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Phase diagrams of the three-dimensional semi-infinite Blume-Emery-Griffiths model
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Within a real-space renormalization-group framework based on the Migdal-Kadanoff recursion relations, we
investigate the three-dimensional semi-infinite Blume-Emery-Griffiths model with nearest-neighbor interac-
tions, both bilinear and biquadratic, and with a crystal-field interaction. According to the values of the inter-
actions on the surface and in the bulk of the system, we determine the various generic types of phase diagrams
in the case of repulsive biquadratic interactions. Our analysis has led to a classification scheme with eleven
fundamental types of phase diagrams describing a large variety of phase transitions associated with the surface
and multicritical topologies.@S0163-1829~97!05837-2#
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I. INTRODUCTION

The Blume-Emery-Griffiths~BEG! model1 is a spin-1
Ising model with bilinear (J) and biquadratic (K) nearest-
neighbor pair interactions in which a single-ion anisotro
parameter~D! is included. First studied1 in the context of
superfluidity and phase separation in helium mixtures,
model has been extended to describe phase transition
simple2 and multicomponent fluids,3,4 microemulsions,5 and
semiconductor alloys.6

The infinite BEG model is described by the followin
reduced Hamiltonian:

2bH5J(̂
i j &

SiSj1K(̂
i j &

Si
2Sj

21D(
i

Si
2, ~1!

where the spins (Si521,0,1) are located on the sites of
cubic lattice and the first and second summations run ove
neighboring pairs of spins.

An extensive analysis of this model was made by me
of mean-field approximation~MFA!,1–4 renormalization-
group techniques,7,8 series expansions methods,9 and by
Monte Carlo simulations.10,11 All those treatments have es
sentially been confined to the parameter space with pos
(J,K.0) interactions, and features of the phase transiti
in these cases are now well understood. In the case of re
sive (K,0) interactions, the phase diagram is expected to
much more complicated by the analogy with the previo
case. However, a recent study12 of the global phase diagram
of the BEG model for three-dimensional lattices withK,0
was made using MFA, showing a variety of interesting fe
tures, including single and double reentrancy regions
ferrimagnetic phases. In a renormalization-gro
calculation,13 a qualitatively different sequence of phase d
grams does set in above a threshold spatial dimension ar
d'3, but these diagrams are different from the ones
MFA. The main discrepancy is that no ferrimagnetic phas
seen. Attention has been drawn independently to the nega
biquadratic interactions region of the BEG model throug
560163-1829/97/56~17!/11155~6!/$10.00
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connection to thet-J model of electronic conduction14 and
through the applicability to ordering in semiconduct
alloys.15

In the last few years some attention has been devote
the study of the BEG model over semi-infinite lattices, w
different couplings at the surface and in the bulk. A spec
case of this model has been studied16 by Benyoussef, Boc-
cara, and Saber. They use MFA to discuss the possible p
diagrams of the model forK50 @which corresponds to the
semi-infinite Blume-Capel~BC! model17,18#. However, they
use a single order parameter~the magnetization! to charac-
terize the different phases, and do not allow for the full sp
tial variation of the magnetization. A few other works ha
carried out the same investigation by means of a real-sp
renormalization-group~RSRG! framework,19 and a cluster
variation method~CVM!.20 Some applications of the sem
infinite BEG model to the study of surface superfluidity
3He-4He mixtures have been also investigated both w
RSRG~Refs. 21, 22! and MFA.23

For the semi-infinite BEG model no explicit calculation
have appeared in the literature with repulsive biquadratic
teractions, which is drastically and richly different, as will b
seen from the global study reported in this paper. Usin
renormalization-group transformation in position spa
based on the Migdal-Kadanoff24,25 ~MK ! recursion relations,
first we locate the 16 separate fixed points underlying
structure of the infinite model. Then this method will be us
to study the three-dimensional semi-infinite system, a
since in this case the recursion relations have a large num
of fixed points, the results obtained for the infinite syste
will help in understanding the meaning of the various fix
points.

According to the values of the interactions on the surfa
and in the bulk of the system, we observe four different typ
of phase transitions associated with the surface, which ca
designated using the same known terminology,26 namely, the
ordinary transition with simultaneous onset of bulk and s
face order, the surface transition where the surface ord
first, the subsequent extraordinary transition where the b
orders in the presence of an already ordered surface, an
11 155 © 1997 The American Physical Society
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11 156 56A. BAKCHICH AND M. EL BOUZIANI
special transition with bulk and surface ordering at the sa
temperature but with a different set of critical exponen
While these results are well established, the literature sh
a controversy about the order of these transitions. Indeed
shown, both by MFA~Ref. 16! and CVM,20 that the ordi-
nary, extraordinary, and surface transitions can be either
ond or first order. By contrast, in the research reported h
we shall determine the various phase diagrams given
renormalization-group theory. Our analysis has led to a c
sification scheme with eleven fundamental types of ph
diagrams, some of which we have illustrated in t
(Js

21,DsJs
21) plane, where the subscripts refers to the sur-

face. Taking into account the nature of the fixed points
show that the ordinary transition, which presents the re
trant phenomenon, can be either first order, second orde
tricritical ~we used the Nienhuis-Nauenberg criterion27 to de-
termine which fixed points characterize first-order tran
tions!, while the extraordinary and surface transitions are
ways of second order. Moreover, it is shown that such
system can exhibit critical and~ordinary and special! tricriti-
cal points, critical end points, and multicritical points.

One should note also that the method we have used
not obtain reentrancy, and the ferrimagnetic phase, wh
was referred to in Refs. 12, 28 and 29, has never appeare
the whole temperature range since there exists only one
romagnetically ordered fixed point. The phase boundary
tween the ferromagnetic and staggered quadrupolar phas
controlled by a singly unstable fixed point. Thus the RSR
does not reproduce the mean-field results, and may miss
tain features of the phase diagram owing to the restric
flow space in which the renormalization by necessity mus
carried out. This has been first speculated by Hoston
Berker,13 and later proven by Netz and Berker,30 who
showed how to enlarge the flow space and reproduce
main features of the mean-field calculation in a RSR
framework. This assumption was also confirmed31 by means
of Monte Carlo calculations, and the MFA results were
sumed to be correct ford53.

II. THE SEMI-INFINITE BEG MODEL

We will be concerned with the three-dimensional sem
infinite BEG model with ferromagnetic nearest-neighbor
teractions on a simple cubic lattice. The reduced Hamilton
is given by

2bH5Js(̂
i j &

SiSj1Ks(̂
i j &

Si
2Sj

21Ds(
i

Si
21JB(̂

kl&
SkS1

1KB(̂
kl&

Sk
2Sl

21DB(
k

Sk
2, ~2!

wherei , j , k, andl are site labels,(^ i j & denotes a sum ove
all nearest-neighbors with both sites lying on the surfa
(^kl& denotes a sum over the remaining nearest neighb
andb5(kBT)21 ~with kB the Boltzmann constant andT the
absolute temperature!. JS and JB ~both positive, since we
study the ferromagnetic case! are reduced exchange intera
tions, while KS and KB are reduced biquadratic exchan
interactions andDS andDB are reduced crystal fields, respe
tively, at the surface and in the bulk.
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The resulting phases~on the surface or in the bulk! of the
model described by the Hamiltonian~2! are variously distin-
guished by four order parameters

mA5^Si&A , mB5^Si&B , qA5^Si
2&A , qB5^Si

2&B ,

whereA andB refer to the two sublattices.
The ferromagnetic~F! phase is characterized bymA

5mBÞ0. The two paramagnetic phases labeledP1 andP2

are distinguished bymA5mB50 with qA5qB. 1
2 , and qA

5qB, 1
2 , respectively. Those distinct dense and dilute v

sions of the disordered phase have no different symme
and one can continuously pass from one to the other with
crossing any transition surfaces. The staggered quadrup
~SQ! phase hasmA5mB50 andqAÞqB . It is characterized
by two interpenetrating sublattices. One sublattice hasSi
50 at every site, while the other sublattice has its sites
cupied at random bySi561. The ferrimagnetic~FR! phase
is distinguished by nonzero magnetization and sublat
symmetry breaking~mAÞmBÞ0 andqAÞqB!.

We apply a RSRG transformation based on the MK bo
moving approximation. This technique is tractable in
space dimensionalities, so we shall give the recursion r
tions for ad-dimensional hypercubic model. Let us briefl
describe the method.

Dictated by the possible sublattice symmetry breaking,
may restrict ourselves to an odd scale factorb. In the present
study we chooseb53 and consider a one-dimensional cha
of spins coupled by nearest-neighbor interactionsJ, K, and a
crystal-fieldD. We perform the trace over all spins on th
chain except those at the end. The end spins are then cou
by effective interactionsJ̃, K̃, andD̃, which are functions of
J, K, andD. In a semi-infinited-dimensional cubic lattice, it
is straightforward32,33 to extend Migdal’s argument and ob
tain the renormalized couplingsJ8, K8, andD8 as functions
of J, K, and D. In the particular case of the semi-infinit
BEG model we get

JB85bd21J̃~JB ,KB ,DB!,

KB85bd21K̃~JB ,KB ,DB!,
~3a!

DB85bd21D̃~JB ,KB ,DB!,

Js85bd22J̃~Js ,Ks ,Ds!1 1
2 ~b21!bd22J̃~JB ,KB ,DB!,

Ks85bd22K̃~Js ,Ks ,Ds!1 1
2 ~b21!bd22K̃~JB ,KB ,DB!,

~3b!

Ds85bd22D̃~Js ,Ks ,Ds!1 1
2 ~b21!bd22D̃~JB ,KB ,DB!.

The renormalization-group phase diagrams are deri
from the global study of flows in Hamiltonian space, whic
are governed by fixed points~points invariant under the
transformation!. The determination of the various fixe
points of the recursion relations~3! seems at first sight a
rather complicated problem. However, as usual for the se
infinite systems, the renormalized bulk interactions given
Eq. ~3a! depend only on the initial bulk interactionsJB , KB ,
andDB . Therefore, in order to determine the six coordina
(JB* ,KB* ,DB* ,Js* ,Ks* ,Ds* ) of each fixed point, we shall firs
determine the (JB* ,KB* ,DB* ) coordinates from Eq.~3a!, and
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FIG. 1. Typical phase diagram for the three-dimensional semi-infinite BEG model, from global renormalization-group theory, ca
for ~R50.75,D51.25! and~a! R0525 andR1521, ~b! R0525 andR1520.1, ~c! R0525 andR150.2, ~d! R0525 andR150.5, and
~e! R0525 andR150.8. Dashed and solid lines represent, respectively, first- and second-order phase transitions. The symbols SP
BF, SSQ, and BSQ denote, respectively, surface paramagnetic, bulk paramagnetic, surface ferromagnetic, bulk ferromagneti
staggered quadrupolar, and bulk staggered quadrupolar phases.
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FIG. 2. Typical phase diagram for the three-dimensional semi-infinite BEG model, from global renormalization-group theory, ca
for R50.25 and~a! R0520.5 andR1522, ~b! R0520.5 andR1520.1, ~c! R0520.5 andR150.05, ~d! R0520.5 andR151, ~e!
R0520.5 andR153, and~f! R0520.5 andR158.
pa
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e-
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subsequently, we determine the remaining (Js* ,Ks* ,Ds* ) co-
ordinates from Eq.~3b! after having replacedJB , KB , and
DB by the fixed point values ofJB* , KB* , and DB* . This
procedure shows that in the six-dimensional parameter s
 ce

there are 16 three-dimensional invariant subspaces in w
the fixed points are determined by recursion relations~3b!.

The results obtained from our investigation of the thre
dimensional semi-infinite BEG model are rather comp
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cated. Referring to the 16 fixed points of the infinite BE
model, in the six-dimensional parameter space we found
fixed points underlying the structure of the semi-infinite s
tem and we study the connectivity of the renormalizatio
group flows linking them. Taking into account the nature
the fixed points, new properties characterizing a variety
phase transitions associated with the surface are thus
tained, which can be summarized as follows:

~a! If the bulk is ferromagnetic, the surface is also nec
sarily ferromagnetic.

~b! If the bulk is staggered quadrupolar, the surface can
either ferromagnetic or staggered quadrupolar.

~c! When the bulk is paramagnetic, the surface can
ferromagnetic, paramagnetic, or undergo a critical ph
transition between the phasesF andP. This phase transition
is similar to the surface transition in three-dimensional se
infinite Ising models.

~d! If the bulk exhibits a smooth continuation between t
two paramagnetic phasesP1 andP2 , the surface can be in
any of the four phasesF, SQ, P1 , and P2 , or it can un-
dergo one of the 12 different phase transitions of an infin
system.

~e! When the bulk undergoes a first-order transition b
tween the two paramagnetic phases, the surface can exh
first-order transition between the phasesF andP2 , an ordi-
nary first-order transition between the two paramagn
phases, or a critical end-phase transition.

~f! When the phases ferromagnetic and paramagnetic
coexisting on the surface, the bulk exhibits a critical en
phase transition.

~g! If the surface is ferromagnetic, the bulk is parama
netic (P1) or undergoes a critical phase transition of seco
order between the phasesF andP1 . This transition is simi-
lar to the extraordinary phase transition in three-dimensio
semi-infinite Ising models. Therefore, the bulk cannot u
dergo a first-order phase transition while the surface is
romagnetic.

~h! For the bulk undergoing critical or tricritical phas
transitions, we found ordinary and special phase transiti
associated with the surface. Moreover, the surface ca
undergo a first-order phase transition while the bulk exhib
a second-order phase transition.

These results enable us to exclude the possibility of fi
order surface and extraordinary phase transitions, and fo
certain phase diagrams found within other techniques.16,20

One should note also that the MK renormalization-gro
scheme we have applied did not obtain ferrimagnetic pha
either in the surface or in the bulk. This picture is irrespe
tive of the space dimensionalityd, since the results are qual
tatively similar for d.3. This confirms, once again, th
statement of Hoston and Berker,13 as a consequence of th
restricted flow space in which the renormalization is carr
out.

III. DISCUSSIONS AND CONCLUSION

A real-space renormalization-group calculation, in a
stricted flow space, is used to analyze the critical behavio
the three-dimensional semi-infinite BEG model with surfa
interactions which may differ from the bulk interactions. W
determine explicitly the effect of any bulk and surface biqu
3
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dratic interactions on the surface transitions. Our new res
have been obtained with repulsive biquadratic interacti
KB and KS . Referring to the 16 fixed points of the infinit
model, the fixed points of the semi-infinite system have be
classified. Using renormalization-group theory we have
tained 11 generic types of phase diagrams, some of which
have illustrated in the (Js

21,DsJs
21) plane. They show a va

riety of phase transitions associated with the surface and
usual multicritical topologies, including certain types of o
dinary, extraordinary, and special phase transitions which
not occur in the Ising-like systems.

The semi-infinite BEG model reduces to the semi-infin
BC model if we setKB5KS50. As mentioned in the Intro-
duction, the last model has been studied19 within MK
renormalization-group and three generic types of phase
grams have been obtained as a function of the ratiosR
5JB /JS andD5DB /DS . Their domain of existence is clas
sified as follows:

Domain I: ForR.0.59 the system exhibits only ordinar
phase transition.

Domain II: ForR,0.59 two different types of phase dia
gram have been found, according to whetherD.1 or D
<1. In this case the phase diagrams present ordinary,
traordinary, surface, and special phase transitions.

For the semi-infinite BEG model we define the new rat
R05KB /KS andR15KS /JS and classify the possible phas
diagrams at fixedR and D. According to the values ofR0
and R1 different types of phase diagrams area priori ex-
pected. To classify them we shall proceed as follows:

~1! Type A. If R andD are in domain I, varyingR0 and
R1 we obtain five main types of phase diagrams which
report in Figs. 1~a–e!; solid and dashed lines represent, r
spectively, second- and first-order transitions.B and S
stand for bulk and surface, respectively, whileP, F, and SQ
stand for paramagnetic, ferromagnetic, and staggered
drupolar phases.

~a! For R0525 andR1521, the system exhibits only
ordinary phase transitions of first-order, second-order, or
critical. The corresponding phase diagram presents also
entrant phenomenon with a critical end point.

~b! For R0525 andR1520.1, the surface and the bul
order at the same temperature. This ordinary transition,
cording to the values ofDS /JS , can be first order, secon
order, or tricritical.

~c! For R0525 and R150.2, we have shown ordinar
first-order, ordinary second-order, extraordinary seco
order, and surface second-order phase transitions. There
ists also a point where the surface and the bulk become
dered simultaneously. According to its position, this point
a multicritical point where a first-order transition line mee
two second-order transition lines. For another particu
value of DS /JS we can observe also a special phase tran
tion point where a second-order transition line meets t
second-order transition lines.

Moreover, in this case the staggered quadrupolar ph
occurs in the bulk. Thus, as mentioned above, the mo
presents a ordinary second-order phase transition where
bulk and the surface of the system exhibit a transition
tween different phases, namely, from~SP,BP! to ~SF,BSQ!,
where SP, BP, SF, and BSQ denote, respectively, sur
paramagnetic, bulk paramagnetic, surface ferromagnetic,
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11 160 56A. BAKCHICH AND M. EL BOUZIANI
bulk staggered quadrupolar phases. An extraordinary ph
transition also occurs, where only the bulk exhibits a tran
tion between the two phases BF and BSQ, the surface b
in the ferromagnetic phase SF. This gives rise to a multic
cal point appearing at the termination of the phase bound
between these phases.

~d! For R0525 andR150.5 we can observe a speci
phase transition point in addition to the ordinary, extraor
nary, and surface second-order phase transitions. As in
previous case, we have shown the second-order ordinary
extraordinary phase transitions. Moreover, the two multicr
cal points occuring in Fig. 1~c! merge into a single multicriti-
cal point.

~e! For R0525 and R150.8 we have shown a phas
where the surface and the bulk of the system are in the s
gered quadrupolar phases~SSQ,BSQ!. Moreover, the un-
usual feature of this phase diagram is the presence of t
phase transitions of second order, with three multicriti
points.

~2! Type B. If R andD are in domain II, according to the
values of the ratiosR0 andR1 , we obtain six main types o
phase diagrams, which we report in Figs. 2~a–f!.

~a! For R0520.5 andR1522, the system exhibits reen
trant ordinary first-order, ordinary second-order, extraor
nary second-order, and surface second-order phase tr
tions. For three particular values ofDS /JS , we can observe
an ordinary tricritical point, a critical end point, and a mu
r,
se
i-
ng
i-
ry

-
he
nd
-

g-

ee
l

i-
si-

ticritical point characterizing the special phase transition.
~b! For R0520.5 andR1520.1, according to the value

of DS /JS , we have shown an ordinary tricritical point and
special phase transition point, in addition to an ordinary fir
order, ordinary second-order, extraordinary second-or
and surface second-order phase transitions.

~c! For R0520.5 andR150.05, the corresponding phas
diagram is characterized by the presence of an ordinary fi
order transition at high temperature, while in the low
temperature region one has extraordinary and surf
second-order transitions. The three transition lines meet
multicritical point.

~d! For R0520.5 andR151, we have shown ordinary
first-order, extraordinary second-order, and surface seco
order phase transitions, with two multicritical points. Besid
these transitions the SQ phase occurs in the bulk, wh
gives rise to the ordinary and extraordinary phase transiti
described above.

~e! For R0520.5 andR153 the system exhibits phas
transitions between different phases as indicated above,
a single multicritical point. All those transitions are of se
ond order.

~f! For R0520.5 andR158 the corresponding phase dia
gram is characterized by the presence of all the second-o
phase transitions obtained previously with three multicriti
points.
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