
PHYSICAL REVIEW B 1 NOVEMBER 1997-IVOLUME 56, NUMBER 17
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We consider the Ising model and the directed walk on two-dimensional layered lattices and show that the
two problems are inherently related: The zero-field thermodynamical properties of the Ising model are con-
tained in the spectrum of the transfer matrix of the directed walk. The critical properties of the two models are
connected to the scaling behavior of the eigenvalue spectrum of the transfer matrix which is studied exactly
through renormalization for different self-similar distributions of the couplings. The models show very rich
bulk and surface critical behaviors with nonuniversal critical exponents, coupling-dependent anisotropic scal-
ing, first-order surface transition, and stretched exponential critical correlations. It is shown that all the non-
universal critical exponents obtained for the aperiodic Ising models satisfy scaling relations and can be ex-
pressed as functions of varying surface magnetic exponents.@S0163-1829~97!00441-4#
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I. INTRODUCTION

The study of layered Ising models~IM’s ! has been an
active field of research during the last decades. One m
mention the pioneering works on two-dimensional~2D!
periodically1 and randomly2–4 layered lattices. Similarly the
critical behavior of directed walks ~DW’s! in
inhomogeneous5 or random media6 has attracted widesprea
interest.

Recently, following the discovery of quasicrystals,7 on the
one hand, and the progress in molecular beam epitaxy w
allows the production of good quality multilayers, on th
other hand,8 there has been a growing interest in the theo
ical study of phase transitions in quasiperiodic systems a
more generally, aperiodic systems.9 These are deterministi
but nonperiodic structures which are called quasiperio
when the spatial fluctuations are so weak that the Fou
spectrum is still discrete, but point symmetry is incompati
with a periodic structure. Such systems may be considere
intermediates between homogeneous and random ones
consequently, are expected to display a rich variety of crit
behaviors.

A. Previously known results

Most of the early works about phase transitions on ap
odic systems were done on quasiperiodic lattices and did
show any sign of modified critical behavior. Among thes
one may mention an approximate renormalization gro
treatment of the classical IM on the Penrose lattice10 and
Monte Carlo renormalization group studies of the sa
560163-1829/97/56~17!/11031~20!/$10.00
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problem.11,12Universal behavior was also obtained in Mon
Carlo simulations of the percolation problem on the Penr
lattice and its dual13 as well as for the statistics of self
avoiding walks.14 One may notice, as an exception, the an
lytical renormalization group study of interfacial roughnes
still on the Penrose lattice, where the fluctuating interfa
‘‘feels’’ a Fibonacci quasiperiodic potential. In this case,
marginal behavior was obtained for the decay of the tra
verse correlations.15

Probably the most studied system is the aperiodically l
ered 2D classical IM and its quantum counterpart in the
treme anisotropic limit,16 the aperiodic Ising quantum chai
in a transverse field.

In the classical formulation, the energy of a configurati
is given by

2bH5(
k,l

K1~k!sk,lsk,l 111(
k,l

K2~k!sk,lsk11,l ,

~1.1!

where thes’s are the spin-1/2 Ising variables, andK1 andK2
are the exchange interactions in the vertical and horizo
directions, respectively. Their values are the same in a
tical layerk and are modulated according to some aperio
sequence in the horizontal direction.

In the extreme anisotropic limit (K1→`,K2→0), the
transfer matrix between successive rows in the vertical dir
tion can be written as exp(2tH), wheret52K1* is the in-
finitesimal lattice spacing in the Euclidian time direction.H
is the Hamiltonian of a spin-1/2 quantum Ising chain in
transverse field:
11 031 © 1997 The American Physical Society
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H52
1

2 (
k51

L

hksk
z2

1

2 (
k51

L21

Jksk
xsk11

x , ~1.2!

where thes i
x,z’s are Pauli spin matrices. The transverse fie

hk „such thathkK1* is the dual couplingK1* (k) given by
exp@22K1* (k)#5tanhK1(k)… plays the role of the temperature
The couplingJk is the ratioK2(k)/K1* . In general, due to
universality, the classical and quantum systems have
same critical properties. Only in the presence of a marg
perturbation which leads to nonuniversal exponents are
corresponding quantum exponents obtained by taking an
propriate limit of the classical expressions.

Usually the aperiodic modulation is assumed to invo
only the horizontal couplings, i.e., the two-spin interactionJk

andhk51. The fluctuation around the averageJ̄ at a length
scaleL is measured by

D~L !5 (
k51

L

~Jk2 J̄!. ~1.3!

When the aperiodic couplings are generated via substitut
using an inflation rule, this quantity behaves asLv, wherev
is the wandering exponent of the aperiodic sequence whic
linked to the two leading eigenvalues of a substituti
matrix.17,18

For sequences with bounded fluctuations (v,0) the ape-
riodic perturbation does not change the Ising critical beh
ior. This was shown analytically by Tracy in the case of t
Fibonacci sequence, withv521, for the 2D layered IM.
The Onsager logarithmic singularity of the specific heat th
keeps a nonvanishing finite amplitude.19 The same conclu-
sion was reached for the Ising quantum chain with gene
ized Fibonacci modulations of the couplings.20 The low-
energy spectrum of the quantum chain which, through
gap-exponent relation on finite critical chains, gives the v
ues of the critical exponents was shown to be unaffected
a quasiperiodic modulation.21 Universal behavior was als
obtained with the Thue-Morse sequence and
generalizations.22 In this case, the quantum chain is not qu
siperiodic but the fluctuations remain bounded.

For an aperiodic sequence with unbounded fluctuati
(v.0), Tracy23 noticed that the Onsager singularity is su
pressed like in the randomly layered McCoy-Wu model.2

The situation was later clarified by Luck24 who proposed
a generalization of the Harris criterion for quench
randomness25 adapted to the case of aperiodic fluctuations
the couplings~see also Ref. 26!. By comparing the mean
shift of the local temperature in the 2D layered system~gov-
erned by the wandering exponentv!, at the scale of the cor
relation length of the unperturbed system, to the deviat
from the critical temperature, one obtains a crossover ex
nentf511n(v21). It controls the evolution of the ampli
tude of the aperiodic modulation when one approaches
critical point. For the 2D IM withn51, the crossover expo
nent is equal to the wandering exponent so that, quite ge
ally, the aperiodic modulation becomes a relevant pertur
tion and changes the Ising critical behavior when
fluctuations are unbounded, as conjectured by Benzaet al.20

One must notice that the correspondence between rele
perturbations and unbounded fluctuations holds only w
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n51. The marginal behavior obtained for the Fibonacci
quence with bounded fluctuations in the case of the interf
roughness problem15 follows from Luck’s criterion wheren
is now the correlation length exponent in the transverse
rectionn'51/2. Finally let us mention that for a randoml
layered system the relevance-irrelevance criterion app
with v51/2.

In the same work,24 Luck checked the validity of his cri-
tierion for random and aperiodic quantum Ising chains.
treat the aperiodic problem he considers periodic appro
mants, i.e., a periodic quantum chain with a large unit cel
lengthL in which the couplingsJk are distributed according
to the aperiodic sequence. He deduces the low-energy be
ior of the fermionic excitations27 L from a perturbation ex-
pansion inL. For the unperturbed problem at criticality, th
massless excitations have a linear low-energy dispersion
lation L5vq wherev is the velocity andq the wave vector.
On the periodic approximant aL-dependent velocityvL is
obtained and the properties of the aperiodic system are g
erned by the limiting behavior ofvL whenL goes to infinity.
The behavior of the singular part of the ground-state ene
corresponding to the free energy in the 2D classical syst
is linked to the low-energy excitation spectrum and its te
perature dependence can be obtained through a scaling
ment.

For sequences with bounded fluctuations (v,0), vL is
bounded and nonvanishing in the limitL→` so that the
Onsager logarithmic critical singularity is preserved. For u
bounded fluctuations (v.0), the typical velocity vanishes
exponentially, leading to an essential singularity for the s
gular part of the ground-state energy as in the case of ran
chains. Finally, when the fluctuations grow on a logarithm
scale (v50), the typical velocity vanishes as a nonunivers
power of L. The perturbation is marginal, and the speci
heat exponent is negative~the logarithmic singularity is sup
pressed! and varies continuously with the amplitude of th
aperiodic modulation. This marginal behavior was check
numerically.

B. Renormalization-group method and main results

The results obtained so far for different aperiodic mod
lations in different models are all in accordance with Luck
criterion.28–35 Most of the activity in our groups was con
cerned with the study of the surface and bulk critical pro
erties of 2D aperiodically layered IM’s, either using the 1
quantum formulation or working on a triangular lattice, ma
ing use of the star-triangle relation.

Although some relevant perturbations were treated
Refs. 28 and 29, we mainly considered marginal aperio
perturbations. The continuously varying surface magne
exponentxms

5bs /n was obtained analytically for differen
aperiodic sequences whereas the scaling dimension of
surface energy was conjectured on the basis of finite-
scaling studies.32–35

The marginal aperiodic models were found to display a
isotropic scaling.30,31,33The correlation length diverges wit
different exponents along and through the layers with a ra
z5n i /n, giving a continuously varying anisotropy exponen
Such a behavior was in fact implicitly contained in Luck
work24 where a power-law dependence onL was found in
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the marginal case. Accurate numerical calculations of
anisotropy exponentz led us to propose a simple scalin
relation betweenz and the surface magnetic exponents
both sides of the system,xms

and x̄ms
. The anisotropic scal-

ing of bulk and surface properties was extensively studie
Ref. 33.

In this paper we present the results of an ex
renormalization-group~RG! study of aperiodic and hierar
chical Ising and DW models. The introduction of RG tec
niques into the field of phase transitions and critical pheno
ena has largely contributed to our understanding of
properties of the critical state. For instance, the RG met
has given a natural explanation for the scaling hypothe
and universality. At the same time, it has provided power
procedures to calculate critical exponents,36 albeit generally
using some approximation, e.g., approximate RG trans
mations, expansions in a small parameter (e,1/N,...), or nu-
merical methods. There are few nontrivial problems in s
tistical mechanics for which the RG transformation can
worked out exactly. One may mention the IM on the tria
gular lattice37 or different physical processes on self-simil
fractal objects.38

Here we develop exact RG solutions for a class of
layered Ising and DW models. The novel feature of our
proach is that we study both problems within the framew
of the same RG transformation. It is based on a hithe
unnoticed connection between the eigenvalue problem
fermionic excitations which enters the solution of the I
~Ref. 27! and the transfer matrix of a DW in two dimension
Both problems are considered on layered lattices, such
the walk is directed along the translationally invariant dire
tion. The solution of the DW, which means the diagonaliz
tion of its transfer matrix~TM!, provides in principle all the
necessary information to obtain the zero-field thermo
namical properties and correlation functions of the IM.

The critical properties of the two models are connected
the scaling behavior of the eigenstates of the TM at differ
edges of the spectrum. An exact RG study of the eigenva
problem of the TM is performed for different self-simila
distributions of the couplings andthe critical properties of
the IM and the DW are governed by two different fixed poi
of the same RG transformation.

Our method is well adapted to the case of self-sim
perturbations. It is quite different from the approxima
renormalization-group technique recently introduced
Fisher to treat randomly layered systems.3 In this approach,
which leads to exact results in the critical domain, instead
using the transformation to fermions, Fischer works on
Hamiltonian itself, reducing the energy scale of the probl
by a systematic elimination of the stronger couplings

The bulk and surface critical properties are examined
several aperiodic and hierarchical sequences. In all of
models we studied the aperiodicity is marginal at the Is
fixed point and induces continuously varying critical exp
nents. The bulk anisotropy exponentz and the correlation
length exponentsn, on the one hand, and the surface ene
exponentxes

and the surface magnetization exponentsxms

and x̄ms
, on the other hand, are obtained analytically. W

also prove the previously conjectured relation between
anisotropy and surface magnetic exponents,z5xms

1 x̄ms
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.1, which holds for sequences which modifiy the critic
coupling. A simple scaling picture emerges in which the s
face magnetic exponents play a fundamental role: All
nonuniversal exponents~except the bulk magnetic one, no
considered in this work! can be expressed as functions
these two surface magnetic exponents. The surface en
exponent is given byxes

5z12xms
on one side of the chain

and x̄es
5z12x̄ms

on the other, whereas the specific heat e

ponent is given bya512z,0.
With aperiodic sequences with a vanishing density

modified couplings, which changes the critical behavior o
locally near the surface, there is no anisotropy in the bulk
the system (z51). For sufficiently strong modified cou
plings, the surface remains ordered at the bulk critical po
and then the first excitation alone scales in an anoma
way, with a continuously varying power of the size of th
system.

Finally one may mention that these marginal aperio
Ising sytems are closer to periodic than to randomly laye
ones. The varying exponents evolve continuously from th
unperturbed values when the aperiodic modulation grows
particular we checked numerically that the gap is nonvan
ing in the disordered phase, i.e., that there is no trace
Griffiths phase,39,3 as expected for systems with bound
fluctuations.24 Even with relevant aperiodic perturbation
which by some aspects are closer to random ones, displa
essential singularities in the singular part of the ground-s
energy24 and in the surface magnetization,29 the Griffiths
phase is absent according to a recent study.40

A short account of our results, concerning the bulk critic
behavior, has been given in a recent Letter.41

The structure of the paper is the following. The relati
between the IM and the DW is presented in Sec. II; aft
wards the basic properties of aperiodic sequences are r
pitulated in Sec. III. In the following sections, Secs. IV
VIII, the RG transformation is worked out for differen
aperiodic and hierarchical models which were chosen in
der to illustrate the different renormalization procedures o
may use, in particular in the treatment of the surface prop
ties. Both the bulk and surface critical behaviors are stud
Some relations between the critical exponents of the IM
derived in Sec. IX and the results are discussed in Sec
Details about the derivation of the RG equations for the s
cific models are collected in the Appendixes.

II. RELATION BETWEEN THE ISING QUANTUM CHAIN
AND THE DIRECTED WALK MODEL

Using a Jordan-Wigner transformation,42 the Ising Hamil-
tonian ~1.2! can be rewritten as a quadratic form in fermio
operators. It is then diagonalized through a canoni
transformation27 which gives

H5 (
q51

L

LqS hq
†hq2

1

2D , ~2.1!

wherehq
† andhq are fermion creation and anihilation oper

tors, respectively. The fermion excitationsLq are non-
negative and satisfy the set of equations

LqCq~k!52hkFq~k!2JkFq~k11!,
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LqFq~k!52Jk21Cq~k21!2hkCq~k!, ~2.2!

with the boundary conditionsJ05JL50. The vectorsFq’s
andCq’s, which are related to the coefficients of the cano
cal transformation, are normalized. They enter into the
pressions of correlation functions and thermodynam
quantities.27

Usually one proceeds by eliminating eitherCq or Fq in
Eqs.~2.2! and the excitations are deduced from the solut
of one of the following eigenvalue problems:

Jk21hk21Fq~k21!1~Jk21
2 1hk

2!Fq~k!1JkhkFq~k11!

5Lq
2Fq~k!,

Jk21hkCq~k21!1~Jk
21hk

2!Cq~k!1Jkhk11Cq~k11!

5Lq
2Cq~k!, ~2.3!

with the same boundary conditions as above. This last
can be avoided by introducing a 2L-dimensional vectorVq
with components

Vq~2k21!52Fq~k!, Vq~2k!5Cq~k!, ~2.4!

and noticing that the relations in Eqs.~2.2! then correspond
to the eigenvalue problem for the matrix:

T5S 0 h1 0 0 0 0 •••

h1 0 J1 0 0 0 •••

0 J1 0 h2 0 0 •••

0 0 h2 0 J2 0 •••

A A � �

D . ~2.5!

Taking the square ofT, odd and even components ofVq are
decoupled, and one recovers the two eigenvalue equatio
Eqs. ~2.3!. The matrixT can be interpreted as the TM of
DW problem on two interpenetrating, diagonally layer
square lattices as shown in Fig. 1. The walker makes s
with weightshk andJk between first-neighbor sites on one
the two square lattices and the walk is directed in the di
onal direction.

According to Eqs.~2.2!, changingFq into 2Fq in Vq ,
the eigenvector corresponding to2Lq is obtained. Thus all
the information about the DW and the IM is contained in th
part of the spectrum withLq>0. Later on we shall restric
ourselves to this sector.

Let us now consider the correlation lengths in the dir
tion parallel to the layers in both problems. For the DW
can be expressed as a function of the two leading eigenva
of the TM with

FIG. 1. Portion of two interpenetrating diagonally layer
square lattices involved in the transfer matrix of the directed wa
The fugacities are alternativelyhk andJk .
-
-
l

n

ep

in

ps

-

t

-
t
es

j i
DW5F lnS LL

LL21
D G21

.
LL

LL2LL21
. ~2.6!

Thusj i
DW is proportional to the inverse gap at the top of t

spectrum of the TM. For the IM in the disordered phase,
correlation length is the inverse of the lowest excitation e
ergy of the HamiltonianH in Eq. ~2.1!:

j i
IM;L1

21 . ~2.7!

The fermionic excitationL1 is also the lowest eigenvalue i
the positive sector of the TM.43

When any one of the two critical points is approached,
correlation length of the problem diverges and the cor
sponding part in the TM spectrum displays a scaling beh
ior. Let us consider a finite system with transverse sizeL
@1 and denote byDL i eitherLL2LL2 i for the DW orL i
for the IM with i !L. Under a change of the length scale b
a factorb.1 such thatL85L/b, the gaps are expected t
transform as

~DL i !85byLDL i , ~2.8!

where the scaling dimension is generally different for diffe
ent parts of the spectrum. This leads to the finite-size sca
behaviorDL i(L);L2yL and, according to Eqs.~2.6! and
~2.7!, the longitudinal correlation lengths behave asj i

;LyL. Since j';L, the anisotropy exponentz, defined
throughj i;j'

z ,44 is given by

z5yL . ~2.9!

In the case of the DW one is interested in the transve
fluctuations of the walk which are characterized by a wa
dering exponentw throughj';j i

w ~Refs. 5 and 34! so that

w5yL
21 . ~2.10!

III. SUBSTITUTION MATRIX
AND RELEVANCE-IRRELEVANCE CRITERION

In the following, except for the hierarchical sequence,
consider sequences generated via substitutions on a fi
alphabet such that, in the case of two lettersA and B,
A→S(A), B→S(B). The properties of the sequence a
governed by its substitution matrix17,18

M5S nA
S~A! nA

S~B!

nB
S~A! nB

S~B!D , ~3.1!

where the matrix elementni
S( j ) gives the number ofi in S( j ).

The matrix elements inMn give the same numbers in th
sequence obtained aftern iterations. When the substitutio
starts with j , the corresponding numbers are contained
column j .

If Un denotes the right eigenvector ofM with eigenvalue
Vn , the asymptotic density ofi is given by

r`
~ i !5

U1~ i !

( jU1~ j !
, ~3.2!

.



ing

b

-
-

it
e
-
f
t

m
d
a

n
l

n
d
li

2D

is

g

ei-

d-
tion

d

ated
ts of
rey

56 11 035EXACT RENORMALIZATION-GROUP STUDY OF . . .
where U1 is the eigenvector corresponding to the lead
eigenvalueV1 . The length of the sequence aftern iterations
is related to the leading eigenvalue throughLn;V1

n so that
V1.1.

In the following, each letter in the sequence is replaced
one digit or more~for examples,A50, B51!. Thus one
obtains a sequence of digitsf k (k51,2,...,L). The aperiodic
Hamiltonian is defined as in Eq.~1.2! with a constant trans
verse fieldhk5h and a modulation of the couplings follow
ing the aperiodic sequence,

Jk5JRf k, ~3.3!

whereJ is the unperturbed interaction andR the modulation
ratio.

When f k50,1, the cumulated deviationD(L) from the
averaged couplingJ̄ defined in Eq.~1.3! scales withL as

D~L !5J~R21!~nL2Lr`!;duV2un;dLv. ~3.4!

In this expression,

nL5 (
k51

L

f k , r`5 lim
L→`

nL

L
~3.5!

give the number of digits equal to 1 in a sequence w
lengthL and their asymptotic density, which can be deduc
from Eq.~3.2!, respectively;V2 is the next-to-leading eigen
value of the substitution matrix,d measures the amplitude o
the aperiodic modulation, andv is the wandering exponen
of the sequence, given by

v5
lnuV2u
lnV1

. ~3.6!

Thus the mean shift of the coupling strengthdJ(L) at a
length scaleL, proportional toLv21, is governed by the
wandering exponent.

The relevance of the perturbation follows when one co
pares the deviationt from the critical point to the average
temperature shiftdt;dJ(j) induced by the aperiodicity at
length scale given by the correlation lengthj;t2n:24

dt

t
;t2f, f511n~v21!. ~3.7!

Whenf.0, the ratio is divergent, which indicates a releva
perturbation. Whenf,0, the ratio vanishes at the critica
point and the perturbation is irrelevant. Finally, whenf
50, the perturbation is marginal and may lead to a nonu
versal behavior. The same conclusions can be reache
calculating the scaling dimension of the modulation amp
tuded, which is equal tof/n.28

For a strongly anisotropic unperturbed systemn in Eq.
~3.7! has to be replaced by the exponentn' of the correlation
length in the direction perpendicular to the layers in the
system.34

The critical transverse field of the inhomogeneous IM
generally given by45

hc5 lim
L→`

)
k51

L

~Jk!
1/L. ~3.8!
y

h
d

-

t

i-
by
-

Introducing the reduced couplingl5J/h, its critical value
on the aperiodic quantum chain follows from Eqs.~3.3!,
~3.5!, and~3.8! as

lc5R2r`. ~3.9!

IV. PERIOD-DOUBLING SEQUENCE

A. Definition and general properties

The period-doubling sequence46 follows from the substi-
tutions A→S(A)5AB, B→S(B)5AA. Here we make the
identification A50 and B51, i.e., JA5J and JB5JR ac-
cording to Eq.~3.3!. Thus starting onA, after n iterations,
one obtains the following sequences of digitsf k :

n50, 0,

n51, 01,

n52 0100,

n53, 01000101,

n54, 01I 00I 01I 01I 01I 00I 01I 00I . ~4.1!

The eigenvalues of the substitution matrix areV152 and
V2521 so that the wandering exponentv, given by Eq.
~3.6!, vanishes. The asymptotic densityr`5r`

(B)51/3 fol-
lows from Eq.~3.2! and leads to the Ising critical couplin
lc5R21/3, according to Eq.~3.9!.

One easily verifies on the last line of Eqs.~4.1! that the
f k’s satisfy the relations

f 2k512 f k , f 2k1150. ~4.2!

B. Bulk critical behavior

We now proceed to the exact renormalization of the
genvalue equations, associated with the matrix~2.5!, which
follow from Eqs.~2.2! and~2.4!. We first treat the bulk prob-
lem on a semi-infinite system. To recover the perio
doubling sequence of interactions after one renormaliza
step, we eliminate triplets of interactions (J,RJ,J) indicated
by crosses in Fig. 2. Using reduced couplingslk5Jk /h and
a reduced eigenvalueL̂5L/h, the RG equations, as derive
in Appendix A, are given by

L̂85L̂
c2d

Rl3 , l85
c

Rl2 , ~4.3!

wherec andd are defined in Eqs.~A2!.

FIG. 2. Matrix elementsTk,k11 as a function ofk for the period-
doubling sequence. Components of the eigenvector to be decim
out in the RG transformation are denoted by crosses. The heigh
solid vertical bars indicate the strength of the couplings; the g
bars stand for the field.
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According to Eqs.~A3! and ~A4!, the components of the
eigenvectors transform as

V8~2k!5V~8k!, V8~2k11!5V~8k11!. ~4.4!

The bulk IM fixed point corresponds to

L̂* 50, l* 52R21/3, ~4.5!

which, using Eqs.~A2!, leads to

c* 521, d* 511R2/31R22/3. ~4.6!

Thus the eigenvalues of the linearized transformation
given by

bz5
]L̂8

]L̂
U* 5~R1/31R21/3!2, byt5

]l8

]l
U* 54, ~4.7!

and, withb54, one obtains

z5
ln~R1/31R21/3!

ln2
, yt5n2151, ~4.8!

thus confirming the conjecture of Ref. 30.
The top of the spectrum, which governs the behavior

the DW, scales to a fixed point withL̂→` andl→`. Thus
it is convenient to write the RG equations in terms of t
new variablesk51/l anda5L̂/l, leading to

k85k4
R

A
, a85aS 12k2

B

AD ,

A5~a22R2!~a221!212k2a2~12a2!1k4a2,

B5~a22R2!~a221!1k2~122a2!1k4. ~4.9!

From Eqs.~4.9! the DW fixed point is given by

k* 50, D* 5a* 22R250. ~4.10!

The scaling behavior at the DW fixed point is different f
the homogeneous model, withR51, and for the aperiodic
one, withRÞ1. First we start with the homogeneous mod
where the separatrix in the~D,k! plane is linear at the fixed
point: D(k)5a* k. According to Eqs.~4.9!, a point with
coordinatesD5ak,k!1, which lies close to the separatri
is repelled by the fixed point as

k85
k

a322a
, D85DF122

a221

a2~a222!G , ~4.11!

and thusa85D8/k8 is given by

a85a424a212. ~4.12!

The fixed-point valuea* 52 determines the equation of th
separatrix while the leading eigenvalue of the transform
tion, e15]a8/]au* 516, is connected to the gap expone
through yL5 lne1 /lnb52. Consequently, the wandering e
ponent is given by

w5
1

yL
5

1

2
~R51!, ~4.13!
re

f

,

-
t

in agreement with known results.5

For the aperiodic model the separatrix has a quadr
dependenceD(k)5b* k2 when k!1, with b* 5(&R
22R2)/(12R2), in contrast to the linear behavior for th
homogeneous model. The scaling behavior of a point w
coordinatesD5bk2,k!1, close to the separatrix, can b
deduced from Eqs.~4.9! as k8;k2 and D8;D, thus
D8/k8;D1/2/k. Consequently, at a fixedk5k8!1 we ob-
tain D8;D1/2, which represents a strong repulsion. This ty
of scaling behavior is compatible with an essential singu
ity in the gaps at the top of the spectrum:

DL i;exp~2CLs!, ~4.14!

with s51/2 since the rescaling factor isb54. From Eq.
~4.14! the parallel correlation length of the DW is given b
j i

DW;(DL1)21;exp(CL1/2), and thus the transverse fluc
tuations of the walk grow anomalously, on a logarithm
scale:

^@X~ t !2X~0!#2&1/2; ln2~ t !. ~4.15!

HereX(t) denotes the position of the walker at timet. We
note that the same asymptotic behavior is found in the S
model of a one-dimensional random walk in a rando
environment.47

C. Surface critical behavior

We now turn to the renormalization of the surface bloc
looking for the scaling behavior of the surface temperat
ts . In order to do so, we apply a modified transverse fi
h15hts on the first site. As shown in Appendix A the RG
transformation now generates an auxiliary variableu, in
terms of which the recursion relations are given by

ts8
25ts

2 c2d

c2dts
2 , u825u2

c2d

c2dts
2 , ~4.16!

wherec andd are the parameters defined in Eqs.~A2!. The
auxiliary variableu, which does not enter into the renorma
ization of ts , may be discarded.

For the bulk Ising-fixed-point values ofc andd given in
Eqs. ~4.6!, the transformation of the surface temperatu
gives two surface fixed points with

]ts8
2

]ts
2 U* 5~R1/31R21/3!22,1, ts*

251, ~4.17a!

]ts8
2

]ts
2 U* 5~R1/31R21/3!2.1, ts*

250. ~4.17b!

Thus the attractive fixed point in the critical surface, cor
sponding to Eq.~4.17a!, governs the surface critical behavio
and leads to the scaling dimension of the surface temp
ture,

yts
52

ln~R1/31R21/3!

ln2
, ~4.18!

in agreement with the conjecture of Ref. 33. The same qu
tity at the repulsive fixed point, corresponding to Eq.~4.17b!,
is given by
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ỹts
5

ln~R1/31R21/3!

2ln2
. ~4.19!

We now consider the critical behavior of the surface m
netization of the aperiodic IM. For a semi-infinite layere
system, the surface magnetization is simply given by the
component of the normalized eigenvectorF1 corresponding
to the lowest fermionic excitation, which vanishes in the
dered phase:48

ms5F1~1!, (
k51

`

F1
2~k!51. ~4.20!

According to Eq.~2.4!, its scaling dimensionxms
can be

deduced from the renormalization of the odd component
V at the Ising fixed point which corresponds toL* 50.

Like V(8k17) in Eqs.~A2!, the odd components insid
each block can be expressed as functions ofV(8k11) and
V(8k18) using Eqs.~A1b!–~A1g!. At the fixed point, tak-
ing Eqs.~4.4! into account, one obtains

F* ~4k11!5F8* ~k11!, F* ~4k12!5R1/3F8* ~k11!,

F* ~4k13!52R21/3F8* ~k11!,

F* ~4k14!5F8* ~k11!. ~4.21!

Thus the normalization ofF* leads to

(
k50

`

(
l 51

4

F* 2~4k1 l !5~R1/31R21/3!2(
k50

`

F8* 2~k11!51.

~4.22!

Near the critical point, the surface magnetization transfor
as

ms85
F8* ~1!

A(k50
` @F8* ~k11!#2

5bxmsms , ~4.23!

so that, using Eq.~4.22!, ms85(R1/31R21/3)ms and, withb
54,

xms
5

ln~R1/31R21/3!

2 ln2
, ~4.24!

in agreement with an analytical result for the surfa
magnetization.28 The thermal and magnetic surface scali
dimensions are related through

xms
52

1

2
yts

, ~4.25!

a relation conjectured in Ref. 33. Furthermore, compar
Eqs.~4.24! and ~4.19!, one may verify that

xms
5 ỹts

. ~4.26!

These relations, which are generally valid for the IM, will b
discussed in Sec. IX.
-

st

-

of

s

g

V. HIERARCHICAL SEQUENCE

A. Definition and general properties

In the generalized hierarchical sequence associated
an integerm.1, the positionsk of the digits f k satisfy the
relation49,31

k5mf k~ml1p!, l 50,1,..., p51,2,...,m21.
~5.1!

With m52, the Huberman-Kerszberg sequence
recovered.50

We recently noticed that these hierarchical sequences
be also generated via substitution, using an alphabet with
infinite number of letters. Let us put the letters in correspo
dance with the natural numbers; thef k’s then follow from
n→S(n) with51

~5.2!

Starting withn50, repeated applications of Eq.~5.2! for m
52 leads to the following sequence at the fourth step:

01I02I01I03I01I02I01I04I . ~5.3!

According to Eq.~3.3!, it corresponds to the interactionsJ1
5J, J25JR, J35J, J45JR2,... .

One may notice that the underlined termsf 2k give back
the original sequence withf k replaced byf k11. The same
property remains true forf mk with any value ofm so that

f mk5 f k11, f mk115 f mk125•••5 f mk1m2150.
~5.4!

The Ising critical coupling is still given by Eqs.~3.5! and
~3.9! wherenL can be evaluated recursively. Using Eqs.~5.4!
for a sequence withL5mp, we obtain

nmp5 (
k51

mp21

f mk5nmp211mp21

5mp211mp221•••115
mp21

m21
, ~5.5!

which leads to

r`5
1

m21
, lc5R21/~m21!. ~5.6!

B. Bulk critical behavior

In the exact renormalization group transformation, w
decimate out those sites of the lattice, which have connec
by a J coupling. In such a way, blocks of 2(m21) sites are
eliminated as indicated by crosses in Fig. 3. Using the
duced variablesl5J/h and L̂5L/h, a lengthy calculation
detailed in Appendix B leads to the transformation

L̂85L̂
D2m22

lm21 1
D2m23

lm21 , l85lR
D2m22

lm21 , ~5.7!
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where theD ’s are determinants defined in Eq.~B3!.
With m52 andm53 one obtains

L̂85
L̂

l2 ~L̂22l221!, l85R~L̂22l2! ~m52!,

~5.8a!

L̂85
L̂

l
@~L̂22l2!222L̂21l211#,

l85
R

l
@~L̂22l2!22L̂2# ~m53!. ~5.8b!

The RG transformation in Eqs.~5.7! has an Ising fixed poin
with L̂* 50. To study the behavior of the system close to t
fixed point, we expand the determinantsD2m22 andD2m23

to linear order inL̂:

D2m225~2l2!m211O~L̂2!,

D2m235~21!m21L̂
12l2m22

12l2 1O~L̂3!. ~5.9!

Putting these expressions into Eqs.~5.7!, we obtain the loca-
tion of the Ising fixed point:

FIG. 3. As in Fig. 2 for the hierarchical sequence withm52.
4
re
se
s L̂* 50, l* 5~21!m21R21/~m21!. ~5.10!

The eigenvalues of the linearized transformation are gi
by

bz5
]L̂8

]L̂
U* 5

ul* um2ul* u2m

ul* u2ul* u21
, byt5

]l8

]l
U* 5m,

~5.11!

and withb5m one obtains

FIG. 4. Schematic RG phase diagram for the hierarchical mo
There are two nontrivial fixed points on the separatrix, atL* 50 for
the IM and at a nonvanishing value ofL* for the DW. The two
fixed points generate fixed lines~not shown here!, parametrized by
the modulation ratioR, in an extended parameter space. These fi
lines govern the marginal behavior of the IM and the DW, resp
tively. For the period-doubling, three-folding, and paper-folding s
quences the scaling is anomalous at the DW fixed point whic
shifted to infinity.
z5
ln~ uRm/~m21!2R2m/~m21!u!2 ln~ uR1/~m21!2R21/~m21!u!

lnm
, yt5n2151, ~5.12!
in agreement with the conjecture of Ref. 31.
Another fixed point of the transformation withL̂* .0

governs the critical behavior of the DW as shown in Fig.
The position of this fixed point and the values of the cor
sponding critical exponents can be calculated in a clo
form only for m52 andm53.

The DW fixed point form52 is deduced from Eq.~5.8a!
as

L̂* 5
A12R1R2

12R
, l* 5

R

12R
. ~5.13!

The leading eigenvalue of the linearized transformation
given by

e15R211R1
1

2
1F S R211R1

1

2D 2

22G1/2

, ~5.14!

and thus the wandering exponent of the walk is
.
-
d

is

w5
1

yL
5

ln2

lne1
, ~5.15!

since the rescaling factor isb52.
The DW fixed point form53, which follows from Eq.

~5.8b!, is located at

L̂* 5A11R2

12R
, l* 5

&R

12R
. ~5.16!

The leading eigenvalue reads

e152~R211R11!1@4~R211R11!223#1/2,
~5.17!

and the wandering exponent of the walk is given by

w5
1

yL
5

ln3

lne1
, ~5.18!

since the rescaling factor is nowb53.
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C. Surface critical behavior

At the surface of the system we define a modified surf
field h15hts with scaling dimensionyts

and introduce an
auxiliary variableu to take into account the asymmetry
the renormalized couplings. In terms of the reduced v
ables, Eqs.~B1! have to be supplemented forn50 with the
first two equations

2L̂V~1!1utsV~2!50,

ts

u
V~1!2L̂V~2!1lV~3!50. ~5.19!

Then, besides the recursion relations of the bulk variable
Eqs.~5.7!, we have two more relations for the surface field

ts85tsF D2m221D2m24

D2m221ts
2D2m24

G1/2

,

u85uF D2m221D2m24

D2m221ts
2D2m24

G1/2

, ~5.20!

whereD2m24 is defined throughD2m235L̂D2m24 . Here, as
before, the auxiliary variableu does not enter into the reno
malization ofts and may be discarded.

As one can see from Eqs.~5.20!, there are two surface
fixed points atts* 50 and atts* 51, from which the latter is
stable, both on the IM and the DW critical surfaces. Eva
ating the linearized RG transformation around the sta
fixed point, one obtains, for the scaling dimension of t
surface temperature,

yts
52

ln~11R2/~m21!1R4/~m21!1•••1R2!

lnm
~ IM !

~5.21!

for the IM as expected from numerical results31 and

yts
52

lnR

lnm
~DW!, ~5.22!

for the DW.
The scaling dimension of the surface temperature for

DW is related to the anomalous diffusion exponentdw on the
hierarchical lattice. According to exact results,49,38 the mean-
square displacement of a diffusive particle in a hierarch
environment is asymptotically given bŷX2(t)&;t2/dw,
where

dw5H 12 lnR/ lnm, R,1/m,

2, R.1/m.
~5.23!

Thus one hasdw511yts
for anomalous diffusion, i.e., with

R,1/m.
One can also deduce the scaling dimension of the sur

magnetization of the IM from the rescaling of the surfa
component of the eigenvectorF1(1). Following the same
way as for the period-doubling sequence in Sec. IV C, w
the fixed-point parameters in Eqs.~5.10!, one obtains
e

i-

in
:

-
le

e

l

ce

h

xms
5

ln~11R2/~m21!1R4/~m21!1•••1R2!

2 lnm
~ IM !,

~5.24!

in agreement with Ref. 52 form52 and Ref. 31 for any
value ofm. One can easily check that the scaling relations
Eqs. ~4.25! and ~4.26! are satisfied for the hierarchical IM
too.

VI. THREE-FOLDING SEQUENCE

A. Definition and general properties

The three-folding sequence53 is generated through th
substitutionsA→S(A)5ABA and B→S(B)5ABB. Start-
ing on A with A50 and B51, at the third iteration, one
obtains

010I011I010I010I011I011I010I011I010I . ~6.1!

The substitution matrix has eigenvaluesV153 and V2
51, leading to the wandering exponentv50. The
asymptotic density isr`51/2 and giveslc5R21/2 for the
Ising critical coupling. The same sequence is recovered w
one keeps every third term, underlined in Eq.~6.1!. The dig-
its in between are always 0 and 1 so that the following re
tions are obtained:

f 3k5 f k , f 3k1150, f 3k1251. ~6.2!

B. Bulk critical behavior

To proceed to the bulk renormalization one consid
blocks of six eigenvalue equations from which four, ind
cated by crosses in Fig. 5, are eliminated so that the resca
factor is nowb53. It is convenient to use the reduced eige
valueL̃5L/J and the temperaturelike parameterm5h/J as
well as an auxiliary variablek which is needed to take into
account the form of the couplings after renormalization. T
decimation described in Appendix C leads to the renorm
ized variables

L̃85L̃F S 12
c

eD S 12
d

eD G1/2

, m85
Rm3

e
, k825k2

c2e

d2e
,

~6.3!

wherec, d, ande are the parameters defined in Eqs.~C2!.
The components of the eigenvectorV transform as

V8~2k!5V~6k!, V8~2k11!5V~6k11!. ~6.4!

At the IM fixed point

L̃* 50, m* 5R1/2, ~6.5!

and, according to Eqs.~C2!,

FIG. 5. As in Fig. 2 for the three-folding sequence.
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c* 52R2~R11!, d* 52R~R11!, e* 5R2.
~6.6!

The auxiliary parameterk, which does not enter into th
renormalization of the physical variables, need not be furt
considered. The eigenvalues of the linearized RG trans
mation follow from Eqs.~6.3! with

]L̃8

]L̂
U* 5@~21R!~21R21!#1/2,

]m8

]m
U* 53. ~6.7!

Thus, withb53, one obtains the bulk scaling dimensions

z5
ln@~21R!~21R21!#

2 ln3
, yt5n2151, ~6.8!

as expected, according to the numerical study of Ref. 33
The top of the spectrum again scales to infinity~L→`,

J→`! such that the DW fixed point is located atL̃* 51,
m* 50. The equation of the separatrix is given byD5L̃2

215g* m when m→0, i.e., close to the fixed point. Th
scaling behavior of a point with coordinatesD5gm, m!1 is
of the formD8;D andm8;m2, like for the period-doubling
sequence. Thus the highest gap in the TM spectrum disp
an essential singularity of the form given above in Eq.~4.14!
but s5 ln2/ln3 since the rescaling factor is nowb53. The
transverse fluctuations scale similarly to Eq.~4.15!.

C. Surface critical behavior

At the surface we define a temperaturelike parameterms
5h1 /J with scaling dimensionyts

and introduce as above a
auxiliary variableu to take into account the asymmetry
the renormalized couplings.

A comparison of Eqs.~C6! with Eqs. ~C5! leads to the
renormalized parameters

ms8
25ms

2S m2R

e D 2 c2e

c~ms /m!22e
, u825u2

c2e

c~ms /m!22e
.

~6.9!

With the bulk Ising-fixed-point values given in Eqs.~6.5!
and ~6.6!, two surface fixed points are obtained with

]ms8
2

]ms
2 U* 5~21R!21,1, ms*

25m* 25R,

]ms8
2

]ms
2 U* 5~21R!.1, ms*

250. ~6.10!

At the stable fixed pointms*
25R, with b53, the scaling

dimension of the surface temperaturelike parameter read

yts
52

ln~21R!

ln3
, ~6.11!

a result previously conjectured on the basis of a finite-s
scaling study.33 The same quantity at the unstable fixed po
is given by

ỹts
5

ln~21R!

2 ln3
. ~6.12!
r
r-

ys

e
t

The surface magnetization exponentxms
follows as above

from the behavior under renormalization of the odd comp
nentsV(6k11), V(6k13), andV(6k15) which follows
from Eqs. ~C1b!–~C1e! and ~6.4!. At the Ising fixed point
Eq. ~2.4! leads to

F* ~3k11!5F8* ~k11!,

F* ~3k12!52R1/2F8* ~k11!,

F* ~3k13!5F8* ~k11!. ~6.13!

Making use of Eq.~4.22! with b53, the scaling dimension
of the surface magnetization is given by

xms
5

ln~21R!

2 ln3
, ~6.14!

in agreement with a direct calculation of the surfa
magnetization.33 Again xms

satisfies the scaling relation
~4.25! and ~4.26!.

VII. PAPER-FOLDING SEQUENCE

A. Definition and general properties

The paper-folding sequence54 results from the recurren
folding of a sheet of paper onto itself, right over left. Afte
unfolding, one obtains a succession of up and down fold
which one associates a digit, 0 and 1, respectively. After f
steps, this process leads to the following sequence:

00I10I01I10I00I11I01I1. ~7.1!

The sequence on the right of the central fold is the mir
image of the left part, with each digitf k replaced by its
complement 12 f k . As a consequence, the asymptotic de
sity is r`51/2 and the Ising critical coupling islc5R21/2.

The same sequence can be generated using the four
substitutions A→S(A)5AC, B→S(B)5DB, C→S(C)
5DC, and D→S(D)5AB with the identificationA500,
B511, C510, andD501. The leading eigenvalues of th
substitution matrix,V152 andV251, lead to a vanishing
wandering exponent,v50.

The even termsf 2k , underlined in Eq.~7.1!, reproduce
the sequence itself whereas odd terms are alternatively 0
1. Thus one has

f 2k5 f k , f 2k115
1

2
@11~21!k#. ~7.2!

B. Bulk critical behavior

The renormalization of the paper-folding problem
slightly more involved than the preceding ones. In the de
mation process, as shown in Fig. 6 one eliminates block
two sites which interact alternatively viaJ or RJ. As a con-

FIG. 6. As in Fig. 2 for the paper-folding sequence.
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sequence, alternating transverse fieldsha8 andhb8 are gener-
ated at odd and even lattice sites, respectively. Furtherm
some auxiliary asymmetry parameters are needed to retr
eigenvalue equations with their original form after renorm
ization. Altogether the exact RG transformation involves
variables.

The renormalized parameters, following from the decim
tion process detailed in Appendix D, are given by

L̃85L̃~cadb!1/2, ma85
mamb

L̃221
, mb85

mambR

L̃22R2
,

k825k2
ca

db
, ka85

da

ca
, kb85

cb

db
,

ci5S k i2
m i

2

L̃22R2D , di5S k i2
m i

2

L̃221
D , ~ i 5a,b!.

~7.3!

The fixed point values of interest for the IM are

L̃* 50, ma* 52R, mb* 521, ka*
25R2, kb*

25R22.
~7.4!

A linearization of the RG transformation, Eqs.~7.3!, near
this fixed point gives

]L̃8

]L̃
U* 5@~11R!~11R21!#1/2,

]ma8

]ma
U* 5

]mb8

]mb
U* 51,

]ma8

]mb
U* 5R,

]mb8

]ma
U* 5R21.

~7.5!

The first line leads to the anisotropy exponent

z5
ln~R1/21R21/2!

ln2
, ~7.6!

previously conjectured in Ref. 33, whereas the leading eig
value in the linearized transformation of the temperature
variables, which is equal to 2, gives the correlation len
exponentn51.

C. Surface critical behavior

Using Eqs.~D3! and~D5! together with Eq.~2.4!, it may
be verified that the normalization ofF* here involves two
components,F8* (2k11) andF8* (2k12). Thus the renor-
malization of the surface magnetization, based on the re
malization of the eigenvectors, becomes equivalent to a
rect calculation ofms . In this case it is more convenient t
introduce, besides the surface temperature, a surface fiehs
conjugated toms in the original Hamiltonian and to study it
scaling behavior.

This can be achieved, while keeping the free-ferm
character of the Hamiltonian, through the addition of a s
face term2 1

2 hss0
xs1

x in Eq. ~1.2!. Since there is no trans
verse field acting on the first site,s0

x , which commutes with
H, is conserved. The eigenstates of the Hamiltonian t
belong to one of the two sectors corresponding to the eig
re,
ve
-
x

-

n-
e
h

r-
i-

n
-

n
n-

values61 of s0
x . Thus the supplementary term takes t

form 7 1
2 hss1

x and corresponds to a surface field6hs acting
on s1

x , the sign depending on the sector.
The decimation of the surface block described in Appe

dix D gives the renormalized parameters

ms8
25ms

2
damb

2

ds~L̃221!2
, zs8

25zs
2 dacb

dskb

, u825u2
da

ds

,

~7.7!

wherezs5hs /J andms5h1 /J are reduced surface variable
whereasu takes into account the asymmetry introduced
ms . ci anddi are the bulk parameters defined previously
Eqs.~7.3! andds5ka2ms

2/(L̃221).
Let us first consider the scaling behavior ofms , i.e., of the

surface thermal perturbation. With the bulk values given
Eqs.~7.4! one obtains two Ising surface fixed points with

]ms8
2

]ms
2 U* 5~11R!21,1, ms*

25R2,

]ms8
2

]ms
2 U* 5~11R!.1, ms*

250. ~7.8!

The stable fixed point corresponds toms*
25R2 and, withb

52, the scaling dimension of the surface temperature
given by

yts
52

ln~11R!

ln2
, ~7.9!

as expected from numerical results,33 whereas

ỹts
5

ln~11R!

2 ln2
, ~7.10!

at the unstable fixed point.
The stable fixed point values of the parameters in

equation for the surface field variablezs8 lead to the transfor-
mation

zs8
25zs

2~11R21!. ~7.11!

Thus, in the extended parameter space, there is a flow f
zs*

250 to zs*
251` and the critical behavior is governed b

the fixed point with a vanishing surface field which is u
stable in the direction ofzs

2 . Then Eq.~7.11! gives the scal-
ing dimension of the surface field for the Ising problem,

yhs
5

ln~11R21!

2 ln2
~7.12!

or, using Eq.~7.6!,

xms
5z2yhs

5
ln~11R!

2 ln2
, ~7.13!

in agreement with the scaling relations~4.25! and~4.26! and
the analytical result of Ref. 33.
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VIII. FREDHOLM SEQUENCE

A. Definition and general properties

The Fredholm sequence54 is obtained via substitution on
three letters,A→S(A)5AB, B→S(B)5BC, andC→S(C)
5CC. We start the substitution process withA and here, for
convenience, we number the sequence starting onk50. With
A50, B51, andC50, after four iterations one obtains th
sequence

0I11I01I00I01I00I00I00I0, ~8.1!

which is the characteristic sequence of the powers of 2f k
being equal to 1 fork52p. Even underlined terms reproduc
the sequence and odd terms, exceptf 1 , vanish. This gives
the relations

f 2k5 f k , f 2k1150 ~k.0!, f 151. ~8.2!

The leading eigenvalues of the substitution matrix
V152 andV251, and hence the wandering exponent on
more vanishes.

The number of digits equal to 1,nL , grows logarithmi-
cally with the lengthL, and thus the asymptotic density
r`50. The Ising critical coupling in Eq.~3.9! keeps its un-
perturbed valuelc51. This aperiodic perturbation modifie
the surface critical behavior but does not change the b
properties, except near line defects which introduce lo
marginal perturbations in the 2D IM.55

B. Bulk critical behavior

The quantum chain is assumed to start onk51; i.e., we
ignore the first digit in the sequence~8.1!. As indicated in
Fig. 7 in the renormalization process, odd interaction ter
J2k11 which, according to Eqs.~8.2!, are equal toJ in the
bulk, are eliminated so thatb52. With the same notation a
before for the reduced parameters, the renormalized varia
follow from Eqs.~E1! and ~E3! with

L̂85
L̂

l
~L̂22l221!, l85~L̂22l2!, ~8.3a!

V8~2k!5V~4k!, V8~2k11!5V~4k11!. ~8.3b!

Near the Ising fixed point, corresponding to

L̂* 50, l* 521, ~8.4!

the eigenvalues of the linearized transformation

]L̂8

]L̂
U* 52,

]l8

]l
U* 52 ~8.5!

lead to the unperturbed Ising values for the anisotropy
correlation length exponents,z5n51.

FIG. 7. As in Fig. 2 for the Fredholm sequence.
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C. Surface critical behavior

With the Fredholm sequence, the decimation of the s
face block introduces a multiplicative renormalization of t
first component of the eigenvector such that~see Appendix
E!

V8~1!5uV~1!, u25
~L̂22l2!~kL̂22l2R22ts

2!

~L̂22l221!~kL̂22l2R2!
.

~8.6!

The transformation of the other parameters follow from E
~E4! and ~E6! as

ts8
25ts

2 ~L̂22l221!~L̂22l2!R2

~kL̂22l2R2!~kL̂22l2R22ts
2!

,

k85
~L̂22l2!~kL̂22l2R22k!

~L̂22l221!~kL̂22l2R2!
. ~8.7!

As beforets5h1 /h is the surface temperature andk an aux-
iliary variable generated by the transformation.

For the Ising fixed-point values of the bulk paramete
given in Eqs.~8.4! and (kL̂2)* 50, one obtains two surface
fixed points with

]ts8
2

]ts
2 U* 5

2

R2 , ts*
250, u* 5

1

2
,

]ts8
2

]ts
2 U* 5

R2

2
, ts*

2522R2, u* 25
1

R2 . ~8.8!

The first fixed point is stable whenR.Rc5& and, since
ts* 50 corresponds to a vanishing transverse field on the
spin, the surface is ordered at the critical point. The sec
fixed point only exists in the regimeR,Rc where it is stable.
With b52, the scaling dimension of the surface temperat
is given by

yts
5

1

2
2

lnR

ln2
, R.&,

yts
52112

lnR

ln2
, R,&. ~8.9!

These expressions were conjectured in Ref. 32 on the b
of a finite-size scaling study.

The scaling dimension of the surface magnetization f
lows from the transformation of the odd components of
eigenvector at the appropriate Ising surface fixed point.
the bulk Eqs.~2.4!, ~E2!, and~8.3b! lead to

F* ~2k11!5F* ~2k12!5F8* ~k11!, k.0.
~8.10!

In the surface block, using Eqs.~E5! and ~8.6!, one obtains

F* ~1!5
F8* ~1!

u*
, F* ~2!5

ts* F8* ~1!

u* R
. ~8.11!

Thus the normalization ofF* gives
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(
k50

`

(
l 51

2

F* 2~2k1 l !5S 11
ts*

2

R2 D F8* 2~1!

u* 2

12(
k51

`

F8* 2~k11!51.

~8.12!

According to Eqs.~8.8!, the coefficient ofF8* 2(1) is equal
to 2 at both fixed points so that(k50

` F8* 2(k11)5 1
2 . The

surface magnetization transforms according to Eq.~4.23!,
i.e., like

ms85&u* ms . ~8.13!

With b52, this leads to the following scaling dimensions
the two regimes:

xms
50, R.&,

xms
5

1

2
2

lnR

ln2
, R,&, ~8.14!

as given by a direct calculation of the surfa
magnetization.32 The valuexms

50 whenR.Rc is consistent
with the vanishing surface transverse field at the fixed po
There is surface order when the critical point is approac
from the low-temperature phase and, since the surface is
dimensional, the local magnetization vanishes disconti
ously when the bulk disorders. WhenR,Rc the strength of
the perturbed couplings is not sufficient to maintain the s
face order and the transition is continuous. In this latter c
the scaling relations~4.25! and ~4.26! are still verified.

D. Aperiodic perturbation in the bulk

Let us consider the aperiodic perturbation which follo
from the junction of the Fredholm perturbation in one ha
space to its symmetric counterpart in the other, i.e., using
symmetrized sequence

•••1000101111010001••• ~8.15!

The second half of the sequence is assumed to startk
51, leaving out the termk50 in the sequence~8.1! as for
the surface perturbation. In this way one obtains a symme
defect in the bulk with a vanishing asymptotic density so t
lc remains equal to 1.

The simple relation between the local magnetization a
the components of the eigenvector corresponding to the l
est excitation no longer holds in the bulk and one can
introduce a local field term conjugated tosx in the Hamil-
tonian ~1.2! without breaking its free-fermionic characte
Thus we shall only consider the renormalization of the lo
temperaturelike variabletd5h1 /h. For the other parameter
we keep the same notation as in Sec. VIII B for the surfa

The decimation of the central block of eigenvalue eq
tions is illustrated in Fig. 8. The renormalized local variab
follow from Eqs.~E7! and ~E8! as

td85td

lR2~L̂22l2!

~kL̂22l2R2!22td
2L̂2

,

t.
d
ne
-

r-
e

e

ic
t

d
-
t

l

.
-

s

k85
L̂22l2

L̂22l221
F12

k~kL̂22l2R2!2td
2

~kL̂22l2R2!22td
2L̂2G .

~8.16!

In the critical surface, withL̂* 50 andl* 521 at the Ising
fixed point, the RG transformation of the local variabl
takes the form

td85
td

R2 , k85
1

2 S 11
kR21td

2

R4 D . ~8.17!

WhenR51, td85td , which leads to a line of fixed points
parametrized bytd , k* 511td . The scaling dimension o
the local temperature vanishes as expected for a thermal
defect in the 2D IM.55

WhenRÞ1, two fixed points are obtained with

]td8

]td
U* 5

1

R2 , td* 50, k* 5
R2

2R221
,

]~td
21!8

]~td
21!

U* 5R2, td*
2150, k* 2150. ~8.18!

In the critical surface, the fixed point attd* 50 is stable
when R.1. The transverse field at the center of the def
vanishes at this fixed point. Thus the defect is ordered at
critical point, like for the surface, but the critical value ofR
is nowRc51 instead of&. There is no need to compensa
for missing bonds as it is the case at a surface. WheR
,1, the second fixed point attd* 51` becomes stable an
leads to a second-order transition at the defect. The ap
priate scaling fieldtd , associated with the defect temper
ture, which vanishes at the fixed point is nowtd

21 . Hence,
with b52, Eqs.~8.18! give the following scaling dimension
in the regimes of first- and second-order local transition,
spectively:

ytd
522

lnR

ln2
, R.1,

ytd
52

lnR

ln2
, R,1. ~8.19!

IX. RELATIONS BETWEEN ISING MODEL CRITICAL
EXPONENTS

Apart from the correlation length exponentn51, all the
critical exponents obtained for the different aperiodic mod
are varying with the amplitude of the modulation, and th
the critical behavior of these models is nonuniversal. Ho
ever, some kind of ‘‘weak universality’’ still holds and ther
are relations between critical exponents which follow fro
the fact that the systems at the critical point obey anisotro

FIG. 8. As in Fig. 2 for the Fredholm defect in the bulk.
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scaling.44 A detailed analysis of the scaling behavior can
found in Ref. 33.

One can notice other exponent relations which are spe
for the marginally aperiodic IM’s. One such relation co
nects the scaling dimensions of the energy and magnetiza
densities at the surface as

xes
5z2yts

5z12xms
. ~9.1!

It follows from Eq. ~4.25! and anisotropic scaling. It wa
conjectured in Ref. 33 on the basis of an assumption for
scaling behavior ofF~1! for low-lying excitations. One can
find another relation which surprisingly connects bulk a
surface quantities in the form

z5xms
1 x̄ms

, ~9.2!

where x̄ms
is the scaling dimension of the surface magne

zation on the right-hand side~RHS! of the system. Here we
argue that the relation in Eq.~9.2! is generally true for mar-
ginally aperiodic layered IM’s.

In the following derivation, we consider the quantu
Ising chain HamiltonianH given in Eq.~1.2! with homoge-
neous transverse fieldhk51. The dynamical exponent of th
modelz is related to the scaling behavior of the lowest g
of the spectrum of the critical Hamiltonian in the form

E12E05L1;L2z, ~9.3!

in a finite system of sizeL.
The asymptotic size dependence ofL1(L) is calculated in

the following approximation. First we determine the leadi
k dependence of the eigenvectorsF1(k) and C1(k) from
Eqs.~2.3! in such a way that the RHS’s of the equations a
omitted. This approximation is justified, at the critical poi
or in the ordered phase, by the fact that the second differe
operators on the LHS of the equations areO(L22) whereas
L1

2 on the RHS isO(L22z) with z.1 for marginal aperiodic
systems at criticality or exponentially small in the order
phase. In this approximation we obtain

F1~L112k!.F1~L !)
i 51

k21

~2lL2 i !F11 (
i 51

k21

)
j 51

i

lL2 j
22 G ,

C1~k!.C1~1!)
i 51

k21

~2l i !F11 (
i 51

k21

)
j 51

i

l j
22G . ~9.4!

Then the size dependence ofL1 is estimated from the linea
equations in Eqs.~2.2! as

L1~L !52
C1~1!

F1~1!
.2

C1~1!

F1~L ! )
i 51

L21

~2l i !
21

3F11 (
i 51

L21

)
j 51

i

lL2 j
22 G21

, ~9.5a!

L1~L !52
F1~L !

C1~L !
.2

F1~L !

C1~1! )
i 51

L21

~2l i !
21

3F11 (
i 51

L21

)
j 51

i

l j
22G21

. ~9.5b!
c

on

e

-

e

ce

Multiplying both sides of Eqs.~9.5a! and~9.5b!, one arrives
at the result

L1~L !;ms~L !m̄s~L ! )
i 51

L21

l i
21 , ~9.6!

where the finite-size surface magnetizations on both side
the system are given by48

ms~L !5F11 (
i 51

L21

)
j 51

i

l j
22G21/2

,

m̄s~L !5F11 (
i 51

L21

)
j 51

i

lL2 j
22 G21/2

. ~9.7!

The relation in Eq.~9.6!, which connects the asymptotic be
havior of the lowest excitation energy and the finite-size
havior of the surface magnetizations, is valid for general d
tributions of the couplings, provided the lowest gap in t
system goes to zero faster than 1/L.

In the following, we apply Eq.~9.6! to marginally aperi-
odic systems at the critical point where, according to rig
ous results,18 P i 51

L21(l i)c5O(1) for aperiodic perturbations
leading to a shift of the critical coupling. The finite-size su
face magnetizations behave asmsc(L);L2xms and m̄sc(L)
;L2 x̄ ms and thus, from Eqs.~9.6! and~9.3!, one obtains the
scaling relation given in Eq.~9.2!.

The aperiodic sequences studied in this paper wh
change the bulk critical behavior are of two kinds: eith
symmetric withlk5lL2k ~period doubling! or such that a
perturbed coupling atk corresponds to an unperturbed co
pling atL2k, which leads tor`51/2 and, according to Eq
~3.9!, @lk(R)#c5@lL2k(R

21)#c ~paper folding, three fold-
ing!. For symmetric sequences,m̄sc(L,R)5msc(L,R), and
thereforex̄ms

5xms
. Otherwise,m̄sc(L,R)5msc(L,R21) and,

consequently,x̄ms
(R)5xms

(R21). Thus the knowledge of a

single exponent xms
(R) is sufficient to obtain all the varying

exponents studied in this paper. Furthermore, for the period
doubling sequencexms

(R) is symmetric under the exchang

of R into R21 according to Eq.~4.24!. It follows that for all
the aperiodic sequences one may rewrite the nonunive
anisotropy exponent in Eq.~9.2! as z(R)5xms

(R)

1xms
(R21).

For marginal aperiodic sequences which do not cha
the bulk critical behavior, i.e., leavez51 and lc51, the
scaling relation~9.1! does not hold. In this caseP i 51

L21(l i)c

5R2nL with the number of perturbed couplings growin
logarithmically with L. For the Fredholm sequencenL
5 lnL/ln2 so that the product of the couplings in Eq.~9.6!
scales asL2 lnR/ln2. When the left surface is ordered at th
critical point, i.e., forR.Rc5&, and the right surface is
free, we havexms

50, x̄ms
51/2 and the lowest excitation

does not scale asL21 like the rest of the spectrum, but wit
a continuously varying exponent:

L1;L21/22 lnR/ ln2. ~9.8!

When the surface magnetization vanishes at the critical p
(R,Rc), the R dependence ofxms

in Eqs.~8.14! just com-
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pensates that appearing in the product of the couplings
one recovers the normalL21 behavior forL1 .

Finally, according to Eq.~4.26!, the scaling dimension o
the surface magnetizationxms

is equal to the scaling dimen

sion of the surface temperatureỹts
at the unstable fixed point

This last relation is a consequence of the self-duality of
Ising quantum chain.16 Using the dual Pauli spin matrice
defined through

tk
z5sk21

x sk
x , sk

z5tk
xtk11

x , ~9.9!

the original Hamiltonian in Eq.~1.2! is transformed into its
dual:

H̃52
1

2 (
k51

L

hktk
xtk11

x 2
1

2 (
k51

L21

Jktk11
z , ~9.10!

with a vanishing transverse field on the first spin. As alrea
shown at the beginning of Sec. VII C,t1

x commutes withH̃
and may be replaced by its eigenvalues61. Thus, in the
surface term2 1

2 h1t1
xt2

x57 1
2 h1t2

x , h15hts now plays the
role of a surface field acting ont2

x .
The unstable fixed point atts* 50, with its associated scal

ing dimensionỹts
, governs the critical behavior of the du

surface magnetization. In the duality transformation the c
plings lk5h/Jk are changed intolk

21 so that the surface
magnetizations on both sides in Eqs.~9.7! are exchanged. I
follows that the scaling dimension of^t2

x& is x̄ms
and the

dimension of the surface field is given byỹts
5z2 x̄ms

,
which, according to Eq.~9.2!, leads to Eq.~4.26!.

X. CONCLUSION

In this paper we have presented a unified statistic
mechanical description of the IM and the DW on layer
two-dimensional lattices, taking the extreme anisotropic lim
for the IM. The critical properties of the two problems we
deduced from the scaling behavior of the spectrum of
transfer matrix of the DW, which is studied through exa
RG transformations. For a given value of the aperiodic
parameterR the RG transformations have two nontrivi
fixed points, as shown in Fig. 4. The bottom of the spectr
scales to the IM fixed point, which controls the critical b
havior of the IM, whereas the top of the spectrum scales
another fixed point, which describes the critical properties
the DW.

The aperiodic sequences we considered have differen
fects on the critical properties of the two models according
Luck’s relevance-irrelevance criterion described in Sec. II56

For the IM, the crossover exponent in Eq.~3.7! with n51 is
f IM50 whereas for the DW, withn'51/2, it is fDW
51/2. Consequently, the nonperiodic perturbation is m
ginal at the homogeneous (R51) IM fixed point whereas it
is relevant for theR51 DW fixed point. These statemen
are in accordance with the exact results.

For the IM, the marginal perturbation creates a line
fixed points, which is parametrized byR, and the critical
properties are continuously varying, even atR51. The non-
periodicity also induces a continuously varying anisotro
scaling behavior. However, the different varying expone
nd

e
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f

c
s

are not independent: Knowledge of the scaling dimensi
of the surface magnetization is sufficient to completely d
scribe the nonuniversal critical behavior studied in this wo

Considering the DW problem, here the line of fixed poin
is discontinuous atR51, in accordance with the relevan
nature of the perturbation. For the hierarchical models
line of fixed points is characterized by finite coordinates a
the corresponding critical behavior is of power-law for
with R-dependent exponents. On the other hand, for the a
riodic models ~period doubling, three folding, and pape
folding! the line of DW fixed points is shifted to infinity and
the scaling behavior is anomalous: The transverse fluc
tions of the walk grow on a logarithmic scale.

Finally we discuss the local critical behavior at extend
defects, located either at the surface or in the bulk, which
generated by the Fredholm sequence. In both cases two
points exchange there stability at a critical valueRc of the
modulation amplitudeR. This critical value separates tw
regimes for the local transition: ForR.Rc the local mag-
netization vanishes discontinuously at the bulk critical po
while for R,Rc the transition is continuous. In both cas
one obtains critical exponents which vary continuously w
the marginal parameterR.

It has been already noticed32 that the surface Fredholm
perturbation is closely connected to the Hilhorst–van Le
wen model.57 In the same way, the bulk Fredholm defect
connected to the Bariev model.58 In these models, the pertur
bation of the couplings decays as a power of the distanl
from the center of the defect withdl( l )5a l 21 in the mar-
ginal case, for the 2D IM.

The varying exponents obtained analytically and nume
cally in Ref. 32 for the surface Fredholm perturbation as w
as those otained via exact RG transformations in Sec. V
for the surface and bulk Fredholm defects can be put in c
respondance with the exponents of the Hilhorst–van Le
wen and Bariev models witha replaced by lnR/ln 2. Up to
now, the values of the Bariev model’s exponents had b
conjectured on the basis of conformal methods using g
exponent relations after a conformal transformation of
inhomogeneous infinite system onto an inhomogeneous
nite strip with periodic boundary conditions.59 Our RG re-
sults for the bulk Fredholm defect and the corresponde
between both models strongly support the validity of th
procedure.
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APPENDIX A: RENORMALIZATION
OF THE PERIOD-DOUBLING SEQUENCE

The renormalization of the period-doubling sequence
the bulk involves the following set of equations:

lRf 4kV~8k!2L̂V~8k11!1V~8k12!50, ~A1a!
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V~8k11!2L̂V~8k12!1lV~8k13!50, ~A1b!

lV~8k12!2L̂V~8k13!1V~8k14!50, ~A1c!

V~8k13!2L̂V~8k14!1lRV~8k15!50, ~A1d!

lRV~8k14!2L̂V~8k15!1V~8k16!50, ~A1e!

V~8k15!2L̂V~8k16!1lV~8k17!50, ~A1f!

lV~8k16!2L̂V~8k17!1lV~8k18!50, ~A1g!

V~8k17!2L̂V~8k18!1lRf 4k14V~8k19!50.
~A1h!

Among these eight equations we eliminate the six cen
ones, which amounts to rescale the system by a factob
54. This is accomplished by evaluatingV(8k12) and
V(8k17) as functions ofV(8k11) andV(8k18), in the
linear system given by Eqs.~A1b!–~A1g!, with the result

V~8k12!5
dL̂

c
V~8k11!1

Rl3

c
V~8k18!,

V~8k17!5
Rl3

c
V~8k11!1

dL̂

c
V~8k18!,

c5L̂2~L̂22l221!22l2R2~L̂22l2!2,

d5~L̂221!~L̂22l221!2l2R2~L̂22l2!. ~A2!

Inserting these values into Eqs.~A1a! and ~A1h!, after mul-
tiplication by c/(Rl3) we obtain

c

Rl2 Rf 4kV~8k!2L̂
c2d

Rl3 V~8k11!1V~8k18!50,

V~8k11!2L̂
c2d

Rl3 V~8k18!1
c

Rl2 Rf 4k14V~8k19!50,

~A3!

which are the renormalized equations

l8Rf kV8~2k!2L̂8V8~2k11!1V8~2k12!50,

V8~2k11!2L̂8V8~2k12!1l8Rf k11V8~2k13!50,
~A4!

after rescaling byb54. Noticing that, according to Eqs
~4.2!, f 4l512 f 2l5 f l , R remains unchanged and one o
tains the RG transformation as given in Eq.~4.3!.

At the surface, in terms of the reduced variables, the sa
set of equations as in Eqs.~A1! with k50 is obtained, excep
for the two first equations which now read

2L̂V~1!1utsV~2!50, ~A5a!

ts

u
V~1!2L̂V~2!1lV~3!50. ~A5b!
al

e

The auxiliary variableu is needed to take into account th
asymmetry resulting from the renormalization after one st
In this way the variablesL̂, l, ts , andu build a closed set
under renormalization.

As above, the componentsV(2) andV(7) can be deduced
from the six central equations and read

V~2!5
dL̂ts

cu
V~1!1

Rl3

c
V~8!,

V~7!5
Rl3ts

cu
V~1!1

dL̂

c
V~8!, ~A6!

wherec andd are defined in Eqs.~A2!. Equations~A5a! and
~A1h!, after multiplication by appropriate factors, then giv

2L̂
c2d

Rl3 V~1!1uts

c2d

c2dts
2 V~8!50,

ts

u
V~1!2L̂

c2d

Rl3 V~8!1
c

Rl2 V~9!50. ~A7!

These equations give the renormalized forms of Eqs.~A5a!
and~A5b! and provide the RG recursions given in Eq.~4.16!.

APPENDIX B: RENORMALIZATION
OF THE HIERARCHICAL SEQUENCE

In the bulk, the set of eigenvalue equations we conside
the following:

lRnV~2mn!2L̂V~2mn11!1V~2mn12!50, ~B1a!

V~2mn11!2L̂V~2mn12!1lV~2mn13!50,
~B1b!

lV~2mn12!2L̂V~2mn13!1V~2mn14!50,
~B1c!

•••

lV~2mn12m22!2L̂V~2mn12m21!1V~2mn12m!

50, ~B1d!

V~2mn12m21!2L̂V~2mn12m!1lRV~2mn12m11!

50. ~B1e!

Among the 2m equations one eliminates the 2m22 central
ones, which amounts to rescaling the system by a facto
b5m. Then we are left with two equations between t
components V(2mn), V(2mn11), V(2mn12m), and
V(2mn12m11) of the form

lRn

r
V~2mn!2

L̂2s

r
V~2mn11!1V~2mn12m!50,

V~2mn11!2
L̂2s

r
V~2mn12m!1

lR

r
V~2mn12m11!

50. ~B2!
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Here r 5lm21/D2m22 , s52D2m23 /D2m22 , and D2m22
denotes the (2m22)3(2m22) determinant

D2m225U2L̂ l

l 2L̂ 1

1 2L̂ l

�

1 2L̂ l

l 2L̂

U , ~B3!

while D2m23 is the lower central minor ofD2m22 . Then
from Eqs.~B2! we deduce the RG transformation given
Eqs.~5.7!.

APPENDIX C: RENORMALIZATION
OF THE THREE-FOLDING SEQUENCE

The eigenvalue equations take the following form in t
bulk:

Rf 3kV~6k!2kL̃V~6k11!1mV~6k12!50, ~C1a!

mV~6k11!2
L̃

k
V~6k12!1V~6k13!50, ~C1b!

V~6k12!2kL̃V~6k13!1mV~6k14!50, ~C1c!

mV~6k13!2
L̃

k
V~6k14!1RV~6k15!50, ~C1d!

RV~6k14!2kL̃V~6k15!1mV~6k16!50, ~C1e!

mV~6k15!2
L̃

k
V~6k16!1Rf 3k13V~6k17!50.

~C1f!

Equations~C1b!–~C1e! can be used to write

V~6k12!5
ckL̃

em
V~6k11!1

Rm2

e
V~6k16!,

V~6k15!5
Rm2

e
V~6k11!1

dL̃

ekm
V~6k16!,

c5m2~L̃22m22R2!, d5m2~L̃22m221!,

e5~L̃221!~L̃22R2!2m2L̃2, ~C2!

which, inserted into Eqs.~C1a! and~C1f!, lead to the renor-
malized equations

Rf 3kV~6k!2kL̃S 12
c

eDV~6k11!1
Rm3

e
V~6k16!50,

Rm3

e
V~6k11!2

L̃

k S 12
d

eDV~6k16!1Rf 3k13V~6k17!

50. ~C3!
Since f 3l5 f l according to Eqs.~6.2!, these equations tak
the form

Rf kV8~2k!2k8L̃8V8~2k11!1m8V8~2k12!50,

m8V8~2k11!2
L̃8

k8
V8~2k12!1Rf k11V8~2k13!50,

~C4!

with the renormalized variables given in Eqs.~6.3!
At the surface, Eqs.~C1c!–~C1f! with k50 have to be

supplemented by

2kL̃V~1!1umsV~2!50,

ms

u
V~1!2

L̃

k
V~2!1V~3!50. ~C5!

Rewriting V(2) andV(5) as functions ofV(1) andV(6) in
the first and last equations of the surface block, one obta
the renormalized equations

2kL̃S 12
c

eDV~1!1
umsm

2R

e

c2e

c~ms /m!22e
V~6!50,

msm
2R

ue
V~1!2

L̃

k S 12
d

eDV~6!1V~7!50. ~C6!

A comparison with Eqs.~C5! leads to the renormalized pa
rameters given in Eqs.~6.9!.

APPENDIX D: RENORMALIZATION
OF THE PAPER-FOLDING SEQUENCE

The following blocks have to be considered:

Rf 4kV~8k!2kakL̃V~8k11!1maV~8k12!50,
~D1a!

maV~8k11!2
L̃

k
V~8k12!1V~8k13!50, ~D1b!

V~8k12!2kL̃V~8k13!1mbV~8k14!50, ~D1c!

mbV~8k13!2
kbL̃

k
V~8k14!1Rf 4k12V~8k15!50,

~D1d!

when the central interaction isJ and

Rf 4k12V~8k14!2kakL̃V~8k15!1maV~8k16!50,
~D2a!

maV~8k15!2
L̃

k
V~8k16!1RV~8k17!50,

~D2b!

RV~8k16!2kL̃V~8k17!1mbV~8k18!50,
~D2c!
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mbV~8k17!2
kbL̃

k
V~8k18!1Rf 4k14V~8k19!50,

~D2d!

when the central interaction isRJ. ma5ha /J and mb

5hb /J are reduced temperaturelike parameters andL̃ the
reduced eigenvalue defined before. Since in each block
sites out of four are eliminated, lengths are rescaled b
factor b52.

The two intermediate equations in Eqs.~D1! and ~D2!
give

V~8k12!5
kmaL̃

L̃221
V~8k11!1

mb

L̃221
V~8k14!,

V~8k13!5
ma

L̃221
V~8k11!1

k21mbL̃

L̃221
V~8k14!,

V~8k16!5
kmaL̃

L̃22R2
V~8k15!1

mbR

L̃22R2
V~8k18!,

V~8k17!5
maR

L̃22R2
V~8k15!1

k21mbL̃

L̃22R2
V~8k18!,

~D3!

which can be used in the first and last lines of Eqs.~D1! and
~D2!, together with the first relation in Eqs.~7.2!, to write the
renormalized equations

Rf 2kV8~4k!2ka8k8L̃8V8~4k11!1ma8V8~4k12!50,

ma8V8~4k11!2
L̃8

k8
V8~4k12!1Rf 2k11V8~4k13!50,

Rf 2k11V8~4k12!2k8L̃8V8~4k13!1mb8V8~4k14!50,

mb8V8~4k13!2
kb8 L̃8

k8
V8~4k14!1Rf 2k12V8~4k15!50.

~D4!

Here the components of the eigenvectors transform acc
ing to

V8~4k!5V~8k!, V8~4k11!5V~8k11!,

V8~4k12!5V~8k14!, V8~4k13!5V~8k15!.
~D5!

The renormalized parameters are given in Eqs.~7.3!.
The surface fieldhs5Jzs introduces a supplementar

equation in the surface block which now begins with

2
kbL̃

k
V~0!1zsV~1!50,

zsV~0!2kakL̃V~1!1umsV~2!50,

ms

u
V~1!2

L̃

k
V~2!1V~3!50, ~D6!
o
a

d-

where, as before,ms5h1 /J is a temperaturelike surface var
able andu an auxiliary variable.

The first equation in Eqs.~D6! gives the value ofV(0)
which can be used in the second equation to obtain a sur
block in its standard form:

2kL̃S ka2
zs

2

kbL̃2D V~1!1umsV~2!50,

ms

u
V~1!2

L̃

k
V~2!1V~3!50. ~D7!

The two remaining equations are given by~D1c! and ~D1d!
with k50. As usual, writingV(2) andV(3) as functions of
V(1) andV(4), oneobtains the renormalized equations

2dakL̃S 12
zs

2

dskbL̃2D V~1!1
umsdamb

ds~L̃221!
V~4!50,

msmb

u~L̃221!
V~1!2

dbL̃

k
V~4!1V~5!50, ~D8!

whereds5ka2ms
2/(L̃221). When compared to Eqs.~D7!

they lead to the renormalized parameters given in Eqs.~7.7!.

APPENDIX E: RENORMALIZATION
OF THE FREDHOLM SEQUENCE

We have to consider the following block of equations:

lRf 2kV~4k!2L̂V~4k11!1V~4k12!50, ~E1a!

V~4k11!2L̂V~4k12!1lV~4k13!50, ~E1b!

lV~4k12!2L̂V~4k13!1V~4k14!50, ~E1c!

V~4k13!2L̂V~4k14!1lRf 2k12V~4k15!50.
~E1d!

Equations~E1b! and~E1c! give the eigenvector componen

V~4k12!5
L̂

L̂22l2
V~4k11!1

l

L̂22l2
V~4k14!,

V~4k13!5
l

L̂22l2
V~4k11!1

L̂

L̂22l2
V~4k14!,

~E2!

which can be used to rewrite the first and last equations

~L̂22l2!Rf 2kV~4k!2
L̂

l
~L̂22l221!V~4k11!

1V~4k14!50,

V~4k11!2
L̂

l
~L̂22l221!V~4k14!

1~L̂22l2!Rf 2k12V~4k15!50. ~E3!
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Since f 2k5 f k and f 2k125 f k11 , the renormalized equation
keep their original form with the transformed paramet
given by Eqs.~8.3!.

The surface block reads

2L̂V~1!1tsV~2!50, ~E4a!

tsV~1!2kL̂V~2!1lRV~3!50, ~E4b!

lRV~2!2L̂V~3!1V~4!50, ~E4c!

V~3!2L̂V~4!1lRV~5!50. ~E4d!

where the auxiliary variablek takes into account the chang
of the intermediate interaction which is nowlR instead ofl
for the bulk equations in Eqs.~E1!. From Eqs.~E4b! and
~E1c! we deduce the eigenvector components

V~2!5
tsL̂

kL̂22l2R2
V~1!1

lR

kL̂22l2R2
V~4!,

V~3!5
tslR

kL̂22l2R2
V~1!1

kL̂

kL̂22l2R2
V~4!, ~E5!

which are used to rewrite Eqs.~E4a! and ~E4d! as

2L̂8uV~1!1ts8V~4!50,

ts8uV~1!2k8L̂8V~4!1l8RV~5!50. ~E6!

In these renormalized equationsu can be interpreted as
renormalization factor forV(1) which transforms according
J

e

.

cs
s
to Eqs.~8.6!. The RG equations for the other parameters
given in Eqs.~8.7!.

In the bulk, the block of eigenvalue equations to be ren
malized, corresponding to the center of the defect, is
following:

lRV~22!2L̂V~21!1V~0!50, ~E7a!

V~21!2L̂V~0!1lRV~1!50, ~E7b!

lRV~0!2kL̂V~1!1tdV~2!50, ~E7c!

tdV~1!2kL̂V~2!1lRV~3!50, ~E7d!

lRV~2!2L̂V~3!1V~4!50, ~E7e!

V~3!2L̂V~4!1lRV~5!50. ~E7f!

With l50 in Eq. ~E7c!, the three last equations differ from
the surface equations in Eqs.~E4! only through the auxiliary
factor k in the first one which is necessary to preserve
symmetry of the block.

ExpressingV(0) andV(3) in terms ofV(21) andV(4),
the first and last equations of the block take the same form
the two central ones,

l8RV~22!2k8L̂8V~21!1td8V~4!50,

td8V~21!2k8L̂8V~4!1l8RV~5!50, ~E8!

with the renormalized local parameters given by Eqs.~8.16!.
.
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and H. J. Hilhorst, J. Phys. A18, 3039~1985!; T. W. Burkhardt
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