semi-

infinite BEG model to the study of surface superfluidity in
where the spins§=—1,0,1) are located on the sites of a 3He*He mixtures have been also investigated both with
cubic lattice and the first and second summations run over aRSRG (Refs. 21, 22 and MFAZ3
neighboring pairs of spins. For the semi-infinite BEG model no explicit calculations

An extensive analysis of this model was made by meansave appeared in the literature with repulsive biquadratic in-

of mean-field approximatio(MFA),'~* renormalization- teractions, which is drastically and richly different, as will be
group technique$?® series expansions methatsind by  seen from the global study reported in this paper. Using a
Monte Carlo simulation$®! All those treatments have es- renormalization-group transformation in position space
sentially been confined to the parameter space with positivbased on the Migdal-Kadané#?® (MK) recursion relations,
(J,K>0) interactions, and features of the phase transition§irst we locate the 16 separate fixed points underlying the
in these cases are now well understood. In the case of reputructure of the infinite model. Then this method will be used
sive (K<0) interactions, the phase diagram is expected to bé&o study the three-dimensional semi-infinite system, and
much more complicated by the analogy with the previoussince in this case the recursion relations have a large number
case. However, a recent stdéyf the global phase diagram of fixed points, the results obtained for the infinite system
of the BEG model for three-dimensional lattices wikk<0  will help in understanding the meaning of the various fixed
was made using MFA, showing a variety of interesting fea-points.
tures, including single and double reentrancy regions and According to the values of the interactions on the surface
ferrimagnetic  phases. In a renormalization-groupand in the bulk of the system, we observe four different types
calculation®® a qualitatively different sequence of phase dia-of phase transitions associated with the surface, which can be
grams does set in above a threshold spatial dimension arounigsignated using the same known terminol&tyamely, the
d~3, but these diagrams are different from the ones ofrdinary transition with simultaneous onset of bulk and sur-
MFA. The main discrepancy is that no ferrimagnetic phase igace order, the surface transition where the surface orders
seen. Attention has been drawn independently to the negativisst, the subsequent extraordinary transition where the bulk
biquadratic interactions region of the BEG model through aorders in the presence of an already ordered surface, and the
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special transition with bulk and surface ordering at the same The resulting phase®n the surface or in the bullof the
temperature but with a different set of critical exponents.model described by the Hamiltonid®) are variously distin-
While these results are well established, the literature showguished by four order parameters

a controversy about the order of these transitions. Indeed it is ) )
shown, both by MFA(Ref. 1§ and CVMZ?° that the ordi- Ma=(S)a, Ms=(S)e, da=(S)a, de=(S)e.
nary, ex_traordinary, and surfac_e transitions can be either segzare A andB refer to the two sublattices.

ond or first order. By contrast, in the research reported here, The ferromagnetic(F) phase is characterized by,

we shall determine the various phase diagrams given b)ém £0. The two paramagnetic phases labdRedand P
renormalization-group theory. Our analysis has led to a clasére E:jistiﬁguished bynx=mg=0 With ga=gg>2, and q;
. . . 2
sification scheme with eleven fundamental types of phasequ<; respectively. Those distinct dense and dilute ver-
diagrams, some of which we have illustrated in the 2

“1 A -1 gl h h ictref h sions of the disordered phase have no different symmetry,
(Js 7 AsJs %) plane, where the subscriptrefers to the sur- a4 gne can continuously pass from one to the other without
face. Taking into account the nature of the fixed points W& ssing any transition surfaces. The staggered quadrupolar
show that the ordinary transition, which presents the reents) phase has,=mg=0 andga#qg . It is characterized

trant phenomenon, can be either first order, second order, ¢ o interpenetrating sublattices. One sublattice Bas
tricritical (we used the Nienhuis-Nauenberg critefibto de- 2 ot overy site, while the other sublattice has its sites oc-

termine which fixed points characterize first-order transi-cupied at random b = + 1. The ferrimagneti¢FR) phase

tions), while the extraordinary and surface transitions are aI~IS distinguished by nonzero magnetization and sublattice
ways of second order. Moreover, it is shown that such asymmetry breakingm, #mg+0 andg,+ qg)

system can exhibit critical an@rdinary and specialtricriti- We apply a RSRG transformation based on the MK bond-

calopomtsr; cr||(tj|cal tend|p0|tnt;tsi ?r?d mutl;[:cgtlcal tp]omts. d di oving approximation. This technique is tractable in all
ne should note also that theé method we have used di pace dimensionalities, so we shall give the recursion rela-

not obtain reentrancy, and the ferrimagnetic phase, whic I : : ;
was referred to in Refs. 12, 28 and 29, has never appeared Eﬂzgirift?é ?h?a ?gﬁ:;sdlonal hypercubic model. Let us briefly

the whoI?_ telrrpergtur% rfqng de smcte 1t_r;]ere ﬁXIStSbOI‘ﬂy done tf)er— Dictated by the possible sublattice symmetry breaking, we
romagnetically ordered fixed point. 1heé phase boundary er'nay restrict ourselves to an odd scale fattotn the present

tween the ferromagnetic and staggered quadrupolar phases, 8, _ ; : - -
; : . study we choose=3 and consider a one-dimensional chain
controlled by a singly unstable fixed point. Thus the RSRGOf spins coupled by nearest-neighbor interactiank, and a

?;ﬁsfggtturrigroo?u&ithf};;gagi;'erlgr;ezwi' a?od tw:yrg,ltsrﬁ:tcee rystal-field A. We perform the trace over all spins on the
. . P gram 9 . hain except those at the end. The end spins are then coupled
flow space in which the renormalization by necessity must b Hective int tiond. K dX which functi f
carried out. This has been first speculated by Hoston an y efieclive interactions, ®, anda, which are functions o
, K, andA. In a semi-infinited-dimensional cubic lattice, it

Berker® and later proven by Netz and Berk&rwho : 3 Co
showed how to enlarge the flow space and reproduce thlé_stralghtforwaraz' to extend Migdal's argument and ob-

main features of the mean-field calculation in a RSRGWIN the renormalized couplingk, K', andA” as functions
framework. This assumption was also confirffegy means of J, K, andA. In the particular case of the semi-infinite
of Monte Carlo calculations, and the MFA results were as-BEG model we get

sumed to be correct fat=3. J,’3=bd’13(JB,KB,AB),

II. THE SEMI-INFINITE BEG MODEL Ké:bd—lR(JB Kg,Ap),
(3a
We will be concerned with the three-dimensional semi- D de1
infinite BEG model with ferromagnetic nearest-neighbor in- Ap=b"""A(Js.Kg,Ap),
teractions on a simple cubic lattice. The reduced Hamiltonian =~ ) 4o
is given by Js=b""J(Js,Ks,A¢) +3(b—1)b""“I(Jg,Kp,AB),

Ke=b%"2K(Js,Kg,A9)+3(b—1)b? 2K(Jg,Kg,Ap),
—BH=JS<Z> ss,-+KS<Z> S?Sf+AsEi 32+JB<% 5SS, (3b)
ij ij ~ ~
AL=b"%"2A(Jg,Ks,A9) + 3(b—1)b?2A(Jg ,Kg,Ap).

22 2
+KB<% ScS +AB; S (2) The renormalization-group phase diagrams are derived
from the global study of flows in Hamiltonian space, which

wherei, j, k, andl are site labelsE ;;, denotes a sum over are governed by fixed pointéoints invariant under the
all nearest-neighbors with both sites lying on the surfacefransformation The determination of the various fixed
Sy denotes a sum over the remaining nearest neighboroints of the recursion relation®) seems at first sight a
andB=(kgT) ! (with kg the Boltzmann constant aridthe  rather complicated problem. However, as usual for the semi-
absolute temperaturels and Jg (both positive, since we infinite systems, the renormalized bulk interactions given by
study the ferromagnetic casare reduced exchange interac- EQ. (38 depend only on the initial bulk interactiodg, Kg,
tions, while Kg and Kg are reduced biquadratic exchangeandAg. Therefore, in order to determine the six coordinates

interactions ana s andAg are reduced crystal fields, respec- (Jg .Kg ,Ag ,Js K5 ,AY) of each fixed point, we shall first

tively, at the surface and in the bulk. determine the J§ ,K§ ,Ag) coordinates from Eq(3a), and
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FIG. 1. Typical phase diagram for the three-dimensional semi-infinite BEG model, from global renormalization-group theory, calculated

for (R=0.75,D=1.25 and(a) Ry=—5 andR;=—1, (b) Ry=—5 andR, 0.1,(c) Rg=—5 andR;=0.2,(d) Ry=—5 andR;=0.5, and
(e) Ry=—5 andR;=0.8. Dashed and solid lines represent, respectively, first- and second-order phase transitions. The symbols SP, BP, SF,
BF, SSQ, and BSQ denote, respectively, surface paramagnetic, bulk paramagnetic, surface ferromagnetic, bulk ferromagnetic, surface

staggered quadrupolar, and bulk staggered quadrupolar phases.
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FIG. 2. Typical phase diagram for the three-dimensional semi-infinite BEG model, from global renormalization-group theory, calculated
for R=0.25 and(a) Ry=

=-0.5 andR;=-2, (b) Ry=—0.5 andR;=-0.1, (c) Ry=—0.5 andR;=0.05, (d) Ry;=—0.5 andR;=1, (e)
Ry=—0.5 andR;=3, and(f) Ry= —0.5 andR;=8.

subsequently, we determine the remainidg (K% ,A%) co- there are 16 three-dimensional invariant subspaces in which
ordinates from Eq(3b) after having replacedg, Kg, and  the fixed points are determined by recursion relati(8is.
Ag by the fixed point values 08§, K§, and A§. This

The results obtained from our investigation of the three-
procedure shows that in the six-dimensional parameter spactimensional semi-infinite BEG model are rather compli-
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cated. Referring to the 16 fixed points of the infinite BEG dratic interactions on the surface transitions. Our new results
model, in the six-dimensional parameter space we found 11Bave been obtained with repulsive biquadratic interactions
fixed points underlying the structure of the semi-infinite sys-Kg and Kg. Referring to the 16 fixed points of the infinite
tem and we study the connectivity of the renormalization-model, the fixed points of the semi-infinite system have been
group flows linking them. Taking into account the nature ofclassified. Using renormalization-group theory we have ob-
the fixed points, new properties characterizing a variety otained 11 generic types of phase diagrams, some of which we
phase transitions associated with the surface are thus olave illustrated in the‘:(;l,ASng) plane. They show a va-
tained, which can be summarized as follows: riety of phase transitions associated with the surface and un-
(@) If the bulk is ferromagnetic, the surface is also necesusual multicritical topologies, including certain types of or-
sarily ferromagnetic. dinary, extraordinary, and special phase transitions which do
(b) If the bulk is staggered quadrupolar, the surface can b@ot occur in the Ising-like systems.
either ferromagnetic or staggered quadrupolar. The semi-infinite BEG model reduces to the semi-infinite
() When the bulk is paramagnetic, the surface can b&C model if we sez=Ks=0. As mentioned in the Intro-
ferromagnetic, paramagnetic, or undergo a critical phasguction, the last model has been studfeavithin MK
transition between the phasésandP. This phase transition renormalization-group and three generic types of phase dia-
is similar to the surface transition in three-dimensional semigrams have been obtained as a function of the raRos

infinite Ising models. =Jg/JsandD=Ag/Ag. Their domain of existence is clas-
(d) If the bulk exhibits a smooth continuation between thesified as follows:

two paramagnetic phasés, andP_, the surface can be in  Domain I: ForR>0.59 the system exhibits only ordinary
any of the four phaseB, SQ,P,, andP_, or it can un- phase transition.
dergo one of the 12 different phase transitions of an infinite  Domain II: ForR<0.59 two different types of phase dia-
system. gram have been found, according to whetier1 or D

(e) When the bulk undergoes a first-order transition be-<1. |n this case the phase diagrams present ordinary, ex-
tween the two paramagnetic phases, the surface can exhibitt@ordinary, surface, and special phase transitions.

first-order transition between the phaseandP_, an ordi-  For the semi-infinite BEG model we define the new ratios
nary flrst-order_ transition between _the two paramagnetiR,=K,/Kg andR;=Ks/Jg and classify the possible phase
phases, or a critical end-phase transition. diagrams at fixedR and D. According to the values oR,

(f) When the phases ferromagnetic and paramagnetic arghq R, different types of phase diagrams aaepriori ex-
coexisting on the surface, the bulk exhibits a critical end-pected. To classify them we shall proceed as follows:
phase transition. _ _ (1) Type A. If R andD are in domain |, varyinQR, and

(g) If the surface is ferromagnetic, the bulk is paramag-Rr, we obtain five main types of phase diagrams which we
netic (P,) or undergoes a critical phase transition of secondeport in Figs. 1a—e; solid and dashed lines represent, re-
order between the phasEsandP., . This transition is simi-  gpectively, second- and first-order transition& and S
lar to the extraordinary phase transition in three-dimensionadtand for bulk and surface, respectively, whieF, and SQ
seml—lnfln}te Ising models. Thgr_efore, _the bulk cannot Un-stand for paramagnetic, ferromagnetic, and staggered qua-
dergo a first-order phase transition while the surface is fergrypolar phases.
romagnetic. _ . L (@ For Ry=—5 andR;=—1, the system exhibits only

(h) For the bulk undergoing critical or tricritical phase ordinary phase transitions of first-order, second-order, or tri-

transitions, we found ordinary and special phase transitiongyitical, The corresponding phase diagram presents also re-
associated with the surface. Moreover, the surface cann@irant phenomenon with a critical end point.

undergo a first-order phase transition while the bulk exhibits (b) For Ry=—5 andR,= — 0.1, the surface and the bulk
a second-order phase transition. o _order at the same temperature. This ordinary transition, ac-
These results enable us to exclude the possibility of f'rStt:ording to the values oAg/Js, can be first order, second
order surface and extraordinary phase transitions, and forbigyqer or tricritical.
certain phase diagrams found within other technidés. (c),For Ry=—5 andR,=0.2, we have shown ordinary
One should note also that the MK renormalization-groupfirsiorder, ordinary second-order, extraordinary second-
scheme we have applied did not obtain ferrimagnetic phase§yqer, and surface second-order phase transitions. There ex-
either in the surface or in the bulk. This picture is irrespec-gis also a point where the surface and the bulk become or-
tive of the space dimensionalit; since the results are quali- gered simultaneously. According to its position, this point is
tatively similar for d>3. This confirms, once again, the 5 mylticritical point where a first-order transition line meets
statement of Hoston and BerkEras a consequence of the yyo second-order transition lines. For another particular

restricted flow space in which the renormalization is carried,g),e of Ag/Js we can observe also a special phase transi-
out. tion point where a second-order transition line meets two
second-order transition lines.

Moreover, in this case the staggered quadrupolar phase
occurs in the bulk. Thus, as mentioned above, the model

A real-space renormalization-group calculation, in a re-presents a ordinary second-order phase transition where the
stricted flow space, is used to analyze the critical behavior obulk and the surface of the system exhibit a transition be-
the three-dimensional semi-infinite BEG model with surfacetween different phases, namely, frql@P,BP to (SF,BSQ,
interactions which may differ from the bulk interactions. We where SP, BP, SF, and BSQ denote, respectively, surface
determine explicitly the effect of any bulk and surface biqua-paramagnetic, bulk paramagnetic, surface ferromagnetic, and

Ill. DISCUSSIONS AND CONCLUSION
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bulk staggered quadrupolar phases. An extraordinary phageritical point characterizing the special phase transition.
transition also occurs, where only the bulk exhibits a transi- (b) For R,=—0.5 andR; = —0.1, according to the values
tion between the two phases BF and BSQ, the surface beingf Ag/Jg, we have shown an ordinary tricritical point and a
in the ferromagnetic phase SF. This gives rise to a multicritispecial phase transition point, in addition to an ordinary first-
cal point appearing at the termination of the phase boundaryrder, ordinary second-order, extraordinary second-order,
between these phases. ~and surface second-order phase transitions.

(d) For Ry=—5 andR;=0.5 we can observe a special () ForR,=—0.5 andR,=0.05, the corresponding phase

phase transition point in addition to the ordinary, extraordi-giagram is characterized by the presence of an ordinary first-
nary, and surface second-order phase transitions. As in the 4o transition at high temperature, while in the low-

previous case, we have shown the second-order ordinary arfgmperature region one has extraordinary and surface

extraqrdlnary phasc—? trapsmons. Mor_eover, Fhe two m.ljlt.'qr't"second-order transitions. The three transition lines meet at a
cal points occuring in Fig.(t) merge into a single multicriti- S .
multicritical point.

cal point. .
(2) For Ro=—5 andR;=0.8 we have shown a phase (d) For Rg=—0.5 andR;=1, we have shown ordinary
irst-order, extraordinary second-order, and surface second-

where the surface and the bulk of the system are in the sta(% L X D0 X .
gered quadrupolar phaséSSQ,BSQ. Moreover, the un- rder phase transitions, with two multicritical points. Besides

usual feature of this phase diagram is the presence of thrdB€Se transitions the SQ phase occurs in the bulk, which
phase transitions of second order, with three multicriticaldives rise to the ordinary and extraordinary phase transitions
points. described above.

(2) Type B. If R andD are in domain II, according to the ~ (€) For Ry=—0.5 andR; =3 the system exhibits phase
values of the ratioR, andR;, we obtain six main types of transitions between different phases as indicated above, with
phase diagrams, which we report in Figga-2f). a single multicritical point. All those transitions are of sec-

(a) ForRy=—0.5 andR; = —2, the system exhibits reen- ond order.
trant ordinary first-order, ordinary second-order, extraordi- (f) ForRy=—0.5 andR,=8 the corresponding phase dia-
nary second-order, and surface second-order phase trangram is characterized by the presence of all the second-order
tions. For three particular values Afs/Jg, we can observe phase transitions obtained previously with three multicritical
an ordinary tricritical point, a critical end point, and a mul- points.
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