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Thermally activated resonant magnetization tunneling in molecular magnets: Mp,Ac and others
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The dynamical theory of thermally activated resonant magnetization tunneling in uniaxially anisotropic
magnetic molecules such as MAc (S=10) is developed. The observed slow dynamics of the system is
described by master equations for the populations of spin levels. The latter are obtained by the adiabatic
elimination of fast degrees of freedom from the density matrix equation with the help of the perturbation theory
developed earlier for tunneling level splittiip. A. Garanin, J. Phys. 24, L61 (1991)]. There exists a
temperature rangéhermally activated tunnelingvhere the escape rate follows the Arrhenius law, but has a
nonmonotonic dependence on the bias field due to tunneling at the top of the barrier. At lower temperatures this
regime crosses over to the non-Arrhenius ldiermally assisted tunnelingThe transition between the two
regimes can be first or second order, depending on the transverse field, which can be tested in experiments. In
both regimes the resonant maxima of the rate occur when spin levels in the two potential wells match at certain
field values. In the thermally activated regime at low dissipation each resonance has a multitower self-similar
structure with progressively narrowing peaks mounting on top of each ¢®@t63-18207)00141-0

I. INTRODUCTION These molecules behave effectively as magnetic clusters of
spin S=10? as has been confirmed by the Curie-law tem-
In recent years there has been great experimental and thperature dependence of the susceptibitityAs follows from
oretical effort to observe and interpret quantum tunneling othe very low value of the Curie constartd,.~ —0.05 K10
magnetization in monodomain particles. The interest in thighe interaction between the MgAc molecules is very weak,
problem arises from the fact that the magnetizatibrof &  presumably of the dipole-dipole origin. MgAc is character-
particle containing a few thousand atoms is a macroscopig,eq by a very strong uniaxial anisotropiy{Az—Dsi,

degree of freedom. Thus tunneling of the particle’s magnetiwhere D=0.72 K from high-field electron paramagnetic

zation between different equilibrium orientations at low tem'.resonaanEPR),“ D=~0.75 K from single-crystal magnetic
peratures requires strong coherence between atomic SpIlS . o tibility measurements, ar~0.77 K from neutron
and may be very sensitive to the interaction with the envi- P ' s

ronment. A similar problem has been extensively studied irpcattering experimentS. This leads to a barrier of about

— 2 __
superconductors in the context of macroscopic quantum turi- 0> =75 K between the states S. Note, however, that

neling, where good agreement has been achieved betwe&XPerments on resonant spin tunnefhee belowsuggest
theory and experiment.Observation of magnetization tun- & value ofD close to 0.6 K and correspondingly a barrier
neling is complicated by the difficulty in preparing identical height of 60 K.
magnetic particles. Experiments have been perfofnwed The advantage of MppAc and other molecular magnets is
particles distributed over sizes and shapes. These expethat they are rather simple model systems, which facilitates
ments revealed temperature-independent magnetic relaxatidieir theoretical consideration and interpretation of experi-
which was attributed to tunneling. When an effort was madements. Of course, it should be understood that a cluster of
to narrow the distribution, resonance was obsetveéd the  spin 10 cannot be treated macroscopically. The limit of mac-
absorption of the ac field, similar to the tunneling resonanceoscopic quantum tunneling is the one where the quantiza-
in the ammonia molecule. tion of spin levels is irrelevant. On the contrary, in the
Difficulties in manufacturing identical magnetic particles Mn ,Ac cluster the distance between the ground state and
for tunneling experiments have led to new techniques othe first excited level is 12—15 K. At low temperature quan-
measuring individual particlé€ and to the idea of searching tization of levels must, therefore, dominate the properties of
for magnetization tunneling in magnetic molecules of largethe system. In this sense MyAc is closer to conventional
spin. The system that caught the most recent attention is theguantum-mechanical systems where tunneling is of a reso-
crystal Mny, acetatelMn 1,Ac) having the chemical formula nant character. Nevertheless, as we shall see, the high value
[Mn 150 15(CH3COO0) 14(H,0) 4]- 2CH;COOH- 4H,0. This  of spin leads to the macroscopic time scale for the dynamics
compound has been synthesized by &isut its physical of the magnetization, which has been tested in macroscopic
properties had not received much attention until Sessolexperiments.
et al® noticed magnetic bistability of this system. In the  An important feature of Mp,Ac is that if no strong trans-
Mny,Ac molecule the 12 Mn ions are strongly bound ferri- verse field is applied to the system, the interactions respon-
magnetically via the superexchange through oxygen bridgesible for tunneling are small in comparison to the anisot-
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ropy energy Ha=—DS2 which itself conserves thes, is Hy<Ha, whereH,=(2S—-1)D/(gug) is the anisotropy
component of the spin. As a result of this and of the largdield. The latter in turn coincides with the critical value of the
spin of the system, tunneling between low-lying energy lev-transverse field at which in the classical caseSefl the
els should be extraordinary slow, which makes e an  double-well structure of the spin energy disappears. For
excellent candidate for information storage at the moleculaMni2Ac, the anisotropy field is of order 10 T, so that the
level. Another possible application of the molecular magnetgondition H,<H, allows for rather largeH,. In this rel-
is that for quantum computing. For that application tunnelingevant range of the transverse field one can use the physically
between the low-lying states should be made more protransparent and technically convenient basis of the eigen-
nounced, and the interaction with the environment destroyfunctions of the anisotropy energi(a=—DSZ. The slow
ing coherent oscillations of the spin between two wellsdynamics of the system driven by the thermal activation and
should be kept small. This is hardly the case for Mkc  tunneling processes can be described with the help of the
where nuclear spins of manganese atoms strongly suppreggiabatic elimination of the fast degrees of freedom in the
the coherenc® The example of Mp,Ac is, however, in-  density matrix. The latter is a dynamical generalization of
structive since other systems with similar properties can béhe calculation of the tunneling level splittings in the high
developed, which could be better candidates for quantur@rders of the perturbation theofy.
computation. The remaining part of the paper is organized as follows.

The first indications of magnetization tunneling in In Sec. Il the properties of aisolatedmagnetic cluster in a
Mn;,Ac were seen in the magnetization relaxation experitransverse field are briefly reviewed and the perturbation
ments of Paulsen and Pafkand the dynamic susceptibility theory is compared with other approaches to the problem. In
measurements of Novak and Sesdbithe measured relax- Sec. Ill the density matrix equatiaidbME) for the uniaxial
ation rate of Mn,Ac followed the Arrhenius lawTl magnetic system interacting with a phonon bath is formu-
=T yexp(—Uq/T) with the peaks at some values of the lon- lated and discussed. In Sec. IV the fast degrees of freedom in
gitudinal fieldH,. These peaks were interpretlas reso- the DME are eliminated and a simplified system of equations
nant thermally assisted tunneling between the levels near tHéescribing the slow spin dynamics in terms of the diagonal
barrier top, which decreased the effective barrier helifyt. and antidiagonal matrix elements connecting resonant pairs
Subsequent dynamic hysteresis experintériteve proved Of levels in different wells is derived. It is shown that the
that conjecture as they have shown many regularly spacegvel broadening due to the interaction with the environment
steps in the hysteresis loop at the valuesigfat which the ~ Suppresses coherent oscillations and, if strong enough, makes
levels on both sides of the barrier come into resongeee  the motion of the spin between two degenerate levels over-
also Refs. 17—-20 These steps indicate an increased relaxdamped. In this case, and also in the case of thermally acti-
ation rate at the corresponding bias fieHls. Very recently vated quantum t_unneling, when the relaxapion rate is limited
a similar observation was made on Mrphosphat' which Dy the exponentially slow process of climbing up the energy
was described as a magnetic cluster of sp#n9.5. barrier, the DME further simplifies to the system of kinetic

The transverse fieltH, applied to a uniaxial magnetic Palance equations for the level populatioNg, only. The
system mixes the unperturbed energy levels and enhanctter describes the hopping of particles between adjaicent
tunneling. The search for an increased tunneling in the tranN€rgy levels and through the barrier. In Sec. V the system of
verse field has been undertaken in recent hystéfeaiwd  €duations for the level populatiom, is solved analytically
dynamic susceptibili§? measurements. The results showin the Arrhenius regim@ <U~DS?. In Sec. VI the transi-
that the speeding up of the relaxation can be explainedon from the Arrhenius regime to pure quantum tunneling at
mostly through the classical effect of the barrier lowering inlower temperatures is discussed. In Sec. VII the numerical
a transverse field, whereas the resonant tunneling peaks résults for the dependences of the escape rate on longitudinal
maining after subtraction of this main effect are nearly inde-and transverse fields in the Arrhenius regime are presented.
pendent ofH, . Actually both effects come from the same Here we also analyze the influence of the Mn nuclear spins
source: The classical height of the barrier can be determine@d & small scatter of the easy-axis directions in the oriented
quantum mechanically from the condition that the tunnelingPolycrystals on resonant magnetization tunneling. In Sec.
level splitting becomes comparable with the level spacingV!ll further developments of the theory and suggestions for
which means strongonresonantunneling, i.e., the absence €Xperiments are discussed.
of a barrier at that levet!

A large number of experimental observations of magneti- ||. TUNNELING LEVEL SPLITTING AND CLASSICAL
zation tunneling in molecular magnets has been accumulated BARRIER LOWERING
to date and the major relevant physical processes have been
identified. A theoretical framework for the dynamical de-  The spin Hamiltonian of an isolated MgAc molecule in
scription of the combined process of the thermal activatioinagnetic fieldH can be written in the form
and tunneling in these materials is still lacking, however. In

particular, the form and the width of the tunneling peaks H=-DS?-H,S,—H,S,, (2.1
measured in experiments has not yet been explained. The
aim of this article is to supply an appropriate theory. whereH stands forgugH with g=1.9. Henceforth we will

The idea of the work is to apply the density matrix for- usually drop the combinatiogug for better readability of
malism in the case when the tunneling is caused by a tranghe formulas. The system is described by ti®t+2l energy
verse fieldH, which is small enough and can be consideredevels which in the absence of the transverse fidldare
as a perturbation. The applicability criterium of this methodlabeled by the spin projectiom on thez axis and given by
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€ K systems with moderate spin. The applicability of this ap-
e proach is confined, however, to the limit of small transverse
fieldsH,, where it is still possible to label the energy levels

0 i i of Eq. (2.1) by the quantum numben.
] m+l S -1 ] In the case of smalH,, which, as we shall see, is rel-
m g m'=-m—k evant for magnetic clusters with moderate spin, the level
201 m-1 / o m'+1 - splittings can be calculated in a more direct and simple way
/ \ using the high-order perturbation theory. An early applica-

tion of this method is due to Korenblit and Shentderho
studied ground-state splitting in rare-earth compounds hav-
ing high spin valuege.g., S=8 for Ho). Garanif® has de-
1 i rived a formula for the splitting of all levels of the Hamil-

/ H=-Ds?-HS, tonian (2.1). A recent revision of the method is due to
60 - Hartmann-Boutrori? Schatzer, Breymann, and Thorfaex-

Energy levels

-40 /' of the Mny,Ac cluster '\ -

tended the perturbative approach to describe tunneling in a
\' system of two spins.
8ol Hf/Df"lzvll(ffrsl”lesf“fa‘:“f)I 2 In the general biased case, the tunneling level splitting of
40-8 -6 420 2 4 6 8 10 the resonant level paim,m’ appears, minimally, in thém
m —m’|th order of a perturbation theory and is given by the

shortest chain of matrix elements and energy denominators

FIG. 1. Spin energy levels of a MpAc molecule forH, =0 and ~ cONnecting the states andm’,

H,=D corresponding to the first resonan&es 1, in Eq.(2.2.

A =2V —V
em=—Dm?—H,m (see Fig. 1 It can be easily checked that Emm mmtle 1—&y, MTLMT2
for the regularly spaced values of the longitudinal field 1
satisfying X N s 2.4
E€m+27 €m '
H,=H,=kD, k=0,x1,+=2,..., (2.2
) _ ~ where
the energy levels on both sides of the barrier are pairwise
degenerate: 1
Vm,m+1:<m|HxSx|m+l>:§Hx|m,m+1r (2.5
Em=&m, mM<0, M =-m-—k. (2.3

lmm+1=VS(S+1)—m(m+1) are the matrix elements of
the operatolS,, which are symmetric functions of their ar-
guments, and,,= —Dm?—H,m are the unperturbed energy
levels. The calculation in Eq2.4) for the arbitrary reso-
nance numbek yields the formul&*

The latest high-field EPR experimefftsuggest that there
are correction terms of the typesAS; and—B(S1 +S?) in
the spin Hamiltoniar(2.1) of Mn ;,Ac. This means that the
degeneracy of different level pains,m’ is actually achieved
at slightly different values of,. We shall, however, ignore

this effect in the following since it does not significantly 2D

change the results. As we shall see, only one or maximally Aegmy=—""-"""—

two pairs of degenerate levels contribute to resonant tunnel- [(m —m-1)1]?

ing, and hence the lack of simultaneous degeneracy of all ,

appropriate level pairs is unimportant. \/(S+ mOHIS—m)! [ H,|™ " 0@
The model Hamiltoniarf2.1) was a whetstone for differ- (S—m’)!1(S+m)! | 2D (28

ent theories of spin tunneling long before its relevance for

Mn ;,Ac and other molecular magnets had been establisheavhich is the generalization of the zero-bias result of Ref. 25.
In the quasiclassical limi>1, the rate of tunneling from Note that here, according to the convention of Ej3), m

the ground state for different values l8f, was calculated by <0, m’=-m-—k, and hencen’—m>0. Equation(2.4) de-
Chudnovsky and Gunth&rwith an exponential accuracy scribes the interaction between the pair of resonant levels
with the help of the instanton technique. Enz and Schiffing m,m’ through the intermediate levels in the virtual state. As
developed a more sophisticated version of the instanton ajis well known for the two-state problem, the splitting:
proach to spins to obtain the ground-state tunneling leveis exactly equal to the tunneling frequen@y,,, with which
splitting with the prefactor. The latter result was rederived bythe probability of finding the system in one of these states
Zaslavskit® by a more simple method based on the mappingpscillates with time if the initial condition is an unperturbed
onto a particle problem. Also, van Hemmen ana®i*!  eigenstate.

formulated the WKB method for spin systems and calculated The tunneling splittings given by E(.6) are represented
the tunneling rates and corresponding level splittings for thén Fig. 2 for H,=0 and different values of the transverse
excited states of Eq(2.1). Scharf, Wreszinski, and van field, in comparison with the results of other approaches.
Hemmeni? proposed an approach based on a particle mapOne can see that the splittings change by orders of magni-
ping with subsequent application of the WKB approximationtude with changingn by 1. If the splitting of the paim,m’

to refine the results for the splitting of excited levels for becomes comparable to the level spacing in the well, which
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= the energy levels arise only in the second order of the per-
d a—a e B IS - .
o] 8T Ao A\\M I 02 turbation theory. The latter have the form
-2 4 X - -
.4 Level spacing \ N [ @) ) 2S°[S(S+1)+m?] "
6] \ % [ 6 e?=—Dm?% 1+ P h2t. (2.10
5 $=10 A [ m4m=—1]
10 h=H/(2SD) h}% [ 10 It can be checked that fan=m, and 1<m,<S the correc-
42 e Eny and Schilline. 1986 [ 1o tion term in the curly brackets makes up the universal num-
e Snﬁa?;l WC ' .mgk’i d \ [ 14 ber 86%~0.15. This means that near the renormalized bar-
7V e o resz“is%;an e rier top, m=m,, the perturbation theory relies on a small
18] o ;’a}‘:aﬁe“\;/me“i o and I numericalparameter rather than dn,. The artifacte?/8 in
18 chart, resz“;;g;a“ ol 18 Eqg. (2.9 is the consequence of dropping the effect of the
20 VaﬂH?mmenl’ (numerical) h},\@ 20 level mixing inside the wells described to lowest order by
22470 Garanin, 199 * « [ 22 Eq. (2.10. It should be noted tha#?/8 also appears in the
27T T+-24 WKB results®-32for the tunneling level splitting in the case
2 8 4 5 6 7 8 9,10 of a small transverse field, and it can be attributed to the

inaccuracy of the WKB method near the top of the barrier. In
this article, we will neglect these effects and study the tun-
neling transitions between the wells perturbatively in the ba-

FIG. 2. Tunneling Splitings\smqy for H,=0 and different val- gis of the eigenstates of the operapr It should be noted in

ues of the transverse field. The results of Scharf, Wreszinski, an dditi h hecked bv Chud K d
van Hemmer(Ref. 32 are indiscernible from the perturbative ones a . ition an‘ at, as was .C ecke . y u npvs y an
in this scale and they are shown only for the one value of thanedma . the level matc_hmg conditio(2.2) remains ungf—
transverse field. fected by the transverse field at least up to fourth ordéx in

Now let us consider the question how the level splitting
is of order D|m|, the tunneling becomes strong anchoi- chgnges from one level pair to a_nother in more detail. For the
resonantcharacter; i.e., the barrier for a particle going into Pars of resonant levels shown in Fig. 1, with the use of the
the other well disappears. For this pair of levels the perturPasic formula(2.6) in the unbiased case, one comes to the
bation theory clearly breaks down, but for the next lower pair€Sult
m—1m’+1 (see Fig. 1it already works well. 1 1

The sharp boundary between the levels localized in one of ( 1 ) ( 1 )

the wells and the delocalized ones, which was observed M: 4(2)4 2m| |m|

above, is also characteristic for the classical theory where Aeqm My (14_@)(1_@4_}) '
there is a similar separation between the localized and escape S S 'S

orbits at some energy. Accordingly, as was shown by (2.1)

Friedmart® the transverse-field dependence of the classic

barrier height a\}vheremb is given by Eq.(2.9). One striking implication of

this formula is that the splitting ratio is large everywhere in
the wells: Even near the top of the renormalized barrier,
U(h)=DS%(1—hy)?, h,= Hx , 2.7) ~my, the.tunneling splitting changes by a Igrge factdr
2SD ~55, moving one step up the barrier. This universal behav-
ior, independent of the spin valug for S>1, shows that
even in the quasiclassical limit the tunneling splitting cannot
be treated as a smooth function of the energy. The determi-
nation of the level at which the barrier disappears is, there-
fore, quite precise. Another consequence of 2dl)) is that

can be reproduced for smdil with the help of the pertur-
bative formula(2.6). Indeed, in the quasiclassical limit 1
<|m|<S, Eq.(2.6) for H,=0 can be simplified to

2 o ; i
A _ 2D|m|[ H,S¢& m 28 resonant tunneling is to the same extent inherent in models
Emm =" 8Dm? (28 of large spinS as in those of moderate spin.
and compared to the level spaciBgm| to obtain the value lll. SPIN-BATH INTERACTIONS AND THE DENSITY

m=m, at which the barrier is effectively cut by the tunnel- MATRIX EQUATION

ing. For|m|>1, the value ofm, can be found with a good  The thermally activated escape of the MAc spin over
accuracy by equating the fraction in brackets in E48) to  the potential barrieDS?=70 K is accompanied by transi-
unity. The result has the form tions between the energy levels with the energy differences
ranging fromD(2S—1)=13 K near the bottom of the po-
tential wells toD=0.7 K near the top of the barrier. Such a
process requires an energy exchange betw&emd other
degrees of freedom of the whole system.

which leads to the effective barrier heigbt=DS*~Dm The dipole-dipole interactions between different magnetic
=DS[1—-2h,(e?/8)]. This is in accordance with Eq2.7)  clusters contribute to the macroscopic magnetic induction
for hy<1, except for the factoe?/8~0.92. The nontrivial B=H+4xM which is actually “felt” by the spins and
feature of this derivation is that the resulting classical barriegvhich should replace the external fiehtlin all the formulas
lowering is of first order inh,, although the corrections to for spin tunneling and thermal activation. As was shown in

2

€
ma=2S?h

X§! (29)
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dynamic hysteresis experimenfs® this internal field cor- interactions is due to the rotation of the anisotropy axis by
rection is quite essential for a careful analysis of the experitransverse phonorf8.We will use this mechanism for the
mental data. Théluctuatingpart of the dipole-dipole inter- jllustration of our method since it does not employ any un-
actions which could cause the spin relaxation has beernown characteristics of the crystal-fiefistortionsaccom-
shown to be inefficient by diluting the sampfelndeed, this  panying other types of lattice vibrations.

interaction is of the order of the dipole-dipole energy of two  For the arbitrarily oriented anisotropy axis the anisot-
neighboring clusterszy=(gugS)* /v, Wherevg is volume  ropy part of the spin Hamiltoniai2.1) can be written as
of the unit cell. Usingg=1.9 andv,=(17.3 A*x12.4 A! Ha=—D(nS)% Transverse phonons change the veattry
one obtainsEd:Q.O6 K [in accordance with the megsured Sn=[ 8¢pxn], wheredp=(1/2)V X u is the local rotation of
value of the Curie constaidc=—0.05 K (Ref. 10] which 4,0 |atice andu is the lattice displacement. The first-order

?hrgruec?ssggle; ﬁg?ethsigtlia:rci;bé%t\tl)vaese; dtr&e glz\eergé/rleve rm onén in H, gives the spin-phonon Hamiltonian which
g P 9 in coordinate form reads

conservation and the nonequidistant character of the spin en-

ergy levels, which rules out the contribution of dipole-dipole —
int%);actions to the relaxation in the temperatuee rafrge Hep=DiS: Sdwnct DIS, Sjwsy, 3.9
<U., where

The nuclear subsystem also cannot supply energies which
would be large enough for the relaxation over the 70 K bar- = E(%_%) 3.2
rier. Nevertheless, nuclear spins produce a hyperfine field on @B 2 g dry)’ '

the effective electronic spin, which can give rise to tunnel-

ing. This mechanism will be considered in detail in Sec. VII.

Here we will describe tunneling as caused by the externall

applied transverse field, . i o
The remaining two types of the interaction of a MAc u= )

spin with the environment are those with phonons and pho- CMN)YAR (@) Y2

tons. Unlike the interactions reviewed above, the phonon and : . . .

. WhereM is the unit cell masd\l is the number of cells in the

photon subsystems play the role of a thermal bath, renderm'%l . . o = )
. - ttice, ., is the phonon polarization vectax=t,t,| is the

the spin subsystem a definite externally controlled tempera_olarization andow. = v K is the phonon frequency. Per-

ture. It can be immediately seen that in the presence ’ o = U P d Y

phonons the photon processes can be safely neglected, sin (ming differentiation in Eq/(3.2), one can transform Eq.

and{S,,Sg} is the anticommutator. In terms of phonon op-
gratorsay, and aj,

ik-r
(A —ap,), (3.3

the light velocityc is much greater than the sound veloaity o

and, as a result, the photon density of states is smaller than 1

the phonon one. At low temperatures the leading processes Hop=— —520 VidS(maS}Han—ap). (3.9
are the emission and absorption of phonons, accompanied by N2

the hopping of spin between energy levels. At higher tem- . NP
peratures Raman scattering processes can become domina'?'w?.re the spin-phonon amplitidé is given by

The energies of phonons in MgAc are large enough for the D ( o
t

exchange with the spin subsystem: As follows from specific =
heat measurement3the Debye temperaturg, correspond- 0
ing to the phonon energy at the edge of the Brillouin zone IS, 1d the vectomy,, is determined by
about 36 K.

Spln-phonor_l interactions in materials with a strong =0, nY=ei,mY—elnZ, (3.6)
crystal-field anisotropy are mainly due to the modulation of
the crystal field by phonons. This mechanism was extenwheren,=k/k. On can see that the coupling to longitudinal
sively studied in past year& The possible spin-phonon cou- phonons in Eq.(3.4) vanishes, as it should be, sineg
pling terms for substances of different symmetries are listed=ny.
in Ref. 39. For Mn,Ac and other molecular magnets, the  The evolution of a spin system coupled to an equilibrium
spin-phonon interactions, as well as {jpeesumably compli- heat bath can be described by the density matrix equation.
cated phonon modes themselves, have not yet been investiFhe diagonal elements of the density matgx,,=N,,, de-
gated. Moreover, an attempt to describe the interaction witlscribe the population of the energy levels. In the absense of
phonons rigorously would lead to a serious complication ofinteractions noncommuting wits, in the spin Hamiltonian
the formalism without bringing any new qualitative results. H, the DME reduces to the closed system of kinetic balance
We will resort to various simplifications, assuming, in par- equations, or master equations, for the populatiégsn the
ticular, that the phonon spectra of molecular magnets corbasis of the eigenstates of the opera®pr The latter was
tain, as for an isotropic elastic body, one longitudinal andapplied to describe the thermoactivation process in uniaxial
two transverse modes. Similar simplifications were alscspin systems, as MpAc, in Refs. 37 and 42. If a transverse
made in Ref. 37, where the pure thermal activation escapield or another level mixing perturbation is applied to the
rate in Mn;,Ac was studied. system, the nondiagonal elements of the DME appear, whose

The lowest-order spin-phonon interactions allowed by theslow dynamics describes the tunneling process. The major
time-reversal symmetry are linear in phonon operators anddvantage of the DME is that it provides a natural account of
bilinear in the spin operator components, containing variousesonant tunneling in systems of moderate spin, which is lost
combinationsS*S?, wherea, 8=+ ,z. The simplest of these in quasiclassical approaches for truly macroscopic systems.

1/2
Vi=— Q,=Mv? (3.5
k 23/2 ’ t— Ut ’ .
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A common routine for obtaining a system of kinetic bal- n,=(e“x’T—1)"* are the boson occupation numbers, and
ance equations is to calculate the transition probabilities acy, = w,, are the frequencies of transverse phonons.
cording the Fermi golden rule and then insert them into the |n Eq. (3.9 the spin operators should be expanded over
equations that are themselves postulated but not deriveghe X™" basis as follows:
Such an approach is methodically insufficient since the tran-

sition probabilities are obtained with the help of the time- s-1 S
dependent perturbation theory where the probability of find- S.= 2, lmme 1 XM S,= > mx™m
ing the system in states differing from the initial fully m=-3 m=-3
occupied state is used as a small parameter. In other words, s 1

this method describes only the initial stage of the relaxation n _ .

process for a special type of initial conditions. Although it S_=m:2_ Ln,m+ 2 X g S:=5=iS,. (31D
incidently leads to the correct master equation, the same is

not true for the general DME. Indeed, spin-phonon couplingg=or the one-phonon processes, the integral avein Eq.

of the type= ¥, S2a.a; , corresponding to the elastic scat- (3.8 converges on the scale ofal4, which is much shorter
tering of phonons, do not result in transitions between théhan the relaxation time of the spin system. Hence, the lower
energy levels and do not contribute to the coefficients of thdimit of this integral can be extended tg=—o and thet’
master equation. On the other hand, such terms modulate tidependences of the operatt8" in the relaxation term can
energy levels and contribute to the linewidths, which mani-be considered as governed solely by the conservative part of
fest themselves in the dynamics of the nondiagonal element§e DME (3.7). Finding these time dependences is a matter
of the density matrix. of numerical work, if the transverse field, is not small.

A rigorous method of the derivation of the density matrix Here serious complications arise, since the evolution of each
equation valid for all times employs the projection operatoroperatorX™" is a linear combination of all possible types of
technique>=*® For spin systems, the details of calculationsspin motion. This means simply that the unperturbed basis
are described in Ref. 47. The resulting DME can be found inve have chosen is not suitable in situations with strong level
Ref. 48, where the model without single-site anisotropy, acmixing. However, in the case of smafl, one can neglect
counting for both one-phonon and Raman scattering prothese effects and use the unperturbed time dependences
cesses, was used to derive the Landau-Lifshitz-Bloch equa-
tion for ferromagnets. This DME is written in terms of the XMN(t") = el emn(t’ ~OxXmn(t), (3.12
Hubbard operator¥™"=|m)(n| forming the complete basis
for the spin subsystem. In the Heisenberg representation the Now one can calculate combinatioAsandB in Eq. (3.9
operatorsX™" are related to the spin density matrix;,,,  with the use of the representatiof®&11) and the equal-time
=(X™Y(t)). For the present model described by E(&1) relation X™kX!"=X""5,, which replaces the commutation
and(3.4), the resulting DME reads relations for the spin components. The sum over the phonon
polarizationsi in Eq. (3.8) can be done using E¢3.6) and
the property of the polarization vectoﬁs\efef= Oap- Ne-
glecting the imaginary part of the relaxation teRyp,,, cor-
— -1 responding to the renormalization of the spin energy levels
e X =l XS 4 R, 3.7) due to the coupling to the bath, one arrives at the final form
of Ryp:

. i
XM= wmnxmn_z Hy(l m,m+ 1Xm+1'n+ [ m,mflxm7 n

wherew,,.=¢,— &, are the frequencies associated with the
transitionn—m, the unperturbed energy levelg, are given

— _ 2_ _ _
by e ,=—Dm*—H,m, the factorsgug and# are dropped Rin=5 | mms1 ! nnt 1l Wmmi 1+ Wi g 1]X™F 2041

for convenience, the matrix elemerltg ., are given by 2
Eq. (2.5, andR,, is the relaxation term. The latter has the 1
non-Markovian form - §[|_r2n,m+1wm+ 1t 120 Whs 0] XM
! 1 2 1
Rmn_ - todt N% Vk{Afk(t _t)_Bfk(t_t )}’ + EI m,m—lI n,n—1[\Nm,m—1+\Nn,n—l]xm_l'n_1
(3.9
where = S A Wane it 11 Wa-10X™. (3.3

A=Qg(t")[Qg(t),X™(1)],

Here | ms+1=lmm=1(2mM= 1) with the factor Zn+1 com-
_ mn , ing from the operatos, in Eq. (3.4), and the universal rate
B=[Qs(t), X™(1)]Qs(t"), 3.9 constantW,,=W(w,y) of the one-phonon processes is

the spin operator combinati®@s={S,, (m,S)} comes from  given by

the spin-phonon Hamiltonia¢8.4), the functionf,(7) char-

acterizing the bath in the present case of the one-phonon dk
processgs is given by P P W(w)= §UOJ (—27)3V§{(”k+ 1) 7wyt )

fi(7) =Nk + (N +1)e k7, (3.10 +nemd(w— )}, (3.19
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whereuv is the unit cell volume and the overall factor 2/3  The slow variables of our problem are the diagonal matrix
says that only two transverse modes of the total three phonaglementsN,,=X™", as well as the antidiagonal elements
modes are active in the relaxation mechanism under consigm™ \hose transition frequenay,y=&m— ey is the de-
eration. One can check that the rate constant satisfies thgning of the resonant levets andm’:

detailed balance conditiokV(w)=W(— w)exp(—a/T). At

low temperatures phonons die out aWf w) with »>0,
which corresponds to the absorption of a phonon, becomes
exponentially small. The result foW(w) with ©<0 (the
emission of a phongrcalculated with the help of Eqé3.14
and(3.5) reads

Ommy=(H—Hp)(m" —m) 4.7)

[cf. Egs.(2.2) and(2.3)]. The equations of motion for these
slow variables can be obtained in the following way. In Eq.
(3.7 for X™™ the terms containingK™" ™ and XMm*1,
D2 |? W?T, |o|<T, which are generated minimally by nonzex8 ™ and X™™
= —4(n‘w|+1)oc (3.15 correspondingly, are responsible for tunneling in the lowest
2470 approximation. In the dynamical equations for these ele-

(cf. Ref. 49. Here we have usedd = (fiv,)/v, for the De-  Ments one can neglect the terixi8* ™ andX™™**, as well

bye temperaturdy~7w, . The constan® is defined as as the relaxation terms, since the frequenaigg. ., and

04=0,03 =%3p%5  wherep is the density and), is given ~ ©mm+1 are large on the scale of relaxgtional and tunneling
by Eq t(3D5) Pt P y t5g processes. Then, in the caseXdt™ 1™, this element can be

Note that Eq(3.7) with Ry, given by Eq.(3.13) is still an expressed with the help of its dynamical equation through

w®, T<|ol

m+2,m
operator equation, and the equation of motion for the densi&( as
matrix elementsp,,,=(X™"), should be obtained by taking
its quantum-statistical average over the initial state of the s H mmi1
spin. This is, however, a trivial task, since the equation for Xm“’m:mxm”m- (4.2

XM is linear.

In the caseH, =0 the density matrix equatio8.7) and | e right part of this equation the terms containig™,
(3.13 reduces to a system of kinetic balance equations fos(m+1,m+1 andX™ 1M~1 have been dropped because retain-

. —ymm o .
the. dlggonal elementy,=X"", the equilibrium solution of ing them would be against our strategy of going across the
which is given by . "m

barrier along the shortest path X" ™. For the same reason

1 S we have also dropped the terf§ 1™ and X™™ ! in the
NﬁT?)=Ze‘8m’T, Z= >, e T, (3.16  equation forX™™ Retaining all these terms would imply
m=-S taking into account the level mixing inside the wells, which

The thermoactivation relaxation rafé in the model with ~We neglect for small transverse fields. Now, E42) can be
H,=0 was studied in Ref. 37 and recently in Ref. 42. In theiterated untilX™* 1™ is expressed througd™ ™, and similar
latter work Raman scattering processes have also been takean be performed oX™™*1, Substituting their expressions
into account, and the spin relaxation rate was calculated fonto the equation foX™™, one arrives at the slow equation
arbitrary ratiosU/T in terms of the integral relaxation time

Tint- It was shown that in systems with larger spin values, ) ) ,

even in the Arrhenius regimed/T>1, there are several lim- Xmm=§Qmmr(Xmm —X™M) + R, 4.3
iting cases for the prefactof’y in the expressionI’

=Toexp(~UIT) as a result of the interplay between the 0m"\'whereﬂmm, is the tunneling frequency coinciding with the

phonon and Raman scattering processes. Here we Concetu'nneling level splittingAe,,y of Eg. (2.6). One can see

trate on the Iow—temperature region, and thus only ONeow that the algorithm used here for the adiabatic elimina-
phonon processes will be considered.

tion of the fast degrees of freedom in the density matrix
equation is the dynamic counterpart of the perturbative ap-
IV. SLOW DYNAMICS OF THE DENSITY MATRIX: proach leading to the chain formu(2.4). The antidiagonal

COHERENCE AND TUNNELING matrix elementsX™™ and X™'™ are generated, in turn, by

BETWEEN RESONANT LEVELS . 'y |
the diagonal elementx™™ and X™ ™ | and the dynamical

The possible frequencies, with which the density matrixequations for them can be obtained in a similar way. The
elementsX™" evolve in time according to the DME3.7), result forX™ reads
range fromwys=DS? (for H,=0) to very small ones corre-
sponding to overbarrier relaxation and tunneling. In the low- i
temperature rang@<U, these fast motions decay with a xmm' —; oxmm' (Xm'm’ _ym ’
rate corresponding to the relaxation inside one well, which is X 'Ot X 3 {hm (X X+ R
much larger than the thermoactivation escape rate or the tun- (4.9
neling rates. In the long-time or low-frequency dynamics, the . )
variablesX™" corresponding to the large,,, play the role of  For the matrix elementX™ ™ andX™ ™ one obtains equa-
“slave” degrees of freedom, adjusting themselves to thetions similar to Eqs(4.3) and(4.4).
evolution of the slow variables, and hence they can be adia- To formulate the resulting system of slow equations in a
batically eliminated. more convenient form, we introduce
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merENmr_ Nm,

Yy =1 (XM — MMy

Ky = XM 4 x™'M, (4.5

These variables satisfy the system of equations

Nmzzﬂmm’Ymm’+ Rinm»
Nm,=—%9mm,vmm,+Rm,m, (4.6)
[cf. Eq. (4.3)], and
Zinw = = Ly Yy + R~ R,

Yo =Lt Ziar = @met Xenar = L one Y

Xenerr = @murr Y e = Cienere Xenee (4.7

where the first equation of Eq$4.7) is a consequence of

Eqgs.(4.6). The conservative part of Eqet.7) describes the
precession of the pseudospity,y ={Xmm:Ymm »Zmm} N
the pseudofielH ;,y ={Qmmw,0,0mm}- In the absence of

11 109
—
Rinm= | m,m+1(Wm,m+le+l_Wm+1,mNm)
+|—r2n,m—1(Wm,mlemfl_Wmfl,mNm)v (4-9)

describing the exchange of particles with the levels 1.

For the antidiagonal matrix elements, the relaxation term
R i EQ. (3.13 containsX™ itself, as well as the matrix
elementsX™* 1™ =1 These matrix elements do not belong,
however, to the antidiagonal onésee Fig. 1; they are small

slave variables that have been eliminated above. Dropping
them leads to

me/:Fm+ Fm/,

1
1_‘mzz(|_|?n,m+1vvm-%—l,m+I_Emm—lwm—l,m)- (4-1@

Here the termd’, and the analogouE,,, are the linewidths
of the levelsm and m’ arising from the transitions to the
levelsm=1 andm’ =1 with the absorption or emission of
an energy quantum.

At temperature§ < w,=(2S—1)D, which is about 13 K
for Mn ,Ac, most of the particles are in the ground states
m=*S. The linewidths of these states are much smaller
than that of excited ones since in E@.10 the emission
term is absent and the absorption term is small as exp

dissipation, in resonancen(,,y =0), the pseudospin rotates (—,, /T). Further lowering of the temperature leads to the
in they,z plane, and the difference of the level populationssyppression of the thermoactivation relaxation mechanism
Znny oscillates with time. Note, however, that teand X and, simultaneously, to the vanishing of dissipation in the
components of the pseudospin have nothing to do with thground state. Thus, the spin of the magnetic cluster behaves
actual spin componeng, andS, which remain zero; see Eq. |ike an undamped two-level systefLS). It is, however,
(3.11). The only exclusion is the resonance between the twqye|l known (see, e.g., Ref. 5@hat the coupling of the TLS
neighboring levelsn andm+1 near the top of the barrier, to the bath strongly changes its dynamics, and one can ask
which is realized, e.g., fo6 odd andH,=0. In this case, where this coupling was lost in our calculations. The answer
which is actually no longer the tunneling case sincejs that treating the non-Markovian relaxation tefg18) we
Qmm+1%Hy is not suppressed by the anisotropy, the rotatiorhave used the simplest unperturtiédlependence@.12) for
of the pseudospin couples to the rotation of the real spin. the spin operators of Eq$3.9) and (3.11), which do not

Since the tunneling frequencf),.y is typically very  describe the tunneling motion. This tunneling motion
small, the correspondingly small detunitg,w= Q. [S€€  couples, however, to a very small number of extremely-long-
Eq. (4.1)] is sufficient to suppress the resonance. On thevavelength phonons, and their contribution to the relaxation
other hand, a small ac fielH,(t) with a frequency about terms is smaller by a factor of ordeﬂQS’S/wA)?’exp(wA/T)
Qmm giving rise to the corresponding component of the [see Eq.(3.15] than that of the regular phonon processes.
pseudofieldw,qy (t) [see Eq(4.1)] can excite the tunneling Thus, the coupling of the tunneling mode to the bath be-
resonance. The latter, however, can only happen under twgomes important only at very low temperatures. In this range
rather severe conditions: serious complications arigeee, e.g., Ref. 9&ince the pseu-
dospin part of the effective TLS Hamiltoniarfi{+ s=
— o092, is no longer large in comparison to the coupling to
the bath and the perturbation theory breaks down.

The equation of motion for the pseudospin, E4.7), is
The former is the condition of the linear resonance, whereaBot closed because the relaxation term in the first line
the latter requires that the pseudospin have a strong prefegouples it to other levels. If we neglect this coupling for a
ence along the axis, in other words, that only the lower of moment, then the eigenvaluasof Eq. (4.7) determined as
the tunneling-splitted statéthe even ongis thermally popu-  X,Y,Zxe " are given by the roots of the cubic equation
lated. The temperatures required by the second condition afd —I')2A +Q%(\—T') + A =0, where we have dropped
so small that only the resonance between the ground-statee indexmm'. This equation can be solved only in limiting

A Q
H()< ———  T<hAQqy.

e 4.9

levelsm= =S can be discussed.
The small value of the pseudofiefd,,,, in the resonant

tunneling equation$4.7) suggests an important role of the

relaxation terms. The diagonal relaxation teRy,, follow-
ing from Eg.(3.13 has the form

cases. In particular, in resonanae= 0) the last equation of
Egs.(4.7) decouples from the first two ones, which describe
now a damped harmonic oscillator with, ,=(1/2)(I
+T?-407?). One can see that the tunneling oscillations of
the particle between the two levels become overdamped for
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I'>20. In the small damping case, the solution of E4}.7) our model in this case one should use E@s6) with Ry,
with the initial conditionZ(0)=1 has an interesting two- =0 andR, ,,=—2I",vN,,, as well as the second and third

scale-relaxation form equations of Eqgs(4.7) with I',,y =T, which leads to a
quartic secular equation far. In fact, however, such tunnel-

0?2 022+ »? ing resonances are typically overdamped, and both methods
Z()= ———exg — — 5 T't|cod VO + w’t) give the same results. The coherent tunneling oscillations
Qo Qo should be looked for between the two ground-state levels
2 2 whose damping is very small. For this situation, as well as
1) Q 2 - )
+—exp( - Ft). (4.11  for the description of thermally activated tunneling, the
0%+ w? 24+ »? damped Schidinger equation is inappropriate even as a

qualitative tool.
These results should not be overstated for the present model |n the Arrhenius regime the rate of the process is con-
because in the underdamped case the neglected relaxatiggjied by the climbing of particles up the barrier, which is
terms in the equation foZ can be of the same order of gmall in comparison td",,,y of Egs. (4.10. In this case,
magnitude as the accounted ones in the equationx famd ain, one can neglect the time derivativesndY in Egs.

Y. In this case the pseudospin concept breaks down and o hich | h f bal :
should use the two equatior4.6) instead of the first equa- Q -7, which leads to the system of balance equations

tion of Egs.(4.7). But in the case of strong damping the level _ 02 .,
populations cannot deviate substantially from their equilib- Npy= ;m ——— (N —Np) + Ry, (4.12
rium values because of the slow tunneling motion, and the oty

different terms in the diagonal relaxation termg, given where the rate coefficient for the transition across the barrier

by Eq.(4.9) nearly cancel each other. Here the concept of theilS the same as in the overdamped case Rug is given by

independent pseudospin is justified, and one can see_that IIt:‘gq (4.9. The form of these equations is quite plausible and
motion is indeed overdamped. Neglecting the teMrendY  resembling of the Fermi golden rule: The tunneling fre-
in Egs. (4.7), one eliminatesX and Y and_comes to the quency( is the transition amplitudgcf. Eq. (2.6)], whereas

. ) : . T A

swq_pr:e relaxational e?uatlonffdri]r with )‘SQ I'/(w gl; )- o T e /(@2 +T2 ) plays the role of & function selecting
e argument in favor of the pseudospin model is thal,s 5 0ved resonant level partners. In our case of the dis-

there can be other relaxation mechanisms, such as those d(lfll%te spectrum, one cannot set the latter to dHenction

to spin-spin interactions, which contribute only to the line- ' ;

: . . which causes a small problem: If the two levels are not ex-
W|dth_s.(|.e., to thg transverse relaxatlon_ r}aa_nd not to the actly in resonance, the tunneling term prevents establishing
transition probabilities(i.e., to the longitudinal relaxation

rate. In this typical for the magnetic resonance situation thethe equilirium Boltzmann  distributiori3.16. The corre-
term Ry — R in the first equation of Eqsi4.7) can be sponding deviations from the equilibrium are, however,

lected h lativelv short le of the t small and they can be neglected, especially as we ignore all
nNeglected on the relatively snort scale ot € transverse ey q oftects of the level renormalization due to the transverse

laxation time. In our model the dipole—dipolt_a interactionsﬁeld_ More important is that the tunneling term in Ed.12

could play such a role, but for MpAc the main effect of allows the establishing of the equilibrium between the two

such a type comes from nuclear sp(see Sec. VI . wells by crossing the barrier, and this process is of resonant
The possibility of the overdamping of the coherent SPINcharacter. One can speculate how the form of this term mani-

oscnlatlons'was pomted out by Gargwho con5|dgred reSO- fasts itself in the escape rafeand what will be the shape of
nant wnneling with the help of a phenomenological dampeqy o~ responding resonances. These questions will be an-
Schralinger equation in the matrix representation in the un-

perturbed basis. Although the qualitative conclusions Ofswered in the next section.

Garg are the same as the present ones, there are some dis-

crepancies between the two approaches in treating the relax-¥- ESCAPE RATE IN THE THERMALLY ACTIVATED
ation. In particular, the eigenvalues for the two-level prob- REGIME

lem satisfy in Garg’s approach a quadratic equation instead As was said at the end of the previous section, in the
of the cubic or quartic ones in our method. Garg’s solutionjgw-temperature rangé<U the rate of thermal activation to
for the splitted energy levels, , is explicitly given bye,,  the top of the barrier is much lower than that of the relax-
=(1/2)E;+E>s=(E1—E,)“+Q7], where E; ation between the neighboring levels. In this situation quasi-
=g;—il'; are the damped “unperturbed” energy levels. equilibrium is promptly established in each of the wells, and
Here the well-known deficiency of the damped Sclinger  the subsequent relaxation changes only the collective vari-
equation can be seen: The linewidths of the two levels cancelbles — the numbers of particles in the wel, . On this
each other under the square root which is responsible for thetage the problem can be solved analytically, and the solu-
tunneling. In the symmetritunbiased case this cancellation tion shows that deviations from quasiequilibrium are local-
is complete, and the tunneling resonance cannot be oveized to the narrow region near the top of the barrier. For the
damped, in contrast to the results of the density matrix forthermal activation of particles described by the Fokker-Plank
malism where the linewidths are addesgte Eq(4.10]. This  equation, this problem was solved in the pioneering work of
problem was avoided by Garg by considering the resonandéramers>? The same method was applied later to classical
between the zero-width ground-state level in one well withmagnetic particles by Browt. For the spin system with a
an excited one in the other well in the low-temperature bi-discrete spectrum the generalization was given in Ref. 37.
ased case, which allowed him to obtain plausible results. IfAnother method applicable in the whole temperature range,
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for small deviations from equilibrium, was suggested inwheres, _ is the effective barrier conductance to be deter-
Refs. 54 and 55 for classical magnetic particles and in Refmined.

42 for discrete spin systems. . o The numbers of particles in the welldl. , calculated

In our low-temperature case, the time derivatives in Eqaccording to Eq(5.1) are given by
(4.12 can be neglected for all values of except for those
near the bottom of the wells, practically except for =+ S. N.=N%u., N9=z./z, (5.6)
This is because the thermal activation process is exponen- _ ) ) . _
tially slow and, in addition, the level populations away from WhereéZ=2.+Z_ is the spin partition function and.. are
the bottoms are exponentially small. Now let us represknt the partition functions in each of the wells. For the latter it is

in Eq. (4.12 as convenient to introduce the reduced variables
2
N, =N©u_, (5.1) _SH ~_SD _ & _H:
moomem =5 =5 h=5=555 67

whereNfT?) is the equilibrium population of the levei given ] ] o
by Eq. (3.16 andu,, describes deviations from equilibrium. which are equivalent to those used for the description of

In terms ofu, the kinetic equatioi4.12) can be with the use classical single-domain magnetic partictds? Then in the
of Eq. (4.9) rewritten as case of not too strong bias,<1, at low temperatures the
partition functions have the forms
ozjmm“+jmm+1+jmm—lv .
;- ev*é __ 2coslge” -
Jmn=mn(Un—Un), (5.2 =T ] _ e 2alS’ T 1_g2aiS (5.8

wherej,, has the meaning of the particle’s current from theCombining now Eqs(5.4), (5.5), and(5.6) one comes to the
nth to themth level,u,, plays the role of a potential, and the . equations

conductances,,, are given by

2 ©), (O o~ [Nz N.
<_Qmm’ | Nm'+Nm’ N.i=o0,- NOEENOE (5.9
Omm = 2 wz +F2 2 y NJ—r Nt
m m For the average spin polarization
72 0
Omm+1= I m,m+le+l,mN£n)1 (5.3

m,=(S,)=S(N, —N_), (5.10
where for the tunneling process we have dropped the small,, |atter results in

terms violating the equilibrium Boltzmann distribution and

symmetrized the rest. One can check thatm+1=0m+1m . >
due to the symmetry ofl , n+1 and the detailed balance m,= —T'(m,—m{”)), r:ﬁ,
condition Wm+l,mN§T]O):Wm,m+lNl(’T?3—1‘ In the high-barrier NN
limit T<U the quantitiesry, 4 are determined mainly by \where, according to Egs.(5.6) and (5.8, NON©
the Boltzmann factors and they become very small near the. (4 cosRg) 2.

top of the barrier. On the contrary, for not too low tempera-
tures the tunneling conductances,,y are extremely small
near the bottom and increase by a giant fadee Eq.
(2.11)] with each step to the top of the barrier. As a result,

(5.11

Finding the effective barrier conductanee, _ deter-
mined by Eq.(5.5) is the easiest task in the case without a
transverse field where,,y =0. Here the elementary resis-

omny iS essential only near the top of the barrier, where it aNCeSTmmy 1 of Eq. (5.3) add with the result

competes witho, 41 and shunts the equivalent resistor cir- s-1

cuit. ot=> ot (5.12)
In a broad range o not close to either the top or the TomEts MM

t_)ottom the particle’s currenfs, m—1 in both wells are prac- For the thermoactivation raé this yields
tically constant and equal to each other; let us denote them

imm-1=]J+—, the current from the left{) to the right(+)
well. Then one can write

-1

S-1
4 cosﬁg[ explen/T) (513

" Z(¢a) 12

m+1mVVm+lm

m=-S

Ne=leoy No==lee 64 One can see that the main contribution to this expression
for the numbers of particles in both wells. The potentiglis ~ comes from the top region, so thBt<exg —a(1—h,)?] and
also constant in the main part of the wells and changes neae exact limits of summation in Eqé.12 and Eq.(5.13
the top of the barrier where, .+, are especially small, in are irrelevant. Formulés.13 is the microscopic generaliza-
accordance with the concept of quasiequilibrium describedion of the Brown’s resuff on systems with a discrete spec-

above. Denoting the values afin the wells asu, andu_, trum. ForS=1 a similar result was obtained in early work
one can relate the differencg —u_ to the particle’s current by OrbacH!® and for a general spin generalizations were
j +— by the linear relation given in Refs. 37 and 42 in the unbiased and biased cases,

_ correspondingly. In Ref. 42 different limiting forms of the
je_=0o,_(Uu_—uy), (5.5 prefactor in Eq.(5.13 were analyzed. The most striking of
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its features is its dependence on the bias fidldwith a _ 1

strong decrease in the region where two levels at the top of oy = — -, (5.17

the barrier come into resonance. The latter is due to the fre- ‘T—vmb+‘7mb,mg+‘7mg,+

quency dependend@.15 of the one-phonon transition rate

between these level$V.. 1m- whereo_1 is the conductance between the bottom of the

In the case of a nonzero transverse field the barrier con- My

left well and the pointm,,, etc. This expression can be re-
ductancer _ can be calculated by a well-known recurrence, . ;
. . ~written with the use of Eq(5.3), and for the escape ralé
procedure starting from the top of the barrier. IntroducmgOne obtains
omm as the total conductance due to the part of the barrier

between the “points”m andm’ (see Fig. 1 one obtains )
0)

, r N
my, ,m; my ,m N my
~ 1 M=o — > ~——, (5.18
Omm =Omm T =3 PP , 2NY/NT wmb’m,-l-l—‘mb,m,-l-Ame "
Tmtim =17 Omm+1T Oy -1 b b

(5.19

with a proper initial condition at the unperturbed top of theWhereA:Fmb,mgNgg(‘T—,lme“‘Tmél,+)- From Egs(5.3 and
barrier, mpa~H,/(2D). If the spin is large and the trans- (4.10 it follows that A~1, if the resonant transitions
verse fieldH, is not too small, the level pam,,m] corre-  through the lower-lying pairs of levels are neglected. Thus,
sponding to the actual renormalized top of the barrier is situcontrary to what could be naively expected, the linewidth of
ated many “steps” belovm,,.x [see Eq.(2.9)]. In this case the resonance in the escape rhtés insensitive to the level
the starting poinim,,,, becomes unimportant, and the recur- linewidth Fm m which is smaller than the tunneling fre-
rence algorithm(5.14) generates a continued fraction. In the quencme m for conducting resonances. This frequency

Arrhenius regimeT<U, the quantity o rapidly con- grows rapidly \with the transverse field. When it reaches the
verges too,_ down from the renormalized barrier top |evel spacing|wmy1m|, the resonance broadens away. But
m,,my. The role of different terms in Eq5.14 can be  there are tunneling resonances between lower pairs of levels
made clear if one considers the ratio for which the same formulés.18 can be written. The width

of these peakg), m, is much smaller, but their height at

szm’ lwmmy|~|@ | resonance-TI"p, m,N increases with the level depth as the
o PR mdmb Arrhenius factorNﬁT?)~exp(—sm/T) and is maximal for the
~ 2 ' (5.15 deepestinblockedpair of resonant levels. In fact, in the low-
Im+1m L <T damping case the line shapelofdescribed by the continued
rz .’ | @ma | <L o fraction (5.14) consists of many peaks of stepwise decreasing
mm width ~Q, » mounting on top of each other and forming a
corresponding to the nonresonant and resonant situations. d&lf-similar structure.
this ratio is of order unity for some pam,,m;, one can An illustration of the behavior of the escape raten the

consider all the tunneling conductances,,, above this Arrhenius regime based on numerical calculations of the bar-

level as infinite and below this level as zésee Eq(2.11].  rier conductance . _ will be given in Sec. VII. In the next

In the resonant situation, one also can speak about condugection we briefly discuss the range of lower temperatures
ing and blocked resonances. Since at the lewgh1,m;,  where a “more quantum” behavior df is to be expected.
—1 the circuit is completely shunted, one concludes that

renormalized by the transverse field the top of the barrier is

localized atm=m,, with an uncertainty of one level. Inthe  VI. TUNNELING VERSUS THERMAL ACTIVATION
nonresonant situation for<|m|<S this leads to the previ-
ously obtainedlassicalresult of Eq.(2.9). At resonance, for
H,=0, the corresponding value aofi, is determined by the

In the Arrhenius regime above, the prodéf, N in
the tunneling conductance,,,y of Eq. (5.3 increases un-
limitedly up the barrier andr,,;, shunts the effective circuit

equation at some levein, determining the renormalized position of
1 the top of the barrier. This mechanism is of resonance char-
e m, 2|y acter, but the temperature dependence of the escape rate re-
28%h,=mj m (5.16  mains classical. With lowering temperature the question
b

arises of which group of levels the tunneling conductance
Since the level linewidths are smally, <D, this value of ~ Ommy has a maximum. The analysis of the functibfm)

my, is greater than that off resonance, which thus leads to the Qmm,exp(—sm/T) shows that there are two more regimes
resonant dips in the effective barrier height. Note, howeverin addition to the Arrhenius one — ground-state tunneling
that the magnitude of these dips is strongly reduced by thand thermally assisted tunneling. The temperature of the
exponent 1/(2my|) in Eq. (5.16), so that they become small crossover between these two regim@&gy, is determined

in systems of large spin. The shape of resonances in thigom the conditionf(—S)=f(—S+1); i.e., the rate of tun-
escape rat¢’ of Eq. (5.11) can be visualized, if one consid- neling from the first and other excited states falls below the
ers resonant transitions between only one pair of levelground-state tunneling rate. The valueTgf, calculated with

m, ,my, . Neglecting transitions above this level, one writes the help of Eq(2.11) has the form
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. SD LM 61 AT L
0= oo n2y X 25D" : T
In(e“S/hy) 0.4 Op\T‘,
In theories of tunneling using continuous level models the $ =100, 10

guantity Ty does not appear. For models with discrete levels 1sp=7 &

one should keep in mind that the linewidth of the ground Do S S

states is much smaller than that of excited ones, and this 96 100 10 i i

should make the analysis more subtle, but we will not further P ]

pursue this topic here.
For T=Ty tunneling goes through the group of levels ;4] h =o,1/

between the bottom and the top for whitfm) has a maxi-

mum; if the position of this group does not coincide with the

top of the barrierm=m,, this regime is called thermally Bottom ;

assisted tunneling. There are different scenarios for the tem-  -1.0 +——T=—==

perature dependence of this group of levels;y myar. It 05 06

can shift continuously from the bottom to the top with a

crossover to the Arrhenius regime at some temperalyre

The other type of behavior is realized if the functibfm) FIG. 3. Temperature dependence of the group of levels; ,

has two maxima, say, at the top and near the bottom of theaking the dominant contribution into the thermally assisted tun-

barrier. In this case there are two competing channels ofieling, determined from the maximum of(m):Qrznm,exp

relaxation which go from one into the other at the crossove(—g/T) in the unbiased case.

temperaturdl 5. Both of these scenarios were studied for the

models with continuous spectra, and the analogy with thér_ea?ing_this prob!em focontinuougspectra, incluﬁ?ing the
second- and first-order phase transitions was pointed®out. dissipative case, is based on the instanton techritftigor

For the uniaxial spin model both types of thermally as.0Ur spin model, however, the spectrum cannot be made con-

sisted tunneling can be realized, and the situation can b’([énuous by a reasonable variation of some physical param-
- ; ter; the tunneling frequency changes abruptly from one
controlled by the transverse field. In particular, for the f g Ireq Y g by

d-ord " h b level to another, and this situation persists in the liBt o
second-order transition_the crossover temperaflyeob- (see the end of Sec.)lIThis situation seems to be pertinent
tained with the help of Eq2.11) is given by

not only to spin systems, which can be, in fact, mapped onto
e? h, the particles??® but for double-well models in general.
———). (6.2 Resonant tunneling between the discrete levels in a low-
8 2 damped superconducting quantum interference device
For low transverse field3?) becomes too small, and the (SQUID) was observed recently in Ref. 59. The numerically
first-order transition to the regime of thermally assisted tuncalculated  tunneling level splitings for the SQUID
neling occurs when the temperature is lowered beTgfeis Hamiltoniart® also change abruptly from one level pair to
reached. Details of the analysis will be presented elsewher@nOther. o
here we illustrate the temperature dependenaa-efnar in The advantage of our more general approach to finding

Fig. 3. It can be seen that the higher valueshpffavor the the barrier conductance, _ based on the recurrence rela-
second-order transition: The curme;,r(T) goes “continu- tions (5.14) in comparison to the simplified formul®.3) is

ously” through each value af and merges aT, with the its ability to handle the case of very small coupling to the
horizontal linem=m, characterizing the Arrhenius regime. bath. Inhthls c_ars]g the rlelaxail:on ratefs éor tr51e3e>k;change be-
On the contrary, in lower fields, large jumps ofmpat at Ty tween t ?I neig ﬁ”ng heve m,mlfrl 0 g (5.3 econf1fe
can be seen. For smaller spins the low-temperature tail of thgey small, as well as the tunne Ing con uctanoggy o
curve mrar(T) becomes shorter. The value B is in all resonance, and so does the rgsultmg escapeF_ratne sets

the system on resonance to increase tunneling, then the sys-

cases well described by formu(6.1). d iequilibri . h of th I
In the thermally assisted tunneling regime, the ratio of thd€™M d0€s not come to quasiequilibrium in each of the wells
and formula(6.3) breaks down.

tunneling and intrawell conductances, E§.19, is a very
Slmant”um?er in the relevatmlret%'d"“w MraT - Ihuz Ene VII. NUMERICAL RESULTS FOR THE ESCAPE RATE;
3_owbuqne mfg pro_cless _conhros IIedescape féaear_w fe ROLE OF NUCLEAR SPINS

istribution of particles in the wells does not deviate from AND THE AXIS MISALIGNMENT
quasiequilibrium. In this casE is simply given by

e
T=S Dtﬁ”g( 1

_ - In this section we present the results of numerical simu-
o, - Ui lations for the escape raleobtained with the methods of the
I'= NONO’ U+—:m:z_s Tmm'» (6.3 previous section in the Arrhenius regime. The region below
A the crossover temperatufg is not further considered in this
i.e., it is the tunneling probability weighed with the Boltz- paper. For systems of moderate spin the range of thermally
mann factofsee Eq(5.3)]. Expressions similar to Eq6.3)  assisted tunneling is rather narrow, and at temperatlires
were taken as a starting point in many investigations of thesT,q in the unbiased case tunneling should go between the
escape rate of particles from a metastable well at nonzerground states. Since the linewidths of the ground-state levels
temperatureqsee, e.g., Ref. 57 An efficient method of are exponentially small at such temperatures, even a small
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? Mn12: S=10, D=0.6 K
[=5x105571, T=2 K

0-h=0

order,Q_lyloch/D. As a result, a very narrow peak in
emerges ail,=0 for h,=10"4. This peak broadens with the
increase ofH,, and ath,=5x10"2 a new narrow peak
corresponding to the resonanee2,2 with Q_Z,ZMH§/D3 is
seen. A similar picture holds fdt=2 and other even reso-
nances.

For the odd resonances, ks 1, the escape rate in zero
transverse field becomes small due to the frequency depen-

—10-4
;_ng—a dence of the one-phonon processes disc_ussed (fibove. The
* same result was obtained for the tunneling assisted one-
E I 3 - hy=5x107 phonon processes between the deep levels in the {fvelfs.
10_913 h=H /(2SD) ' 4-h=10" Fig. 4 we have included a small frequency-independent con-
1 , : : : , : tribution from Raman scattering processes to obtain a non-
0.0 0.5 1.0 1.5 H/D 2.0 zero value of the escape réfeThis feature is, however,

completely suppressed already in very small transverse fields

because of the opening of a new transition channel: the tun-
FIG. 4. Bias-field dependence of the resonant tunneling escap%e“ng petween the topmost resonant pa[tO that appears
. : in the first order ) _; o><H,. The latter is, in fact, a kind of
rate of the uniaxial spin model. . ’ X )

a free precession arourd, rather than tunneling. The rate
detuning is sufficient to suppress the resonance. In this cas# this precession competes with the small relaxation rate
we face a strongly nonresonant situation, and our theoretic@ikee the second line of E@¢5.15]; that is, the purely dy-
methods of Sec. IV should be modified. Even in the Arrhennamical transition between the levels1,0 competes with
ius regime, there is a problem with nonresonant processes the dissipative one. As a result, the dip ihyields to the

the escape rate calculated with the help of £014 shows  massive peak already for,=10"* for the damping param-
discontinuities at values of the bias field, at which we SW'tCheters appropriate for MpAc.

from one resonant partner level to another in the calculation ., higher values of the transverse fiéig, the behavior

pattners in the other well shoud be considered. bt a rigor?! (16 even and odd resonant peaks is the sameh A
ous treatment of this problem would lead to serious compli—gir\c/)v\rqng'irt_hef Ic?ln?'t'og?”i‘m’(hﬁ):zmng’ of Er,?l(nsvl? forfath
cations. For this reason we simply extend the applicability ofd!VEN pair ot levelsm, S salisfied at a certain vaiue of the

the kinetic equatiori4.12 by considering, for each leveh, transverse fieldy, . At _that value_them,m resonance be-
the tunneling resonances with the two partnersand m’ comes unblocked. This results in a new narrow peak, of

— 1 satisfyinge y <em<en 1. In this symmetric approach Width aboutQ (), which appears on the top of the
the switching between partners occurs in resonance and rip1.m’ —1 resonant peatsee Fig. 4 This situation is quite
discontinuity inI" appears. The calculations in this case cantniversal in the sense that tie+1,m’—1 resonant peak
be performed with the help of the modification of the recur-can itself be a narrow peak on top of thre- 2,m’ —2 reso-
rence relation(5.14). The resonance of one level with all nant peak. In general, each resonance consists of a few peaks
other partners was considered by Gargsing the damped mounting on top of each other. The width of two consequent
Schralinger equation. peaks within one resonance differs by a factor abett
Treating the relaxation terms we fepkﬂﬁn,mu by 55 in accordance with E@2.11). The magnification of the
lmm+1 [S€€ Eq.(3.8)], which amounts to dropping the op- H, !nterval ground the resonant valudls, shows the self-
eratorS, in Eq. (3.4. Then we fit the strength of the spin- Similar multitower structure of the resonance. In that struc-
phonon coupling to the measured for MAC value of the ture the total number of peaks depends on the strength of the
prefactor To=5x10° s~ ! in the escape ratd' =T exp dissipation, while their height is determined by temperature.
(—Ug/T). Since the experimental temperatures about sevI€ lower the damping, the greater is the number of the

eral kelvin exceed the level spacing near the top of the ba€aks. The lower the temperature, the greater is the differ-
fier, oy 1m~2Dm~1 K, the prefactor depends linearly on €Nce in the height of the peaks mounting on top of each

temperature; see the first line of H8.15. This dependence Other. _
is, however, difficult to see in the limited temperature inter- 1 ne dependences &f on the transverse fielld, for the
val. resonant and slightly off-resonance values of the bias field
The results for the escape rate as a function of the biad'® Shown in Fig. 5. The steps on the resonarcalepen-
field H, are represented on Fig. 4 for different values of thedeénces ofl" correspond to the values éf, at which the
transverse field,. One can see the superpositions of broadvalue of m, determined from Eq(5.16 takes an integer
and narrow peaks at the resonant values of the bias fielyalué(or a half-integer value for systems of half-integer spin
H,,=Dk, which correspond to the tunneling via the shal- S). For these values dfl, a resonant shuntlng_of the barrier
lower and deeper resonant levels, respectively. The width it the next deeper level occurs. The flat regions correspond
peaks alternates as a function of the resonance nutaber 0 the situation when one pair of resonant levels is already
since the tunneling transitions between different pairs of lev€ompletely shunted and the followirithe lowe) one is yet
els appear in even or odd orders of the perturbation theory ifOMpletely unshunted. The step values-gfare sensitive to
H,/D; see Sec. II. In particular, in the unbiased cased, ~ the sum of the level linewidthEr, . given by Eq.(4.10,

the tunneling between the level pairl,1 appears in second and thus such experiments are conceivable as a kind of spec-
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FIG. 5. Transverse-field dependence of the resonant tunneling FIG. 7. Longitudinal field dependence of the escape rate of a
escape rate of the uniaxial spin model. large-spin uniaxial model in the fixed transverse field. Curve 1 was
obtained from the pure thermoactivation curkig=0 using Eq.
troscopy measuring the relaxation characteristicsepfarate  (7.1) for the barrier lowering in the transverse figig=0.1.
levels. The 8 plot of I'(H, ,H,) summarizing the features of
the resonant tunneling process discussed above is presentedrhe resonant tunneling curves obtained above do not fully
in Fig. 6. explain the experimental observatiéhs’~2’showing that all
Apart from resonant tunneling, the overall shape ofpeaks have approximately the same form. The latter can be
I'(Hy,H,) follows approximately the Arrhenius law with the the consequence of the averaging effect due to the misalign-
classical barrier height)(H,,H,). This can be seen espe- ment of the particle’s axes in not perfectly oriented polycrys-
cially clear for systems with large spin, frequency- talline samples. A similar effect can be caused in M by
independent relaxation rates and low temperatures. The lagfclear spins whose fluctuating transverse components can,
condition is needed to reduce the relative role of the f|E|Qn addition, induce tunne"ng even in the absence of an ex-
dependence of the prefactbp=1"o(H,) in the classical ex- ternally applied fieltdH,. The corresponding adjustments of
pression forl’, which is not yet well establishe@ee Refs.  gur method will be made below.
60 and 6]. The comparison of our calculation with the clas-  |n a Mn;,Ac molecule each of 12 Mn atoms interacts
sical result accounting only for the dependence with its own nuclear spin;, 1 =5/2, via the hyperfingHF)

(1—h2)12 interaction. For the total cluster spin this interaction can be
U(H,,H,)=DS%(1—h,)? 1—2h, z ~ (7.1 approximately written as
(1_ hz)
for h,<<1 is presented in Fig. 7. The rather good accordance Hpe= — AetrShots |t0t52 I 7.2
i

between the classical and quantum results illustrates the con-

jectures of Sec. Il in a more general biased case.
In fact, the hyperfine interactions are somewhat different for

different Mn atoms, and their extensive discussion can be
found in Ref. 40. If all the nuclear spins are aligned in the
same direction, the energy of the HF interactiBng .
=121SA4=0.6 K is comparable to the level spacing near
the top of the barrierlwy1m|~2Dm~1 K, and is much
greater than the dipole-dipole energy=0.06 K. The effec-
tive HF field produced by the nuclei on the cluster spin is in
this case abouH g ma™=Enr, max/ (QusS)=0.05 T. If this
HF field is perpendicular to the easy axig, the
corresponding  dimensionless  transverse field, ¢
=gueHuE mad (2SD)=3.7x10 2 should result in strong
resonantas well as nonresonantunneling; see Fig. 4. On
the other hand, the role of ttlecomponent of the HF field in
the resonant tunneling is determined by the dimensionless
parametegugH g max/ D=0.075. This shows that the nar-
row resonance lines in Fig. 4 should be averaged away by
FIG. 6. Dependence of the escape rate of the uniaxial spithe fluctuatingz component of the hyperfine field; i.e., the
model on the field components, andH, (parameters are appro- hyperfine interaction suppresses the coherence. This second
priate for Mn;,Ac). effect was discussed by several authGrdiere we will
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take into account both effects of nuclear spins with the help 10 L,s"

of simplified qualitative arguments. E R ——H=0

The subtlety of the hyperfine interaction is that it con- o' + Fluetuations:
serves the total projectio8,+il;,, and, strictly speaking, 1024 /’f\\ :V:Z:i::b) bt
the coupled equations of motion for the tunneling cluster ] K A e —— Hupguo+he=3 1
spin and rotating nuclear spins should be solved. In the ok * TR
Arrhenius regime, however, tunneling occurs near the top of 1973 [aee=™®

the barrier where it is rather fast — it ranges frddy,,, ]
~|wm+1m| Off resonance td) v~y at resonance. This 105
is much faster than the nuclear relaxation rate which is due to ]
the fluctuating magnetic fields and is determined by the small
nuclear magnetic moment. Further, tunneling of the cluster 10'6';
spin near the top of the barrier leads to a relatively small ]
change of itsz projection: AS,~2m,<2S. This is not a 107 - N . : : ,
large part of the whole integral of motid®,+=;1;,. Indeed, 0.0 0.5 1.0 1.5 H/D 2.0

for the randomly oriented nuclear spins the second term of

this sum is on average of ordefLl2l =8.7, and thus tunnel- _ )

ing of the cluster spin can be compensated by the corre- FIG. 8. Resonant tunneling escape rate in Mt due to
sponding rotation of the nuclear spir@n the contrary, for "uclear spins and the crystallite misalignments.

tunneling from the ground state @<T, the z projection

Change |5ASZ:28: 20, and this process cannot go via the static fluctuating Components of the transverse field, and
interaction with the nuclear spins — it is blocked by thetheir role becomes progressively more important with the
conservation law. Thus, in the Arrhenius regime one can increase of the bias field,. One can see that when all these
qualitatively consider nuclear spins as frozen — they do noeffects are taken into account, all the resonant tunneling
change their state as a result of the tunneling of the clustepeaks become approximately of the same form, as observed
spin. The distribution function of the HF field on the cluster In experiments.
spin can be easily found. As the energy of the interaction of

one nuclear spin with the cluster spitSA=0.05 K is

much smaller than temperature, one can use the infinite-

temperature distribution function for individual nuclear  we have presented the theory of thermally activated reso-
spins. Then, for a large number of nuclear spMs;12>1,  nant spin tunneling. The bulk of the theory applies to any
the quantum-statistical averages of the total nuclear kgin  molecular magnet, while particular numerical illustrations
in Eq. (7.2 are given by the Gaussian distribution function were made for Mp,Ac. Quantization of spin levels, which is
) the key to explaining experimental results, has dictated our
F(l) = 1 exy{ _ ﬁ) 73 choice of theoretical_ apparatus. Rather_ than employing in-
ot (27a))%? 20¢)’ ' stanton methods, suitable for models with continuous spec-

) ) tra, we have used the density matrix description of the spin
where the dispersiom; =(N/3)I(l +1) can be checked cal- jnteracting with thermal bath.

culating the averagél, ,) directly and from Eq(7.3) and In continuous models three regimes for the escapeltate

comparing the results. Now, all the previously obtained exare usually studied. At high temperatures quantum-

pressions for the escape rdtgas well as such quantities as mechanical effects are not important, and the escape over the

the time dependence of magnetization and dynamic susceparrier is due to pure thermal activation described by the

tibility, should be averaged with the distribution functibn  Arrhenius law. In the limit of zero temperature only tunnel-

In the absence of an externally applied field, the averag- ing out of the ground state is important. There is also an

ing of each quantityA(H, ,H,) is done explicitly as intermediate regime which combines thermal activation to
excited levels with tunneling across the barrier, which is

VIII. DISCUSSION

ACH. H.)— °°d e * q e’ called thermally assisted tunneling. In that regime the posi-
(Hy,Hp)= e B 17 tion of the narrow group of levels which dominate the escape
rate depends on temperature, moving continuously from the

X A(XHye, H,+ ZHyp), ground state af =0 to the top of the barrier at the tempera-
ture called the crossover temperature. This situation de-
(20))Y2 NIA scribes a conventional, smooth, second-order transition from

Hur=Hur, mac—g > Hwr ma= g (7.4 quantum tunneling to thermal activatiohln principle that

e transition can also be first order, which would correspond to
The results of this averaging for the escape fatare pre- the sharp crossover from quantum tunneling to thermal
sented in Fig. 8. The role of nuclear spins in inducing theArrhenius-type behaviot? We have demonstrated that this is
resonant tunneling and suppressing the narrow resonanexactly what happens for a spin system in a low transverse
lines is clearly seen. In addition, we have taken into accountield. Correspondingly, the experimental study of the escape
small fluctuations of the directions of the anisotropy axes ofate should find the evolution from sharp to smooth cross-
Mn ;,Ac molecules in polycrystalline samples with the dis- over between thermally assisted tunneling and the Arrhenius

persion of onlyA 6=3°. These misalignments also produce aregime on the transverse field.
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In systems of moderate spin, such as Mic, thermally  The number of peaks in each resonance increases with de-
assisted tunneling occurs in a rather narrow temperaturereasing dissipation.
range. In experiments the Arrhenius law that occurs in a Depending on the numbek of the resonancésee Eg.
wider temperature range has been observed. Despite thi2.2)], the leading contribution to the rate appears in even or
purely classical temperature dependence of the relaxation iodd orders of the perturbation theory on transverse figld
the Arrhenius regime, the field dependencé&’athows quan-  This results in the alternation of the shape of resonances on
tum effects due to the discrete nature of spin ignored in conH,. Another effect predicted by the theory is the stepwise
tinuous models. Contrary to these models, which start with @ependence of the rate on the transverse field when the lon-
given barrier, a well-defined barrier does not exist for a megitudinal field is tuned to the resonance.
soscopic spin; its effective value depends on the biasfigld The origin of the terms in the Hamiltonian responsible for
in a nonmonotonic manner. The observed minima of the eftunneling is different for different molecular magnets. The
fective barrier are due to the crossing of the spin levelsabsence of any selection rules for resonances in o
which results in resonant tunneling between the wells. Thisinambiguously points to transverse fields causing the transi-
is different from a classical spin system where the barrietions. These fields originate from the hyperfine and, to a
monotonically decreases with increasiiy. This regime smaller degree, from the dipole-dipole interactions. I Fe
can be calledhermally activated tunnelings different from the hyperfine interactions are negligible, and the transitions
the regime of thermally assisted tunneling. The differenceare presumably caused by the transverse anisotropy.
between the two regimes is that in the first regime tunneling Our theory for Mn,Ac can pretend to the quantitative
always occurs at the top of the barrier, while in the secondlescription of the magnetic relaxation in this system, as it
regime it occurs from excited levels between the bottom andakes into account all major contributions to the effect. How-
the top of the barrier. ever, observation of more subtle effects, such as the multi-
The theory predicts that each resonance in the escape ratmwver structure of resonances, the alternating shape, stepwise
I' has a multitower structure with peaks of decreasing widttdependence on the transverse field, etc., is less likely in
mounting on top of each other. This effect is due to resonaniin,,Ac. This is because of the smearing of these effects by
spin tunneling between different matching levels. All peaksstrong fluctuations of the hyperfine field. ésee, e.g., Ref.
are centered at the same field, if the corresponding pair 662) seems to be a better candidate for observing these
levels match at the same value of the bias field. Note that thisffects.
assumpion relies on the simple form of the Hamiltonian used
in our calculations. Additional terms of different symmetry
would violate this assumption. If these terms are small, as
they are in Mn,Ac, the resonances d#, will not be exactly We would like to acknowledge support from the U.S. Na-
equidistant and the centers of peaks towering in each resdonal Science Foundation through Grant No. DMR-
nance must be slightly displaced with respect to each otheR024250.
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