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Thermally activated resonant magnetization tunneling in molecular magnets: Mn12Ac and others

D. A. Garanin* and E. M. Chudnovsky†

Department of Physics and Astronomy, City University of New York, Lehman College,
Bedford Park Boulevard West, Bronx, New York 10468-1589

~Received 27 May 1997!

The dynamical theory of thermally activated resonant magnetization tunneling in uniaxially anisotropic
magnetic molecules such as Mn12Ac (S510) is developed. The observed slow dynamics of the system is
described by master equations for the populations of spin levels. The latter are obtained by the adiabatic
elimination of fast degrees of freedom from the density matrix equation with the help of the perturbation theory
developed earlier for tunneling level splitting@D. A. Garanin, J. Phys. A24, L61 ~1991!#. There exists a
temperature range~thermally activated tunneling! where the escape rate follows the Arrhenius law, but has a
nonmonotonic dependence on the bias field due to tunneling at the top of the barrier. At lower temperatures this
regime crosses over to the non-Arrhenius law~thermally assisted tunneling!. The transition between the two
regimes can be first or second order, depending on the transverse field, which can be tested in experiments. In
both regimes the resonant maxima of the rate occur when spin levels in the two potential wells match at certain
field values. In the thermally activated regime at low dissipation each resonance has a multitower self-similar
structure with progressively narrowing peaks mounting on top of each other.@S0163-1829~97!00141-0#
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I. INTRODUCTION

In recent years there has been great experimental and
oretical effort to observe and interpret quantum tunneling
magnetization in monodomain particles. The interest in t
problem arises from the fact that the magnetizationM of a
particle containing a few thousand atoms is a macrosco
degree of freedom. Thus tunneling of the particle’s magn
zation between different equilibrium orientations at low te
peratures requires strong coherence between atomic s
and may be very sensitive to the interaction with the en
ronment. A similar problem has been extensively studied
superconductors in the context of macroscopic quantum
neling, where good agreement has been achieved betw
theory1 and experiment.2 Observation of magnetization tun
neling is complicated by the difficulty in preparing identic
magnetic particles. Experiments have been performed3 on
particles distributed over sizes and shapes. These ex
ments revealed temperature-independent magnetic relax
which was attributed to tunneling. When an effort was ma
to narrow the distribution, resonance was observed4,5 in the
absorption of the ac field, similar to the tunneling resona
in the ammonia molecule.

Difficulties in manufacturing identical magnetic particle
for tunneling experiments have led to new techniques
measuring individual particles6,7 and to the idea of searchin
for magnetization tunneling in magnetic molecules of lar
spin. The system that caught the most recent attention is
crystal Mn12 acetate~Mn 12Ac! having the chemical formula
@Mn 12O12~CH3COO! 16~H 2O! 4#•2CH3COOH•4H2O. This
compound has been synthesized by Lis,8 but its physical
properties had not received much attention until Ses
et al.9 noticed magnetic bistability of this system. In th
Mn12Ac molecule the 12 Mn ions are strongly bound fer
magnetically via the superexchange through oxygen brid
560163-1829/97/56~17!/11102~17!/$10.00
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These molecules behave effectively as magnetic cluster
spin S510,9 as has been confirmed by the Curie-law te
perature dependence of the susceptibilityx. As follows from
the very low value of the Curie constant,QC'20.05 K,10

the interaction between the Mn12Ac molecules is very weak
presumably of the dipole-dipole origin. Mn12Ac is character-
ized by a very strong uniaxial anisotropyHA52DSz

2 ,
where D.0.72 K from high-field electron paramagnet
resonance~EPR!,11 D.0.75 K from single-crystal magnetic
susceptibility12 measurements, andD.0.77 K from neutron
scattering experiments.13 This leads to a barrier of aboutU
5DS2.75 K between the states6S. Note, however, that
experiments on resonant spin tunneling14 ~see below! suggest
a value ofD close to 0.6 K and correspondingly a barri
height of 60 K.

The advantage of Mn12Ac and other molecular magnets
that they are rather simple model systems, which facilita
their theoretical consideration and interpretation of expe
ments. Of course, it should be understood that a cluste
spin 10 cannot be treated macroscopically. The limit of m
roscopic quantum tunneling is the one where the quant
tion of spin levels is irrelevant. On the contrary, in th
Mn 12Ac cluster the distance between the ground state
the first excited level is 12–15 K. At low temperature qua
tization of levels must, therefore, dominate the properties
the system. In this sense Mn12Ac is closer to conventiona
quantum-mechanical systems where tunneling is of a re
nant character. Nevertheless, as we shall see, the high v
of spin leads to the macroscopic time scale for the dynam
of the magnetization, which has been tested in macrosc
experiments.

An important feature of Mn12Ac is that if no strong trans-
verse field is applied to the system, the interactions resp
sible for tunneling are small in comparison to the anis
11 102 © 1997 The American Physical Society
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56 11 103THERMALLY ACTIVATED RESONANT MAGNETIZATIO N . . .
ropy energyHA52DSz
2 which itself conserves theSz

component of the spin. As a result of this and of the la
spin of the system, tunneling between low-lying energy le
els should be extraordinary slow, which makes Mn12Ac an
excellent candidate for information storage at the molecu
level. Another possible application of the molecular magn
is that for quantum computing. For that application tunnel
between the low-lying states should be made more p
nounced, and the interaction with the environment destr
ing coherent oscillations of the spin between two we
should be kept small. This is hardly the case for Mn12Ac
where nuclear spins of manganese atoms strongly supp
the coherence.15 The example of Mn12Ac is, however, in-
structive since other systems with similar properties can
developed, which could be better candidates for quan
computation.

The first indications of magnetization tunneling
Mn12Ac were seen in the magnetization relaxation expe
ments of Paulsen and Park16 and the dynamic susceptibilit
measurements of Novak and Sessoli.10 The measured relax
ation rate of Mn12Ac followed the Arrhenius lawG
5G0exp(2Ueff /T) with the peaks at some values of the lo
gitudinal field Hz . These peaks were interpreted10 as reso-
nant thermally assisted tunneling between the levels nea
barrier top, which decreased the effective barrier heightUeff .
Subsequent dynamic hysteresis experiments14 have proved
that conjecture as they have shown many regularly spa
steps in the hysteresis loop at the values ofHz at which the
levels on both sides of the barrier come into resonance~see
also Refs. 17–20!. These steps indicate an increased rel
ation rate at the corresponding bias fieldsHz . Very recently
a similar observation was made on Mn12 phosphat21 which
was described as a magnetic cluster of spinS59.5.

The transverse fieldHx applied to a uniaxial magneti
system mixes the unperturbed energy levels and enha
tunneling. The search for an increased tunneling in the tra
verse field has been undertaken in recent hysteresis22 and
dynamic susceptibility23 measurements. The results sho
that the speeding up of the relaxation can be explai
mostly through the classical effect of the barrier lowering
a transverse field, whereas the resonant tunneling peak
maining after subtraction of this main effect are nearly ind
pendent ofHx . Actually both effects come from the sam
source: The classical height of the barrier can be determ
quantum mechanically from the condition that the tunnel
level splitting becomes comparable with the level spaci
which means strongnonresonanttunneling, i.e., the absenc
of a barrier at that level.24

A large number of experimental observations of magn
zation tunneling in molecular magnets has been accumul
to date and the major relevant physical processes have
identified. A theoretical framework for the dynamical d
scription of the combined process of the thermal activat
and tunneling in these materials is still lacking, however.
particular, the form and the width of the tunneling pea
measured in experiments has not yet been explained.
aim of this article is to supply an appropriate theory.

The idea of the work is to apply the density matrix fo
malism in the case when the tunneling is caused by a tr
verse fieldHx which is small enough and can be consider
as a perturbation. The applicability criterium of this meth
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is Hx!HA , whereHA[(2S21)D/(gmB) is the anisotropy
field. The latter in turn coincides with the critical value of th
transverse field at which in the classical case ofS@1 the
double-well structure of the spin energy disappears.
Mn12Ac, the anisotropy field is of order 10 T, so that th
condition Hx!HA allows for rather largeHx . In this rel-
evant range of the transverse field one can use the physi
transparent and technically convenient basis of the eig
functions of the anisotropy energyHA52DSz

2 . The slow
dynamics of the system driven by the thermal activation a
tunneling processes can be described with the help of
adiabatic elimination of the fast degrees of freedom in
density matrix. The latter is a dynamical generalization
the calculation of the tunneling level splittings in the hig
orders of the perturbation theory.25

The remaining part of the paper is organized as follow
In Sec. II the properties of anisolatedmagnetic cluster in a
transverse field are briefly reviewed and the perturbat
theory is compared with other approaches to the problem
Sec. III the density matrix equation~DME! for the uniaxial
magnetic system interacting with a phonon bath is form
lated and discussed. In Sec. IV the fast degrees of freedo
the DME are eliminated and a simplified system of equatio
describing the slow spin dynamics in terms of the diago
and antidiagonal matrix elements connecting resonant p
of levels in different wells is derived. It is shown that th
level broadening due to the interaction with the environm
suppresses coherent oscillations and, if strong enough, m
the motion of the spin between two degenerate levels o
damped. In this case, and also in the case of thermally a
vated quantum tunneling, when the relaxation rate is limi
by the exponentially slow process of climbing up the ene
barrier, the DME further simplifies to the system of kinet
balance equations for the level populationsNm only. The
latter describes the hopping of particles between adjaic
energy levels and through the barrier. In Sec. V the system
equations for the level populationsNm is solved analytically
in the Arrhenius regimeT!U'DS2. In Sec. VI the transi-
tion from the Arrhenius regime to pure quantum tunneling
lower temperatures is discussed. In Sec. VII the numer
results for the dependences of the escape rate on longitu
and transverse fields in the Arrhenius regime are presen
Here we also analyze the influence of the Mn nuclear sp
and a small scatter of the easy-axis directions in the orien
polycrystals on resonant magnetization tunneling. In S
VIII further developments of the theory and suggestions
experiments are discussed.

II. TUNNELING LEVEL SPLITTING AND CLASSICAL
BARRIER LOWERING

The spin Hamiltonian of an isolated Mn12Ac molecule in
magnetic fieldH can be written in the form

H52DSz
22HzSz2HxSx , ~2.1!

whereH stands forgmBH with g.1.9. Henceforth we will
usually drop the combinationgmB for better readability of
the formulas. The system is described by the 2S11 energy
levels which in the absence of the transverse fieldHx are
labeled by the spin projectionm on thez axis and given by
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11 104 56D. A. GARANIN AND E. M. CHUDNOVSKY
«m52Dm22Hzm ~see Fig. 1!. It can be easily checked tha
for the regularly spaced values of the longitudinal fieldHz
satisfying

Hz5Hzk5kD, k50,61,62, . . . , ~2.2!

the energy levels on both sides of the barrier are pairw
degenerate:

«m5«m8, m,0, m852m2k. ~2.3!

The latest high-field EPR experiments26 suggest that there
are correction terms of the types2ASz

4 and2B(S1
4 1S2

4 ) in
the spin Hamiltonian~2.1! of Mn 12Ac. This means that the
degeneracy of different level pairsm,m8 is actually achieved
at slightly different values ofHz . We shall, however, ignore
this effect in the following since it does not significant
change the results. As we shall see, only one or maxim
two pairs of degenerate levels contribute to resonant tun
ing, and hence the lack of simultaneous degeneracy o
appropriate level pairs is unimportant.

The model Hamiltonian~2.1! was a whetstone for differ
ent theories of spin tunneling long before its relevance
Mn 12Ac and other molecular magnets had been establis
In the quasiclassical limitS@1, the rate of tunneling from
the ground state for different values ofHz was calculated by
Chudnovsky and Gunther27 with an exponential accurac
with the help of the instanton technique. Enz and Schillin28

developed a more sophisticated version of the instanton
proach to spins to obtain the ground-state tunneling le
splitting with the prefactor. The latter result was rederived
Zaslavskii29 by a more simple method based on the mapp
onto a particle problem. Also, van Hemmen and Su¨tő30,31

formulated the WKB method for spin systems and calcula
the tunneling rates and corresponding level splittings for
excited states of Eq.~2.1!. Scharf, Wreszinski, and va
Hemmen32 proposed an approach based on a particle m
ping with subsequent application of the WKB approximati
to refine the results for the splitting of excited levels f

FIG. 1. Spin energy levels of a Mn12Ac molecule forHx50 and
Hz5D corresponding to the first resonance,k51, in Eq. ~2.2!.
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systems with moderate spin. The applicability of this a
proach is confined, however, to the limit of small transve
fieldsHx , where it is still possible to label the energy leve
of Eq. ~2.1! by the quantum numberm.

In the case of smallHx , which, as we shall see, is re
evant for magnetic clusters with moderate spin, the le
splittings can be calculated in a more direct and simple w
using the high-order perturbation theory. An early applic
tion of this method is due to Korenblit and Shender33 who
studied ground-state splitting in rare-earth compounds h
ing high spin values~e.g.,S58 for Ho!. Garanin25 has de-
rived a formula for the splitting of all levels of the Hami
tonian ~2.1!. A recent revision of the method is due t
Hartmann-Boutron.34 Schatzer, Breymann, and Thomas35 ex-
tended the perturbative approach to describe tunneling
system of two spins.

In the general biased case, the tunneling level splitting
the resonant level pairm,m8 appears, minimally, in theum
2m8uth order of a perturbation theory and is given by t
shortest chain of matrix elements and energy denomina
connecting the statesm andm8,

D«mm852Vm,m11

1

«m112«m
Vm11,m12

3
1

«m122«m
•••Vm821,m8, ~2.4!

where

Vm,m115^muHxSxum11&5
1

2
Hxl m,m11 , ~2.5!

l m,m11[AS(S11)2m(m11) are the matrix elements o
the operatorSx , which are symmetric functions of their ar
guments, and«m52Dm22Hzm are the unperturbed energ
levels. The calculation in Eq.~2.4! for the arbitrary reso-
nance numberk yields the formula24

D«mm85
2D

@~m82m21!! #2

3A~S1m8!! ~S2m!!

~S2m8!! ~S1m!!
S Hx

2D D m82m

, ~2.6!

which is the generalization of the zero-bias result of Ref.
Note that here, according to the convention of Eq.~2.3!, m
,0, m8[2m2k, and hencem82m.0. Equation~2.4! de-
scribes the interaction between the pair of resonant le
m,m8 through the intermediate levels in the virtual state.
is well known for the two-state problem, the splittingD«mm8
is exactly equal to the tunneling frequencyVmm8 with which
the probability of finding the system in one of these sta
oscillates with time if the initial condition is an unperturbe
eigenstate.

The tunneling splittings given by Eq.~2.6! are represented
in Fig. 2 for Hz50 and different values of the transvers
field, in comparison with the results of other approach
One can see that the splittings change by orders of ma
tude with changingm by 1. If the splitting of the pairm,m8
becomes comparable to the level spacing in the well, wh
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56 11 105THERMALLY ACTIVATED RESONANT MAGNETIZATIO N . . .
is of order 2Dumu, the tunneling becomes strong and ofnon-
resonantcharacter; i.e., the barrier for a particle going in
the other well disappears. For this pair of levels the per
bation theory clearly breaks down, but for the next lower p
m21,m811 ~see Fig. 1! it already works well.

The sharp boundary between the levels localized in on
the wells and the delocalized ones, which was obser
above, is also characteristic for the classical theory wh
there is a similar separation between the localized and es
orbits at some energy. Accordingly, as was shown
Friedman,36 the transverse-field dependence of the class
barrier height,

U~hx!5DS2~12hx!
2, hx[

Hx

2SD
, ~2.7!

can be reproduced for smallhx with the help of the pertur-
bative formula~2.6!. Indeed, in the quasiclassical limit
!umu!S, Eq. ~2.6! for Hz50 can be simplified to

D«mm8>
2Dumu

p S HxSe2

8Dm2D 2umu

~2.8!

and compared to the level spacingDumu to obtain the value
m5mb at which the barrier is effectively cut by the tunne
ing. For umu@1, the value ofmb can be found with a good
accuracy by equating the fraction in brackets in Eq.~2.8! to
unity. The result has the form

mb
2>2S2hx

e2

8
, ~2.9!

which leads to the effective barrier heightU>DS22Dmb
2

>DS2@122hx(e
2/8)#. This is in accordance with Eq.~2.7!

for hx!1, except for the factore2/8'0.92. The nontrivial
feature of this derivation is that the resulting classical bar
lowering is of first order inhx , although the corrections to

FIG. 2. Tunneling splittingsD«mm8 for Hz50 and different val-
ues of the transverse field. The results of Scharf, Wreszinski,
van Hemmen~Ref. 32! are indiscernible from the perturbative on
in this scale and they are shown only for the one value of
transverse field.
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the energy levels arise only in the second order of the p
turbation theory. The latter have the form

«m
~2!52Dm2H 11

2S2@S~S11!1m2#

m2@4m221#
hx

2J . ~2.10!

It can be checked that form5mb and 1!mb!S the correc-
tion term in the curly brackets makes up the universal nu
ber 8/e4'0.15. This means that near the renormalized b
rier top, m5mb , the perturbation theory relies on a sma
numericalparameter rather than onhx . The artifacte2/8 in
Eq. ~2.9! is the consequence of dropping the effect of t
level mixing inside the wells described to lowest order b
Eq. ~2.10!. It should be noted thate2/8 also appears in the
WKB results30–32 for the tunneling level splitting in the cas
of a small transverse field, and it can be attributed to
inaccuracy of the WKB method near the top of the barrier.
this article, we will neglect these effects and study the tu
neling transitions between the wells perturbatively in the
sis of the eigenstates of the operatorSz . It should be noted in
addition that, as was checked by Chudnovsky a
Friedman,24 the level matching condition~2.2! remains unef-
fected by the transverse field at least up to fourth order inhx .

Now let us consider the question how the level splitti
changes from one level pair to another in more detail. For
pairs of resonant levels shown in Fig. 1, with the use of
basic formula~2.6! in the unbiased case, one comes to t
result

D«m11,m821

D«mm8

5e4S m

mb
D 4 S 12

1

2umu D S 12
1

umu D
S 11

umu
S D S 12

umu
S

1
1

SD ,

~2.11!

wheremb is given by Eq.~2.9!. One striking implication of
this formula is that the splitting ratio is large everywhere
the wells: Even near the top of the renormalized barrier,m
;mb , the tunneling splitting changes by a large factore4

'55, moving one step up the barrier. This universal beh
ior, independent of the spin valueS for S@1, shows that
even in the quasiclassical limit the tunneling splitting cann
be treated as a smooth function of the energy. The dete
nation of the level at which the barrier disappears is, the
fore, quite precise. Another consequence of Eq.~2.11! is that
resonant tunneling is to the same extent inherent in mo
of large spinS as in those of moderate spin.

III. SPIN-BATH INTERACTIONS AND THE DENSITY
MATRIX EQUATION

The thermally activated escape of the Mn12Ac spin over
the potential barrierDS2.70 K is accompanied by transi
tions between the energy levels with the energy differen
ranging fromD(2S21).13 K near the bottom of the po
tential wells toD.0.7 K near the top of the barrier. Such
process requires an energy exchange betweenS and other
degrees of freedom of the whole system.

The dipole-dipole interactions between different magne
clusters contribute to the macroscopic magnetic induct
B5H14pM which is actually ‘‘felt’’ by the spins and
which should replace the external fieldH in all the formulas
for spin tunneling and thermal activation. As was shown

d

e
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11 106 56D. A. GARANIN AND E. M. CHUDNOVSKY
dynamic hysteresis experiments,14,19 this internal field cor-
rection is quite essential for a careful analysis of the exp
mental data. Thefluctuatingpart of the dipole-dipole inter-
actions which could cause the spin relaxation has b
shown to be inefficient by diluting the sample.12 Indeed, this
interaction is of the order of the dipole-dipole energy of tw
neighboring clusters,Ed5(gmBS)2/v0 , wherev0 is volume
of the unit cell. Usingg51.9 andv05(17.3 Å! 2312.4 Å,8

one obtainsEd.0.06 K @in accordance with the measure
value of the Curie constantQC520.05 K ~Ref. 10!# which
is much smaller than the distances between the energy le
There is also a more subtle argument,37 based upon energ
conservation and the nonequidistant character of the spin
ergy levels, which rules out the contribution of dipole-dipo
interactions to the relaxation in the temperature rangeT
!U.

The nuclear subsystem also cannot supply energies w
would be large enough for the relaxation over the 70 K b
rier. Nevertheless, nuclear spins produce a hyperfine field
the effective electronic spin, which can give rise to tunn
ing. This mechanism will be considered in detail in Sec. V
Here we will describe tunneling as caused by the extern
applied transverse fieldHx .

The remaining two types of the interaction of a Mn12Ac
spin with the environment are those with phonons and p
tons. Unlike the interactions reviewed above, the phonon
photon subsystems play the role of a thermal bath, rende
the spin subsystem a definite externally controlled temp
ture. It can be immediately seen that in the presence
phonons the photon processes can be safely neglected,
the light velocityc is much greater than the sound velocityv
and, as a result, the photon density of states is smaller
the phonon one. At low temperatures the leading proce
are the emission and absorption of phonons, accompanie
the hopping of spin between energy levels. At higher te
peratures Raman scattering processes can become dom
The energies of phonons in Mn12Ac are large enough for the
exchange with the spin subsystem: As follows from spec
heat measurements,10 the Debye temperatureuD correspond-
ing to the phonon energy at the edge of the Brillouin zone
about 36 K.

Spin-phonon interactions in materials with a stro
crystal-field anisotropy are mainly due to the modulation
the crystal field by phonons. This mechanism was ext
sively studied in past years.38 The possible spin-phonon cou
pling terms for substances of different symmetries are lis
in Ref. 39. For Mn12Ac and other molecular magnets, th
spin-phonon interactions, as well as the~presumably compli-
cated! phonon modes themselves, have not yet been inve
gated. Moreover, an attempt to describe the interaction w
phonons rigorously would lead to a serious complication
the formalism without bringing any new qualitative resul
We will resort to various simplifications, assuming, in pa
ticular, that the phonon spectra of molecular magnets c
tain, as for an isotropic elastic body, one longitudinal a
two transverse modes. Similar simplifications were a
made in Ref. 37, where the pure thermal activation esc
rate in Mn12Ac was studied.

The lowest-order spin-phonon interactions allowed by
time-reversal symmetry are linear in phonon operators
bilinear in the spin operator components, containing vari
combinationsSaSb, wherea,b56,z. The simplest of these
i-
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interactions is due to the rotation of the anisotropy axis
transverse phonons.40 We will use this mechanism for the
illustration of our method since it does not employ any u
known characteristics of the crystal-fielddistortionsaccom-
panying other types of lattice vibrations.

For the arbitrarily oriented anisotropy axisn, the anisot-
ropy part of the spin Hamiltonian~2.1! can be written as
HA52D(nS)2. Transverse phonons change the vectorn by
dn5@df3n#, wheredf5(1/2)¹3u is the local rotation of
the lattice andu is the lattice displacement. The first-ord
term ondn in HA gives the spin-phonon Hamiltonian whic
in coordinate form reads

Hsp5D$Sz ,Sx%vzx1D$Sz ,Sy%vzy , ~3.1!

where

vab[
1

2S ]ua

]r b
2

]ub

]r a
D , ~3.2!

and $Sa ,Sb% is the anticommutator. In terms of phonon o
eratorsakl andakl

† ,

u5
i

~2MN!1/2(kl

ekleik•r

~vkl!1/2
~akl2akl

† !, ~3.3!

whereM is the unit cell mass,N is the number of cells in the
lattice, ekl is the phonon polarization vector,l5t,t,l is the
polarization, andvkl5vlk is the phonon frequency. Per
forming differentiation in Eq.~3.2!, one can transform Eq
~3.1! to

Hsp52
1

N1/2(kl
Vk$Sz ,~hklS!%~akl2akl

† !. ~3.4!

Here the spin-phonon amplitideVk is given by

Vk5
D

23/2S vkt

V t
D 1/2

, V t[Mv t
2 , ~3.5!

and the vectorhkl is determined by

hkl
z 50, hkl

x,y5ekl
z nk

x,y2ekl
x,ynk

z , ~3.6!

wherenk[k/k. On can see that the coupling to longitudin
phonons in Eq.~3.4! vanishes, as it should be, sinceekl
5nk .

The evolution of a spin system coupled to an equilibriu
heat bath can be described by the density matrix equat
The diagonal elements of the density matrix,rmm[Nm , de-
scribe the population of the energy levels. In the absens
interactions noncommuting withSz in the spin Hamiltonian
H, the DME reduces to the closed system of kinetic bala
equations, or master equations, for the populationsNm in the
basis of the eigenstates of the operatorSz . The latter was
applied to describe the thermoactivation process in unia
spin systems, as Mn12Ac, in Refs. 37 and 42. If a transvers
field or another level mixing perturbation is applied to t
system, the nondiagonal elements of the DME appear, wh
slow dynamics describes the tunneling process. The m
advantage of the DME is that it provides a natural accoun
resonant tunneling in systems of moderate spin, which is
in quasiclassical approaches for truly macroscopic syste
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A common routine for obtaining a system of kinetic ba
ance equations is to calculate the transition probabilities
cording the Fermi golden rule and then insert them into
equations that are themselves postulated but not deri
Such an approach is methodically insufficient since the tr
sition probabilities are obtained with the help of the tim
dependent perturbation theory where the probability of fi
ing the system in states differing from the initial full
occupied state is used as a small parameter. In other wo
this method describes only the initial stage of the relaxat
process for a special type of initial conditions. Although
incidently leads to the correct master equation, the sam
not true for the general DME. Indeed, spin-phonon couplin
of the type(kCkSz

2akak
† , corresponding to the elastic sca

tering of phonons, do not result in transitions between
energy levels and do not contribute to the coefficients of
master equation. On the other hand, such terms modulat
energy levels and contribute to the linewidths, which ma
fest themselves in the dynamics of the nondiagonal elem
of the density matrix.

A rigorous method of the derivation of the density mat
equation valid for all times employs the projection opera
technique.43–46 For spin systems, the details of calculatio
are described in Ref. 47. The resulting DME can be found
Ref. 48, where the model without single-site anisotropy,
counting for both one-phonon and Raman scattering p
cesses, was used to derive the Landau-Lifshitz-Bloch eq
tion for ferromagnets. This DME is written in terms of th
Hubbard operatorsXmn[um&^nu forming the complete basi
for the spin subsystem. In the Heisenberg representation
operatorsXmn are related to the spin density matrix:rmn
5^Xmn(t)&. For the present model described by Eqs.~2.1!
and ~3.4!, the resulting DME reads

Ẋmn5 ivmnX
mn2

i

2
Hx~ l m,m11Xm11,n1 l m,m21Xm21,n

2 l n,n11Xm,n112 l n,n21Xm,n21!1Rmn , ~3.7!

wherevmn[«m2«n are the frequencies associated with t
transitionn→m, the unperturbed energy levels«m are given
by «m52Dm22Hzm, the factorsgmB and \ are dropped
for convenience, the matrix elementsl m,m61 are given by
Eq. ~2.5!, andRmn is the relaxation term. The latter has th
non-Markovian form

Rmn52E
t0

t

dt8
1

N(
kl

Vk
2$A fk~ t82t !2B fk~ t2t8!%,

~3.8!

where

A5QS~ t8!@QS~ t !,Xmn~ t !#,

B5@QS~ t !,Xmn~ t !#QS~ t8!, ~3.9!

the spin operator combinationQS[$Sz ,(hklS)% comes from
the spin-phonon Hamiltonian~3.4!, the functionf k(t) char-
acterizing the bath in the present case of the one-pho
processes is given by

f k~t!5nke
ivkt1~nk11!e2 ivkt, ~3.10!
c-
e
d.
-

-
-

ds,
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nk[(evk /T21)21 are the boson occupation numbers, a
vk[vkt are the frequencies of transverse phonons.

In Eq. ~3.9! the spin operators should be expanded o
the Xmn basis as follows:

S15 (
m52S

S21

l m,m11Xm11,m, Sz5 (
m52S

S

mXmm,

S25 (
m52S

S21

l m,m11Xm,m11, S6[Sx6 iSy . ~3.11!

For the one-phonon processes, the integral overt8 in Eq.
~3.8! converges on the scale of 1/vmn which is much shorter
than the relaxation time of the spin system. Hence, the lo
limit of this integral can be extended tot052` and thet8
dependences of the operatorsXmn in the relaxation term can
be considered as governed solely by the conservative pa
the DME ~3.7!. Finding these time dependences is a ma
of numerical work, if the transverse fieldHx is not small.
Here serious complications arise, since the evolution of e
operatorXmn is a linear combination of all possible types
spin motion. This means simply that the unperturbed ba
we have chosen is not suitable in situations with strong le
mixing. However, in the case of smallHx one can neglect
these effects and use the unperturbed time dependence

Xmn~ t8!5eivmn~ t82t !Xmn~ t !. ~3.12!

Now one can calculate combinationsA andB in Eq. ~3.9!
with the use of the representations~3.11! and the equal-time
relation XmkXln5Xmndkl which replaces the commutatio
relations for the spin components. The sum over the pho
polarizationsl in Eq. ~3.8! can be done using Eq.~3.6! and
the property of the polarization vectors(lel

ael
b5dab . Ne-

glecting the imaginary part of the relaxation termRmn , cor-
responding to the renormalization of the spin energy lev
due to the coupling to the bath, one arrives at the final fo
of Rmn :

Rmn5
1

2
l̄ m,m11 l̄ n,n11@Wm,m111Wn,n11#Xm11,n11

2
1

2
@ l̄ m,m11

2 Wm11,m1 l̄ n,n11
2 Wn11,n#Xmn

1
1

2
l̄ m,m21 l̄ n,n21@Wm,m211Wn,n21#Xm21,n21

2
1

2
@ l̄ m,m21

2 Wm21,m1 l̄ n,n21
2 Wn21,n#Xmn. ~3.13!

Here l̄ m,m61[ l m,m61(2m61) with the factor 2m61 com-
ing from the operatorSz in Eq. ~3.4!, and the universal rate
constant Wmn5W(vmn) of the one-phonon processes
given by

W~v!5
2

3
v0E dk

~2p!3
Vk

2$~nk11!pd~vk1v!

1nkpd~vk2v!%, ~3.14!
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wherev0 is the unit cell volume and the overall factor 2
says that only two transverse modes of the total three pho
modes are active in the relaxation mechanism under con
eration. One can check that the rate constant satisfies
detailed balance conditionW(v)5W(2v)exp(2v/T). At
low temperatures phonons die out andW(v) with v.0,
which corresponds to the absorption of a phonon, beco
exponentially small. The result forW(v) with v,0 ~the
emission of a phonon! calculated with the help of Eqs.~3.14!
and ~3.5! reads

W5
D2uvu3

24pQ4
~nuvu11!}H v2T, uvu!T,

uvu3, T!uvu
~3.15!

~cf. Ref. 49!. Here we have useduD
3 5(\v t)

3/v0 for the De-
bye temperatureuD;\vkmax

. The constantQ is defined as

Q4[V tuD
3 5\3r2v t

5 , wherer is the density andV t is given
by Eq. ~3.5!.

Note that Eq.~3.7! with Rmn given by Eq.~3.13! is still an
operator equation, and the equation of motion for the den
matrix elements,rmn[^Xmn&, should be obtained by takin
its quantum-statistical average over the initial state of
spin. This is, however, a trivial task, since the equation
Xmn is linear.

In the caseHx50 the density matrix equation~3.7! and
~3.13! reduces to a system of kinetic balance equations
the diagonal elementsNm[Xmm, the equilibrium solution of
which is given by

Nm
~0!5

1

Z
e2«m /T, Z5 (

m52S

S

e2«m /T. ~3.16!

The thermoactivation relaxation rateG in the model with
Hx50 was studied in Ref. 37 and recently in Ref. 42. In t
latter work Raman scattering processes have also been t
into account, and the spin relaxation rate was calculated
arbitrary ratiosU/T in terms of the integral relaxation tim
t int . It was shown that in systems with larger spin valu
even in the Arrhenius regimeU/T@1, there are several lim
iting cases for the prefactorG0 in the expressionG
5G0exp(2U/T) as a result of the interplay between the on
phonon and Raman scattering processes. Here we con
trate on the low-temperature region, and thus only o
phonon processes will be considered.

IV. SLOW DYNAMICS OF THE DENSITY MATRIX:
COHERENCE AND TUNNELING
BETWEEN RESONANT LEVELS

The possible frequencies, with which the density mat
elementsXmn evolve in time according to the DME~3.7!,
range fromv0S5DS2 ~for Hz50) to very small ones corre
sponding to overbarrier relaxation and tunneling. In the lo
temperature rangeT!U, these fast motions decay with
rate corresponding to the relaxation inside one well, which
much larger than the thermoactivation escape rate or the
neling rates. In the long-time or low-frequency dynamics,
variablesXmn corresponding to the largevmn play the role of
‘‘slave’’ degrees of freedom, adjusting themselves to
evolution of the slow variables, and hence they can be a
batically eliminated.
on
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The slow variables of our problem are the diagonal ma
elementsNm5Xmm, as well as the antidiagonal elemen
Xmm8 whose transition frequencyvmm8[«m2«m8 is the de-
tuning of the resonant levelsm andm8:

vmm85~H2Hk!~m82m! ~4.1!

@cf. Eqs.~2.2! and ~2.3!#. The equations of motion for thes
slow variables can be obtained in the following way. In E
~3.7! for Xmm, the terms containingXm11,m and Xm,m11,
which are generated minimally by nonzeroXm8m andXmm8,
correspondingly, are responsible for tunneling in the low
approximation. In the dynamical equations for these e
ments one can neglect the termsẊm11,m andẊm,m11, as well
as the relaxation terms, since the frequenciesvm11,m and
vm,m11 are large on the scale of relaxational and tunnel
processes. Then, in the case ofXm11,m, this element can be
expressed with the help of its dynamical equation throu
Xm12,m as

Xm11,m5

1
2 Hxl m,m11

vm11,m
Xm12,m. ~4.2!

In the right part of this equation the terms containingXmm,
Xm11,m11, andXm11,m21 have been dropped because reta
ing them would be against our strategy of going across
barrier along the shortest path toXm8m. For the same reaso
we have also dropped the termsXm21,m and Xm,m21 in the
equation forXmm. Retaining all these terms would impl
taking into account the level mixing inside the wells, whic
we neglect for small transverse fields. Now, Eq.~4.2! can be
iterated untilXm11,m is expressed throughXm8m, and similar
can be performed onXm,m11. Substituting their expression
into the equation forXmm, one arrives at the slow equation

Ẋmm5
i

2
Vmm8~Xmm82Xm8m!1Rmm, ~4.3!

whereVmm8 is the tunneling frequency coinciding with th
tunneling level splittingD«mm8 of Eq. ~2.6!. One can see
now that the algorithm used here for the adiabatic elimi
tion of the fast degrees of freedom in the density mat
equation is the dynamic counterpart of the perturbative
proach leading to the chain formula~2.4!. The antidiagonal
matrix elementsXmm8 and Xm8m are generated, in turn, b
the diagonal elementsXmm and Xm8m8, and the dynamical
equations for them can be obtained in a similar way. T
result forXmm8 reads

Ẋmm85 ivmm8X
mm82

i

2
Vmm8~Xm8m82Xmm!1Rmm8.

~4.4!

For the matrix elementsXm8m8 andXm8m one obtains equa
tions similar to Eqs.~4.3! and ~4.4!.

To formulate the resulting system of slow equations in
more convenient form, we introduce
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Zmm8[Nm82Nm ,

Ymm8[ i ~Xmm82Xm8m!,

Xmm8[Xmm81Xm8m. ~4.5!

These variables satisfy the system of equations

Ṅm5
1

2
Vmm8Ymm81Rmm,

Ṅm852
1

2
Vmm8Ymm81Rm8m8 ~4.6!

@cf. Eq. ~4.3!#, and

Żmm852Vmm8Ymm81Rm8m82Rmm,

Ẏmm85Vmm8Zmm82vmm8Xmm82Gmm8Ymm8,

Ẋmm85vmm8Ymm82Gmm8Xmm8, ~4.7!

where the first equation of Eqs.~4.7! is a consequence o
Eqs.~4.6!. The conservative part of Eqs.~4.7! describes the
precession of the pseudospinsmm8[$Xmm8,Ymm8,Zmm8% in
the pseudofieldHmm8[$Vmm8,0,vmm8%. In the absence o
dissipation, in resonance (vmm850), the pseudospin rotate
in the y,z plane, and the difference of the level populatio
Zmm8 oscillates with time. Note, however, that theY andX
components of the pseudospin have nothing to do with
actual spin componentsSy andSx which remain zero; see Eq
~3.11!. The only exclusion is the resonance between the
neighboring levelsm and m11 near the top of the barrier
which is realized, e.g., forS odd andHz50. In this case,
which is actually no longer the tunneling case sin
Vm,m11}Hx is not suppressed by the anisotropy, the rotat
of the pseudospin couples to the rotation of the real spin

Since the tunneling frequencyVmm8 is typically very
small, the correspondingly small detuningvmm8>Vmm8 @see
Eq. ~4.1!# is sufficient to suppress the resonance. On
other hand, a small ac fieldHz(t) with a frequency abou
Vmm8 giving rise to the correspondingz component of the
pseudofieldvmm8(t) @see Eq.~4.1!# can excite the tunneling
resonance. The latter, however, can only happen under
rather severe conditions:

Hz~ t !!
\Vmm8

~m82m!
, T!\Vmm8. ~4.8!

The former is the condition of the linear resonance, wher
the latter requires that the pseudospin have a strong pr
ence along thex axis, in other words, that only the lower o
the tunneling-splitted states~the even one! is thermally popu-
lated. The temperatures required by the second condition
so small that only the resonance between the ground-s
levelsm56S can be discussed.

The small value of the pseudofieldVmm8 in the resonant
tunneling equations~4.7! suggests an important role of th
relaxation terms. The diagonal relaxation termRmm follow-
ing from Eq.~3.13! has the form
e

o

n

e

o

s
er-

re
te

Rmm5 l̄ m,m11
2 ~Wm,m11Nm112Wm11,mNm!

1 l̄ m,m21
2 ~Wm,m21Nm212Wm21,mNm!, ~4.9!

describing the exchange of particles with the levelsm61.
For the antidiagonal matrix elements, the relaxation te
Rmm8 in Eq. ~3.13! containsXmm8 itself, as well as the matrix
elementsXm61,m861. These matrix elements do not belon
however, to the antidiagonal ones~see Fig. 1!; they are small
slave variables that have been eliminated above. Dropp
them leads to

Gmm85Gm1Gm8,

Gm5
1

2
~ l̄ m,m11

2 Wm11,m1 l̄ m,m21
2 Wm21,m!. ~4.10!

Here the termsGm and the analogousGm8 are the linewidths
of the levelsm and m8 arising from the transitions to the
levels m61 andm861 with the absorption or emission o
an energy quantum.

At temperaturesT!vA5(2S21)D, which is about 13 K
for Mn 12Ac, most of the particles are in the ground stat
m56S. The linewidths of these states are much sma
than that of excited ones since in Eq.~4.10! the emission
term is absent and the absorption term is small as
(2vA /T). Further lowering of the temperature leads to t
suppression of the thermoactivation relaxation mechan
and, simultaneously, to the vanishing of dissipation in
ground state. Thus, the spin of the magnetic cluster beha
like an undamped two-level system~TLS!. It is, however,
well known ~see, e.g., Ref. 50! that the coupling of the TLS
to the bath strongly changes its dynamics, and one can
where this coupling was lost in our calculations. The answ
is that treating the non-Markovian relaxation term~3.8! we
have used the simplest unperturbedt8 dependences~3.12! for
the spin operators of Eqs.~3.9! and ~3.11!, which do not
describe the tunneling motion. This tunneling motio
couples, however, to a very small number of extremely-lo
wavelength phonons, and their contribution to the relaxat
terms is smaller by a factor of order (V2S,S /vA)3exp(vA /T)
@see Eq.~3.15!# than that of the regular phonon process
Thus, the coupling of the tunneling mode to the bath b
comes important only at very low temperatures. In this ran
serious complications arise~see, e.g., Ref. 50! since the pseu-
dospin part of the effective TLS Hamiltonian,HTLS5
2sV, is no longer large in comparison to the coupling
the bath and the perturbation theory breaks down.

The equation of motion for the pseudospin, Eq.~4.7!, is
not closed because the relaxation term in the first l
couples it to other levels. If we neglect this coupling for
moment, then the eigenvaluesl of Eq. ~4.7! determined as
X,Y,Z}e2lt are given by the roots of the cubic equatio
(l2G)2l1V2(l2G)1v2l50, where we have droppe
the indexmm8. This equation can be solved only in limitin
cases. In particular, in resonance (v50) the last equation of
Eqs.~4.7! decouples from the first two ones, which descri
now a damped harmonic oscillator withl1,25(1/2)(G
6AG224V2). One can see that the tunneling oscillations
the particle between the two levels become overdamped
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G.2V. In the small damping case, the solution of Eq.~4.7!
with the initial conditionZ(0)51 has an interesting two
scale-relaxation form

Z~ t !5
V2

V21v2
expS 2

V2/21v2

V21v2
Gt D cos~AV21v2t !

1
v2

V21v2
expS 2

V2

V21v2
Gt D . ~4.11!

These results should not be overstated for the present m
because in the underdamped case the neglected relax
terms in the equation forZ can be of the same order o
magnitude as the accounted ones in the equations forX and
Y. In this case the pseudospin concept breaks down and
should use the two equations~4.6! instead of the first equa
tion of Eqs.~4.7!. But in the case of strong damping the lev
populations cannot deviate substantially from their equi
rium values because of the slow tunneling motion, and
different terms in the diagonal relaxation termsRmm given
by Eq.~4.9! nearly cancel each other. Here the concept of
independent pseudospin is justified, and one can see th
motion is indeed overdamped. Neglecting the termsẊ andẎ
in Eqs. ~4.7!, one eliminatesX and Y and comes to the
simple relaxational equation forZ with l5V2G/(v21G2).

The argument in favor of the pseudospin model is t
there can be other relaxation mechanisms, such as those
to spin-spin interactions, which contribute only to the lin
widths ~i.e., to the transverse relaxation rate! and not to the
transition probabilities~i.e., to the longitudinal relaxation
rate!. In this typical for the magnetic resonance situation
term Rm8m82Rmm in the first equation of Eqs.~4.7! can be
neglected on the relatively short scale of the transverse
laxation time. In our model the dipole-dipole interactio
could play such a role, but for Mn12Ac the main effect of
such a type comes from nuclear spins~see Sec. VII!.

The possibility of the overdamping of the coherent sp
oscillations was pointed out by Garg,51 who considered reso
nant tunneling with the help of a phenomenological damp
Schrödinger equation in the matrix representation in the u
perturbed basis. Although the qualitative conclusions
Garg are the same as the present ones, there are som
crepancies between the two approaches in treating the re
ation. In particular, the eigenvalues for the two-level pro
lem satisfy in Garg’s approach a quadratic equation inst
of the cubic or quartic ones in our method. Garg’s solut
for the splitted energy levels«̃ 1,2 is explicitly given by «̃ 1,2

5(1/2)@E11E26A(E12E2)21V2#, where Ei
[« i2 iG i are the damped ‘‘unperturbed’’ energy leve
Here the well-known deficiency of the damped Schro¨dinger
equation can be seen: The linewidths of the two levels ca
each other under the square root which is responsible for
tunneling. In the symmetric~unbiased! case this cancellation
is complete, and the tunneling resonance cannot be o
damped, in contrast to the results of the density matrix f
malism where the linewidths are added@see Eq.~4.10!#. This
problem was avoided by Garg by considering the resona
between the zero-width ground-state level in one well w
an excited one in the other well in the low-temperature
ased case, which allowed him to obtain plausible results
del
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our model in this case one should use Eqs.~4.6! with Rmm
50 andRm8m8522Gm8Nm8, as well as the second and thir
equations of Eqs.~4.7! with Gmm85Gm8, which leads to a
quartic secular equation forl. In fact, however, such tunnel
ing resonances are typically overdamped, and both meth
give the same results. The coherent tunneling oscillati
should be looked for between the two ground-state lev
whose damping is very small. For this situation, as well
for the description of thermally activated tunneling, th
damped Schro¨dinger equation is inappropriate even as
qualitative tool.

In the Arrhenius regime the rate of the process is c
trolled by the climbing of particles up the barrier, which
small in comparison toGmm8 of Eqs. ~4.10!. In this case,
again, one can neglect the time derivativesẊ and Ẏ in Eqs.
~4.7!, which leads to the system of balance equations

Ṅm5
Vmm8

2

2

Gmm8

vmm8
2

1Gmm8
2 ~Nm82Nm!1Rmm, ~4.12!

where the rate coefficient for the transition across the bar
is the same as in the overdamped case andRmm is given by
Eq. ~4.9!. The form of these equations is quite plausible a
resembling of the Fermi golden rule: The tunneling fr
quencyV is the transition amplitude@cf. Eq. ~2.6!#, whereas
Gmm8 /(vmm8

2
1Gmm8

2 ) plays the role of ad function selecting
the allowed resonant level partners. In our case of the
crete spectrum, one cannot set the latter to thed function,
which causes a small problem: If the two levels are not
actly in resonance, the tunneling term prevents establish
the equilibrium Boltzmann distribution~3.16!. The corre-
sponding deviations from the equilibrium are, howev
small and they can be neglected, especially as we ignore
the effects of the level renormalization due to the transve
field. More important is that the tunneling term in Eq.~4.12!
allows the establishing of the equilibrium between the t
wells by crossing the barrier, and this process is of reson
character. One can speculate how the form of this term m
fests itself in the escape rateG and what will be the shape o
the corresponding resonances. These questions will be
swered in the next section.

V. ESCAPE RATE IN THE THERMALLY ACTIVATED
REGIME

As was said at the end of the previous section, in
low-temperature rangeT!U the rate of thermal activation to
the top of the barrier is much lower than that of the rela
ation between the neighboring levels. In this situation qua
equilibrium is promptly established in each of the wells, a
the subsequent relaxation changes only the collective v
ables — the numbers of particles in the wells,N6 . On this
stage the problem can be solved analytically, and the s
tion shows that deviations from quasiequilibrium are loc
ized to the narrow region near the top of the barrier. For
thermal activation of particles described by the Fokker-Pla
equation, this problem was solved in the pioneering work
Kramers.52 The same method was applied later to classi
magnetic particles by Brown.53 For the spin system with a
discrete spectrum the generalization was given in Ref.
Another method applicable in the whole temperature ran
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for small deviations from equilibrium, was suggested
Refs. 54 and 55 for classical magnetic particles and in R
42 for discrete spin systems.

In our low-temperature case, the time derivatives in E
~4.12! can be neglected for all values ofm except for those
near the bottom of the wells, practically except form56S.
This is because the thermal activation process is expo
tially slow and, in addition, the level populations away fro
the bottoms are exponentially small. Now let us representNm
in Eq. ~4.12! as

Nm[Nm
~0!um , ~5.1!

whereNm
(0) is the equilibrium population of the levelm given

by Eq. ~3.16! andum describes deviations from equilibrium
In terms ofum the kinetic equation~4.12! can be with the use
of Eq. ~4.9! rewritten as

05 j mm81 j m,m111 j m,m21 ,

j mn5smn~un2um!, ~5.2!

where j mn has the meaning of the particle’s current from t
nth to themth level,um plays the role of a potential, and th
conductancessmn are given by

smm8[
Vmm8

2

2

Gmm8

vmm8
2

1Gmm8
2

Nm
~0!1Nm8

~0!

2
,

sm,m11[ l̄ m,m11
2 Wm11,mNm

~0! , ~5.3!

where for the tunneling process we have dropped the s
terms violating the equilibrium Boltzmann distribution an
symmetrized the rest. One can check thatsm,m115sm11,m

due to the symmetry ofl̄ m,m11 and the detailed balanc
condition Wm11,mNm

(0)5Wm,m11Nm11
(0) . In the high-barrier

limit T!U the quantitiessm,m11 are determined mainly by
the Boltzmann factors and they become very small near
top of the barrier. On the contrary, for not too low tempe
tures the tunneling conductancessmm8 are extremely smal
near the bottom and increase by a giant factor@see Eq.
~2.11!# with each step to the top of the barrier. As a resu
smm8 is essential only near the top of the barrier, where
competes withsm,m11 and shunts the equivalent resistor c
cuit.

In a broad range ofm not close to either the top or th
bottom the particle’s currentsj m,m21 in both wells are prac-
tically constant and equal to each other; let us denote th
j m,m21[ j 12 , the current from the left (2) to the right~1!
well. Then one can write

Ṅ15 j 12 , Ṅ252 j 12 , ~5.4!

for the numbers of particles in both wells. The potentialum is
also constant in the main part of the wells and changes
the top of the barrier wheresm,m11 are especially small, in
accordance with the concept of quasiequilibrium descri
above. Denoting the values ofu in the wells asu1 andu2 ,
one can relate the differenceu12u2 to the particle’s current
j 12 by the linear relation

j 125s̃12~u22u1!, ~5.5!
f.

.

n-

all

e
-

,
it

m

ar

d

wheres̃12 is the effective barrier conductance to be det
mined.

The numbers of particles in the wells,N6 , calculated
according to Eq.~5.1! are given by

N65N6
~0!u6 , N6

~0!5Z6 /Z, ~5.6!

whereZ5Z11Z2 is the spin partition function andZ6 are
the partition functions in each of the wells. For the latter it
convenient to introduce the reduced variables

j[
SHz

T
, a[

S2D

T
, hz[

j

2a
5

Hz

2SD
, ~5.7!

which are equivalent to those used for the description
classical single-domain magnetic particles.53,54 Then in the
case of not too strong biashz!1, at low temperatures the
partition functions have the forms

Z6>
ea6j

12e22a/S
, Z>

2 coshjea

12e22a/S
. ~5.8!

Combining now Eqs.~5.4!, ~5.5!, and~5.6! one comes to the
rate equations

Ṅ65s̃12S N7

N7
~0!

2
N6

N6
~0!D . ~5.9!

For the average spin polarization

mz[^Sz&>S~N12N2!, ~5.10!

the latter results in

ṁz52G~mz2mz
~0!!, G5

s̃12

N1
~0!N2

~0!
, ~5.11!

where, according to Eqs.~5.6! and ~5.8!, N1
(0)N2

(0)

5(4 cosh2j)21.
Finding the effective barrier conductances̃12 deter-

mined by Eq.~5.5! is the easiest task in the case without
transverse field wheresmm850. Here the elementary resis
tancessm,m11

21 of Eq. ~5.3! add with the result

s̃12
21 5 (

m52S

S21

sm,m11
21 . ~5.12!

For the thermoactivation rateG this yields

G>
4 cosh2j

Z~j,a! F (
m52S

S21
exp~«m /T!

l̄ m11,m
2 Wm11,m

G21

. ~5.13!

One can see that the main contribution to this express
comes from the top region, so thatG}exp@2a(12hz)

2# and
the exact limits of summation in Eqs.~5.12! and Eq.~5.13!
are irrelevant. Formula~5.13! is the microscopic generaliza
tion of the Brown’s result53 on systems with a discrete spe
trum. ForS51 a similar result was obtained in early wor
by Orbach,49 and for a general spin generalizations we
given in Refs. 37 and 42 in the unbiased and biased ca
correspondingly. In Ref. 42 different limiting forms of th
prefactor in Eq.~5.13! were analyzed. The most striking o
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its features is its dependence on the bias fieldHz with a
strong decrease in the region where two levels at the to
the barrier come into resonance. The latter is due to the
quency dependence~3.15! of the one-phonon transition rat
between these levels,Wm11,m .

In the case of a nonzero transverse field the barrier c
ductances̃12 can be calculated by a well-known recurren
procedure starting from the top of the barrier. Introduci
s̃mm8 as the total conductance due to the part of the bar
between the ‘‘points’’m andm8 ~see Fig. 1! one obtains

s̃mm85smm81
1

s̃m11,m821
21

1sm,m11
21 1sm8,m821

21 ,

~5.14!

with a proper initial condition at the unperturbed top of t
barrier,mmax;Hz /(2D). If the spin is large and the trans
verse fieldHx is not too small, the level pairmb ,mb8 corre-
sponding to the actual renormalized top of the barrier is s
ated many ‘‘steps’’ belowmmax @see Eq.~2.9!#. In this case
the starting pointmmax becomes unimportant, and the recu
rence algorithm~5.14! generates a continued fraction. In th
Arrhenius regimeT!U, the quantity s̃mm8 rapidly con-
verges to s̃12 down from the renormalized barrier to
mb ,mb8 . The role of different terms in Eq.~5.14! can be
made clear if one considers the ratio

smm8
sm11,m

;5
Vmm8

2

vm11,m
2

, uvmm8u;uvm11,mu,

Vmm8
2

Gmm8
2 , uvmm8u!Gmm8,

~5.15!

corresponding to the nonresonant and resonant situation
this ratio is of order unity for some pairmb ,mb8 , one can
consider all the tunneling conductancesvmm8 above this
level as infinite and below this level as zero@see Eq.~2.11!#.
In the resonant situation, one also can speak about cond
ing and blocked resonances. Since at the levelmb11,mb8
21 the circuit is completely shunted, one concludes t
renormalized by the transverse field the top of the barrie
localized atm5mb , with an uncertainty of one level. In th
nonresonant situation for 1!umu!S this leads to the previ-
ously obtainedclassicalresult of Eq.~2.9!. At resonance, for
Hz50, the corresponding value ofmb is determined by the
equation

2S2hx5mb
2S pGmb ,m

b8

2Dumbu
D

1

2umbu

. ~5.16!

Since the level linewidths are small,Gmm8!D, this value of
mb is greater than that off resonance, which thus leads to
resonant dips in the effective barrier height. Note, howev
that the magnitude of these dips is strongly reduced by
exponent 1/(2umbu) in Eq. ~5.16!, so that they become sma
in systems of large spin. The shape of resonances in
escape rateG of Eq. ~5.11! can be visualized, if one consid
ers resonant transitions between only one pair of lev
mb ,mb8 . Neglecting transitions above this level, one write
of
e-

n-

er

-

. If

ct-

t
is

e
r,
e

he

ls

s̃125
1

s2,mb

21 1smb ,m
b8

21
1sm

b8 ,1
21 , ~5.17!

wheres2,mb

21 is the conductance between the bottom of t

left well and the pointmb , etc. This expression can be re
written with the use of Eq.~5.3!, and for the escape rateG
one obtains

G>
Vmb ,m

b8
2

2N1
~0!N2

~0!

Gmb ,m
b8
Nmb

~0!

vmb ,m
b8

2
1Gmb ,m

b8
2

1AVmb ,m
b8

2 , ~5.18!

whereA5Gmb ,m
b8
Nmb

(0)(s2,mb

21 1sm
b8 ,1

21
). From Eqs.~5.3! and

~4.10! it follows that A;1, if the resonant transitions
through the lower-lying pairs of levels are neglected. Th
contrary to what could be naively expected, the linewidth
the resonance in the escape rateG is insensitive to the leve
linewidth Gmb ,m

b8
which is smaller than the tunneling fre

quencyVmb ,m
b8

for conducting resonances. This frequen

grows rapidly with the transverse field. When it reaches
level spacinguvm11,mu, the resonance broadens away. B
there are tunneling resonances between lower pairs of le
for which the same formula~5.18! can be written. The width
of these peaksVm,m8 is much smaller, but their height a
resonance;Gm,m8Nm

(0) increases with the level depth as th
Arrhenius factorNm

(0);exp(2«m/T) and is maximal for the
deepestunblockedpair of resonant levels. In fact, in the low
damping case the line shape ofG described by the continue
fraction~5.14! consists of many peaks of stepwise decreas
width ;Vm,m8 mounting on top of each other and forming
self-similar structure.

An illustration of the behavior of the escape rateG in the
Arrhenius regime based on numerical calculations of the b
rier conductances̃12 will be given in Sec. VII. In the next
section we briefly discuss the range of lower temperatu
where a ‘‘more quantum’’ behavior ofG is to be expected.

VI. TUNNELING VERSUS THERMAL ACTIVATION

In the Arrhenius regime above, the productVmm8
2 Nm

(0) in
the tunneling conductancesmm8 of Eq. ~5.3! increases un-
limitedly up the barrier andsmm8 shunts the effective circui
at some levelmb determining the renormalized position o
the top of the barrier. This mechanism is of resonance ch
acter, but the temperature dependence of the escape ra
mains classical. With lowering temperature the quest
arises of which group of levels the tunneling conductan
smm8 has a maximum. The analysis of the functionf (m)
5Vmm8

2 exp(2«m/T) shows that there are two more regim
in addition to the Arrhenius one — ground-state tunneli
and thermally assisted tunneling. The temperature of
crossover between these two regimes,T00, is determined
from the conditionf (2S)5 f (2S11); i.e., the rate of tun-
neling from the first and other excited states falls below
ground-state tunneling rate. The value ofT00 calculated with
the help of Eq.~2.11! has the form
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T005
SD

ln~e2S/hx
2!

, hx[
Hx

2SD
. ~6.1!

In theories of tunneling using continuous level models
quantityT00 does not appear. For models with discrete lev
one should keep in mind that the linewidth of the grou
states is much smaller than that of excited ones, and
should make the analysis more subtle, but we will not furt
pursue this topic here.

For T>T00 tunneling goes through the group of leve
between the bottom and the top for whichf (m) has a maxi-
mum; if the position of this group does not coincide with t
top of the barrierm5mb , this regime is called thermally
assisted tunneling. There are different scenarios for the t
perature dependence of this group of levels,m;mTAT . It
can shift continuously from the bottom to the top with
crossover to the Arrhenius regime at some temperatureT0.
The other type of behavior is realized if the functionf (m)
has two maxima, say, at the top and near the bottom of
barrier. In this case there are two competing channels
relaxation which go from one into the other at the crosso
temperatureT0. Both of these scenarios were studied for t
models with continuous spectra, and the analogy with
second- and first-order phase transitions was pointed ou56

For the uniaxial spin model both types of thermally a
sisted tunneling can be realized, and the situation can
controlled by the transverse field. In particular, for t
second-order transition the crossover temperatureT0 ob-
tained with the help of Eq.~2.11! is given by

T0
~2!5SDhx

1/2e

8S 12
e2

8

hx

2 D . ~6.2!

For low transverse fieldsT0
(2) becomes too small, and th

first-order transition to the regime of thermally assisted t
neling occurs when the temperature is lowered beforeT0

(2) is
reached. Details of the analysis will be presented elsewh
here we illustrate the temperature dependence ofm;mTAT in
Fig. 3. It can be seen that the higher values ofhx favor the
second-order transition: The curvemTAT(T) goes ‘‘continu-
ously’’ through each value ofm and merges atT0 with the
horizontal linem5mb characterizing the Arrhenius regime
On the contrary, in lower fieldshx large jumps ofmTAT at T0
can be seen. For smaller spins the low-temperature tail of
curve mTAT(T) becomes shorter. The value ofT00 is in all
cases well described by formula~6.1!.

In the thermally assisted tunneling regime, the ratio of
tunneling and intrawell conductances, Eq.~5.15!, is a very
small number in the relevant regionm;mTAT . Thus the
slow tunneling process controls the escape rateG, and the
distribution of particles in the wells does not deviate fro
quasiequilibrium. In this caseG is simply given by

G5
s̃12

N1
~0!N2

~0!
, s̃125 (

m52S

mmax

smm8; ~6.3!

i.e., it is the tunneling probability weighed with the Boltz
mann factor@see Eq.~5.3!#. Expressions similar to Eq.~6.3!
were taken as a starting point in many investigations of
escape rate of particles from a metastable well at nonz
temperatures~see, e.g., Ref. 57!. An efficient method of
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treating this problem forcontinuousspectra, including the
dissipative case, is based on the instanton technique.1,58 For
our spin model, however, the spectrum cannot be made
tinuous by a reasonable variation of some physical par
eter; the tunneling frequency changes abruptly from o
level to another, and this situation persists in the limitS→`
~see the end of Sec. II!. This situation seems to be pertine
not only to spin systems, which can be, in fact, mapped o
the particles,32,29 but for double-well models in genera
Resonant tunneling between the discrete levels in a l
damped superconducting quantum interference de
~SQUID! was observed recently in Ref. 59. The numerica
calculated tunneling level splittings for the SQUI
Hamiltonian59 also change abruptly from one level pair
another.

The advantage of our more general approach to find
the barrier conductances12 based on the recurrence rel
tions ~5.14! in comparison to the simplified formula~6.3! is
its ability to handle the case of very small coupling to t
bath. In this case the relaxation rates for the exchange
tween the neighboring levelssm,m11 of Eq. ~5.3! become
very small, as well as the tunneling conductancessmm8 off
resonance, and so does the resulting escape rateG. If one sets
the system on resonance to increase tunneling, then the
tem does not come to quasiequilibrium in each of the we
and formula~6.3! breaks down.

VII. NUMERICAL RESULTS FOR THE ESCAPE RATE;
ROLE OF NUCLEAR SPINS

AND THE AXIS MISALIGNMENT

In this section we present the results of numerical sim
lations for the escape rateG obtained with the methods of th
previous section in the Arrhenius regime. The region bel
the crossover temperatureT0 is not further considered in this
paper. For systems of moderate spin the range of therm
assisted tunneling is rather narrow, and at temperatureT
<T00 in the unbiased case tunneling should go between
ground states. Since the linewidths of the ground-state le
are exponentially small at such temperatures, even a s

FIG. 3. Temperature dependence of the group of levels,mTAT ,
making the dominant contribution into the thermally assisted t
neling, determined from the maximum off (m)5Vmm8

2 exp
(2«m /T) in the unbiased case.
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detuning is sufficient to suppress the resonance. In this
we face a strongly nonresonant situation, and our theore
methods of Sec. IV should be modified. Even in the Arrhe
ius regime, there is a problem with nonresonant processe
the escape rate calculated with the help of Eq.~5.14! shows
discontinuities at values of the bias field, at which we swi
from one resonant partner level to another in the calcula
routine. In fact, the resonance of each level withseveral
partners in the other well should be considered, but a rig
ous treatment of this problem would lead to serious com
cations. For this reason we simply extend the applicability
the kinetic equation~4.12! by considering, for each levelm,
the tunneling resonances with the two partnersm8 and m8
21 satisfying«m8,«m,«m821. In this symmetric approach
the switching between partners occurs in resonance an
discontinuity inG appears. The calculations in this case c
be performed with the help of the modification of the rec
rence relation~5.14!. The resonance of one level with a
other partners was considered by Garg51 using the damped
Schrödinger equation.

Treating the relaxation terms we replacel̄ m,m11 by
l m,m11 @see Eq.~3.8!#, which amounts to dropping the op
eratorSz in Eq. ~3.4!. Then we fit the strength of the spin
phonon coupling to the measured for Mn12Ac value of the
prefactor G0553106 s21 in the escape rateG5G0exp
(2Ueff /T). Since the experimental temperatures about s
eral kelvin exceed the level spacing near the top of the b
rier, vm11,m;2Dm;1 K, the prefactor depends linearly o
temperature; see the first line of Eq.~3.15!. This dependence
is, however, difficult to see in the limited temperature int
val.

The results for the escape rate as a function of the
field Hz are represented on Fig. 4 for different values of t
transverse fieldHx . One can see the superpositions of bro
and narrow peaks at the resonant values of the bias
Hzk5Dk, which correspond to the tunneling via the sh
lower and deeper resonant levels, respectively. The widt
peaks alternates as a function of the resonance numbk,
since the tunneling transitions between different pairs of l
els appear in even or odd orders of the perturbation theor
Hx /D; see Sec. II. In particular, in the unbiased casek50,
the tunneling between the level pair21,1 appears in secon

FIG. 4. Bias-field dependence of the resonant tunneling esc
rate of the uniaxial spin model.
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order, V21,1}Hx
2/D. As a result, a very narrow peak inG

emerges atHz50 for hx51024. This peak broadens with th
increase ofHx , and athx5531023 a new narrow peak
corresponding to the resonance22,2 with V22,2}Hx

4/D3 is
seen. A similar picture holds fork52 and other even reso
nances.

For the odd resonances, ask51, the escape rate in zer
transverse field becomes small due to the frequency de
dence of the one-phonon processes discussed above.
same result was obtained for the tunneling assisted o
phonon processes between the deep levels in the wells.41 In
Fig. 4 we have included a small frequency-independent c
tribution from Raman scattering processes to obtain a n
zero value of the escape rate.42 This feature is, however
completely suppressed already in very small transverse fi
because of the opening of a new transition channel: the
neling between the topmost resonant pair21,0 that appears
in the first order,V21,0}Hx . The latter is, in fact, a kind of
a free precession aroundHx rather than tunneling. The rat
of this precession competes with the small relaxation r
@see the second line of Eq.~5.15!#; that is, the purely dy-
namical transition between the levels21,0 competes with
the dissipative one. As a result, the dip inG yields to the
massive peak already forhx51024 for the damping param-
eters appropriate for Mn12Ac.

For higher values of the transverse fieldhx , the behavior
of the even and odd resonant peaks is the same. Ashx is
growing, the conditionVmm8(hx)>Gmm8 of Eq. ~5.15! for a
given pair of levelsm,m8 is satisfied at a certain value of th
transverse fieldhxb . At that value them,m8 resonance be-
comes unblocked. This results in a new narrow peak,
width aboutVmm8(hx), which appears on the top of them
11,m821 resonant peak~see Fig. 4!. This situation is quite
universal in the sense that them11,m821 resonant peak
can itself be a narrow peak on top of them12,m822 reso-
nant peak. In general, each resonance consists of a few p
mounting on top of each other. The width of two consequ
peaks within one resonance differs by a factor aboute4

;55, in accordance with Eq.~2.11!. The magnification of the
Hz interval around the resonant valuesHzk shows the self-
similar multitower structure of the resonance. In that stru
ture the total number of peaks depends on the strength o
dissipation, while their height is determined by temperatu
The lower the damping, the greater is the number of
peaks. The lower the temperature, the greater is the dif
ence in the height of the peaks mounting on top of ea
other.

The dependences ofG on the transverse fieldHx for the
resonant and slightly off-resonance values of the bias fi
are shown in Fig. 5. The steps on the resonanceHx depen-
dences ofG correspond to the values ofHx at which the
value of mb determined from Eq.~5.16! takes an integer
value~or a half-integer value for systems of half-integer sp
S). For these values ofHx a resonant shunting of the barrie
at the next deeper level occurs. The flat regions corresp
to the situation when one pair of resonant levels is alre
completely shunted and the following~the lower! one is yet
completely unshunted. The step values ofHx are sensitive to
the sum of the level linewidthsGmb ,m

b8
given by Eq.~4.10!,

and thus such experiments are conceivable as a kind of s

pe
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troscopy measuring the relaxation characteristics ofseparate
levels. The 3d plot of G(Hx ,Hz) summarizing the features o
the resonant tunneling process discussed above is pres
in Fig. 6.

Apart from resonant tunneling, the overall shape
G(Hx ,Hz) follows approximately the Arrhenius law with th
classical barrier heightU(Hx ,Hz). This can be seen espe
cially clear for systems with large spin, frequenc
independent relaxation rates and low temperatures. The
condition is needed to reduce the relative role of the fi
dependence of the prefactorG05G0(Hx) in the classical ex-
pression forG, which is not yet well established~see Refs.
60 and 61!. The comparison of our calculation with the cla
sical result accounting only for the dependence

U~Hx ,Hz!>DS2~12hz!
2F122hx

~12hz
2!1/2

~12hz!
2 G ~7.1!

for hx!1 is presented in Fig. 7. The rather good accorda
between the classical and quantum results illustrates the
jectures of Sec. II in a more general biased case.

FIG. 5. Transverse-field dependence of the resonant tunne
escape rate of the uniaxial spin model.

FIG. 6. Dependence of the escape rate of the uniaxial s
model on the field componentsHx and Hz ~parameters are appro
priate for Mn12Ac!.
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The resonant tunneling curves obtained above do not f
explain the experimental observations14,17–20showing that all
peaks have approximately the same form. The latter can
the consequence of the averaging effect due to the misa
ment of the particle’s axes in not perfectly oriented polycry
talline samples. A similar effect can be caused in Mn12Ac by
nuclear spins whose fluctuating transverse components
in addition, induce tunneling even in the absence of an
ternally applied fieldHx . The corresponding adjustments
our method will be made below.

In a Mn12Ac molecule each of 12 Mn atoms interac
with its own nuclear spinI i , I 55/2, via the hyperfine~HF!
interaction. For the total cluster spin this interaction can
approximately written as

HHF.2AeffSItot , I tot[(
i

I i . ~7.2!

In fact, the hyperfine interactions are somewhat different
different Mn atoms, and their extensive discussion can
found in Ref. 40. If all the nuclear spins are aligned in t
same direction, the energy of the HF interactionEHF, max
.12ISAeff.0.6 K is comparable to the level spacing ne
the top of the barrier,uvm11,mu;2Dm;1 K, and is much
greater than the dipole-dipole energyEd.0.06 K. The effec-
tive HF field produced by the nuclei on the cluster spin is
this case aboutHHF, max.EHF, max/(gmBS).0.05 T. If this
HF field is perpendicular to the easy axisz, the
corresponding dimensionless transverse fieldhx,HF
5gmBHHF, max/(2SD).3.731023 should result in strong
resonant~as well as nonresonant! tunneling; see Fig. 4. On
the other hand, the role of thez component of the HF field in
the resonant tunneling is determined by the dimension
parametergmBHHF, max/D.0.075. This shows that the na
row resonance lines in Fig. 4 should be averaged away
the fluctuatingz component of the hyperfine field; i.e., th
hyperfine interaction suppresses the coherence. This se
effect was discussed by several authors;15 here we will

ng

in

FIG. 7. Longitudinal field dependence of the escape rate o
large-spin uniaxial model in the fixed transverse field. Curve 1 w
obtained from the pure thermoactivation curvehx50 using Eq.
~7.1! for the barrier lowering in the transverse fieldhx50.1.
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11 116 56D. A. GARANIN AND E. M. CHUDNOVSKY
take into account both effects of nuclear spins with the h
of simplified qualitative arguments.

The subtlety of the hyperfine interaction is that it co
serves the total projectionSz1( i I iz , and, strictly speaking
the coupled equations of motion for the tunneling clus
spin and rotating nuclear spins should be solved. In
Arrhenius regime, however, tunneling occurs near the top
the barrier where it is rather fast — it ranges fromVmm8
;uvm11,mu off resonance toVmm8;Gmm8 at resonance. This
is much faster than the nuclear relaxation rate which is du
the fluctuating magnetic fields and is determined by the sm
nuclear magnetic moment. Further, tunneling of the clus
spin near the top of the barrier leads to a relatively sm
change of itsz projection: DSz.2mb!2S. This is not a
large part of the whole integral of motionSz1( i I iz . Indeed,
for the randomly oriented nuclear spins the second term
this sum is on average of orderA12I .8.7, and thus tunnel
ing of the cluster spin can be compensated by the co
sponding rotation of the nuclear spins.~On the contrary, for
tunneling from the ground state atT<T0 the z projection
change isDSz52S520, and this process cannot go via t
interaction with the nuclear spins — it is blocked by t
conservation law.! Thus, in the Arrhenius regime one ca
qualitatively consider nuclear spins as frozen — they do
change their state as a result of the tunneling of the clu
spin. The distribution function of the HF field on the clust
spin can be easily found. As the energy of the interaction
one nuclear spin with the cluster spinISAeff.0.05 K is
much smaller than temperature, one can use the infin
temperature distribution function for individual nucle
spins. Then, for a large number of nuclear spins,N512@1,
the quantum-statistical averages of the total nuclear spinI tot
in Eq. ~7.2! are given by the Gaussian distribution functio

F~ I tot!5
1

~2ps I !
3/2

expS 2
I tot

2

2s I
D , ~7.3!

where the dispersions I5(N/3)I (I 11) can be checked cal
culating the averagêI tot,z

2 & directly and from Eq.~7.3! and
comparing the results. Now, all the previously obtained
pressions for the escape rateG, as well as such quantities a
the time dependence of magnetization and dynamic sus
tibility, should be averaged with the distribution functionF.
In the absence of an externally applied fieldHx , the averag-
ing of each quantityA(Hx ,Hz) is done explicitly as

Ā~Hx ,Hz!5E
0

`

dx 2xe2x2E
2`

`

dz
e2z2

p1/2

3A~xH̄HF,Hz1zH̄HF!,

H̄HF5HHF, max

~2s I !
1/2

NI
, HHF, max5

NIAeff

gmB
. ~7.4!

The results of this averaging for the escape rateG are pre-
sented in Fig. 8. The role of nuclear spins in inducing
resonant tunneling and suppressing the narrow reson
lines is clearly seen. In addition, we have taken into acco
small fluctuations of the directions of the anisotropy axes
Mn 12Ac molecules in polycrystalline samples with the d
persion of onlyDu53°. These misalignments also produce
p
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static fluctuating components of the transverse field, a
their role becomes progressively more important with
increase of the bias fieldHz . One can see that when all thes
effects are taken into account, all the resonant tunne
peaks become approximately of the same form, as obse
in experiments.

VIII. DISCUSSION

We have presented the theory of thermally activated re
nant spin tunneling. The bulk of the theory applies to a
molecular magnet, while particular numerical illustratio
were made for Mn12Ac. Quantization of spin levels, which i
the key to explaining experimental results, has dictated
choice of theoretical apparatus. Rather than employing
stanton methods, suitable for models with continuous sp
tra, we have used the density matrix description of the s
interacting with thermal bath.

In continuous models three regimes for the escape raG
are usually studied. At high temperatures quantu
mechanical effects are not important, and the escape ove
barrier is due to pure thermal activation described by
Arrhenius law. In the limit of zero temperature only tunne
ing out of the ground state is important. There is also
intermediate regime which combines thermal activation
excited levels with tunneling across the barrier, which
called thermally assisted tunneling. In that regime the po
tion of the narrow group of levels which dominate the esca
rate depends on temperature, moving continuously from
ground state atT50 to the top of the barrier at the temper
ture called the crossover temperature. This situation
scribes a conventional, smooth, second-order transition f
quantum tunneling to thermal activation.57 In principle that
transition can also be first order, which would correspond
the sharp crossover from quantum tunneling to therm
Arrhenius-type behavior.56 We have demonstrated that this
exactly what happens for a spin system in a low transve
field. Correspondingly, the experimental study of the esc
rate should find the evolution from sharp to smooth cro
over between thermally assisted tunneling and the Arrhen
regime on the transverse field.

FIG. 8. Resonant tunneling escape rate in Mn12Ac due to
nuclear spins and the crystallite misalignments.
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In systems of moderate spin, such as Mn12Ac, thermally
assisted tunneling occurs in a rather narrow tempera
range. In experiments the Arrhenius law that occurs in
wider temperature range has been observed. Despite
purely classical temperature dependence of the relaxatio
the Arrhenius regime, the field dependence ofG shows quan-
tum effects due to the discrete nature of spin ignored in c
tinuous models. Contrary to these models, which start wit
given barrier, a well-defined barrier does not exist for a m
soscopic spin; its effective value depends on the bias fieldHz
in a nonmonotonic manner. The observed minima of the
fective barrier are due to the crossing of the spin leve
which results in resonant tunneling between the wells. T
is different from a classical spin system where the barr
monotonically decreases with increasingHz . This regime
can be calledthermally activated tunneling, as different from
the regime of thermally assisted tunneling. The differen
between the two regimes is that in the first regime tunnel
always occurs at the top of the barrier, while in the seco
regime it occurs from excited levels between the bottom a
the top of the barrier.

The theory predicts that each resonance in the escape
G has a multitower structure with peaks of decreasing wi
mounting on top of each other. This effect is due to reson
spin tunneling between different matching levels. All pea
are centered at the same field, if the corresponding pai
levels match at the same value of the bias field. Note that
assumpion relies on the simple form of the Hamiltonian us
in our calculations. Additional terms of different symmet
would violate this assumption. If these terms are small,
they are in Mn12Ac, the resonances onHz will not be exactly
equidistant and the centers of peaks towering in each re
nance must be slightly displaced with respect to each ot
ure
a
the
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The number of peaks in each resonance increases with
creasing dissipation.

Depending on the numberk of the resonance@see Eq.
~2.2!#, the leading contribution to the rate appears in even
odd orders of the perturbation theory on transverse fieldHx .
This results in the alternation of the shape of resonances
Hz . Another effect predicted by the theory is the stepw
dependence of the rate on the transverse field when the
gitudinal field is tuned to the resonance.

The origin of the terms in the Hamiltonian responsible f
tunneling is different for different molecular magnets. Th
absence of any selection rules for resonances in Mn12Ac
unambiguously points to transverse fields causing the tra
tions. These fields originate from the hyperfine and, to
smaller degree, from the dipole-dipole interactions. In F8
the hyperfine interactions are negligible, and the transitio
are presumably caused by the transverse anisotropy.

Our theory for Mn12Ac can pretend to the quantitativ
description of the magnetic relaxation in this system, as
takes into account all major contributions to the effect. Ho
ever, observation of more subtle effects, such as the mu
tower structure of resonances, the alternating shape, step
dependence on the transverse field, etc., is less likely
Mn12Ac. This is because of the smearing of these effects
strong fluctuations of the hyperfine field. Fe8 ~see, e.g., Ref.
62! seems to be a better candidate for observing th
effects.
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