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We consider the Ising model and the directed walk on two-dimensional layered lattices and show that the
two problems are inherently related: The zero-field thermodynamical properties of the Ising model are con-
tained in the spectrum of the transfer matrix of the directed walk. The critical properties of the two models are
connected to the scaling behavior of the eigenvalue spectrum of the transfer matrix which is studied exactly
through renormalization for different self-similar distributions of the couplings. The models show very rich
bulk and surface critical behaviors with nonuniversal critical exponents, coupling-dependent anisotropic scal-
ing, first-order surface transition, and stretched exponential critical correlations. It is shown that all the non-
universal critical exponents obtained for the aperiodic Ising models satisfy scaling relations and can be ex-
pressed as functions of varying surface magnetic exponsi4.63-18207)00441-4

I. INTRODUCTION problem!'*2Universal behavior was also obtained in Monte
Carlo simulations of the percolation problem on the Penrose

The study of layered Ising model$M’s) has been an lattice and its dudf as well as for the statistics of self-
active field of research during the last decades. One magvoiding walks:* One may notice, as an exception, the ana-
mention the pioneering works on two-dimension@D) lytical renormalization group study of interfacial roughness,
periodically* and randomlI§ layered lattices. Similarly the still on the Penrose lattice, where the fluctuating interface
critical behavior of directed walks (DW’'s) in “feels” a Fibonacci quasiperiodic potential. In this case, a
inhomogeneotsor random mediahas attracted widespread marginal behavior was obtained for the decay of the trans-
interest. verse correlations’

Recently, following the discovery of quasicrystaisn the Probably the most studied system is the aperiodically lay-
one hand, and the progress in molecular beam epitaxy whictred 2D classical IM and its quantum counterpart in the ex-
allows the production of good quality multilayers, on the treme anisotropic limit® the aperiodic Ising quantum chain
other hand there has been a growing interest in the theoretin a transverse field.
ical study of phase transitions in quasiperiodic systems and, In the classical formulation, the energy of a configuration
more generally, aperiodic systeth§hese are deterministic is given by
but nonperiodic structures which are called quasiperiodic
when the spatial fluctuations are so weak that the Fourier
spectrum is still discrete, but point symmetry is incompatible ~ ~8H =; Kl(k)o'k,lo'k,l+1+; Kao(K) oy 10 15
with a periodic structure. Such systems may be considered as ’ ’ (1.1
intermediates between homogeneous and random ones and,
consequently, are expected to display a rich variety of criticalvhere thes’s are the spin-1/2 Ising variables, akd andK,
behaviors. are the exchange interactions in the vertical and horizontal

directions, respectively. Their values are the same in a ver-
tical layerk and are modulated according to some aperiodic
A. Previously known results sequence in the horizontal direction.

Most of the early works about phase transitions on aperi- In the extreme anisotropic limitK;—«,K,—0), the
odic systems were done on quasiperiodic lattices and did ndtansfer matrix between successive rows in the vertical direc-
show any sign of modified critical behavior. Among these,tion can be written as exp(r}{), wherer=2K7 is the in-
one may mention an approximate renormalization grouginitesimal lattice spacing in the Euclidian time directign.
treatment of the classical IM on the Penrose latfiend is the Hamiltonian of a spin-1/2 quantum Ising chain in a
Monte Carlo renormalization group studies of the samdransverse field:
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1 L L1 v=1. The marginal behavior obtained for the Fibonacci se-
H=— > > heoi— > > Jololsq, (1.2 quence with bounded fluctuations in the case of the interface
k=1 roughness problet follows from Luck’s criterion where
- . . is now the correlation length exponent in the transverse di-
where theo;“’s are Pauli spin matrices. The transverse field ™ . —1/2 Einally let tion that f doml
h, (such thath K7 is the dual couplingK} (k) given by rection v, =1/2. Finally let us mention that for a randomiy

k " k™1 P 1 layered system the relevance-irrelevance criterion applies
exd —2K7 (K ]=tantKy(K)) plays the role of the temperature. | i =1/2.
The couplingd, is the ratioK,(k)/K7 . In general, due to In the same work* Luck checked the validity of his cri-
universality, the classical and quantum systems have thgerion for random and aperiodic quantum Ising chains. To
same critical properties. Only in the presence of a marginakeat the aperiodic problem he considers periodic approxi-
perturbation which leads to nonuniversal exponents are thgants, i.e., a periodic quantum chain with a large unit cell of
corresponding quantum exponents obtained by taking an asngthL in which the couplings), are distributed according
propriate limit of the classical expressions. _ to the aperiodic sequence. He deduces the low-energy behav-
Usually the aperiodic modulation is assumed to involvejor of the fermionic excitatiorfé A from a perturbation ex-
only the horizontal couplings, i.e., the two-spin interactiin  pansjon inA. For the unperturbed problem at criticality, the
andh,=1. The fluctuation around the averaget a length massless excitations have a linear low-energy dispersion re-
scaleL is measured by lation A =vq wherev is the velocity andy the wave vector.
On the periodic approximant bB-dependent velocity, is
L — obtained and the properties of the aperiodic system are gov-
A(L):kzl (J—J). 1.3 erned by the limiting behavior af_ whenL goes to infinity.
- The behavior of the singular part of the ground-state energy,
When the aperiodic couplings are generated via substitutioréorresponding to the free energy in the 2D classical system,
using an inflation rule, this quantity behavesl4s wherew IS linked to the low-energy excitation spectrum and its tem-
is the wandering exponent of the aperiodic sequence which igérature dependence can be obtained through a scaling argu-

linked to the two leading eigenvalues of a substitutionMent. _ _ _
matrix 17-18 For sequences with bounded fluctuatiors<(0), v, is

For sequences with bounded fluctuations<(0) the ape- Pounded and nonvanishing in the linlit—c so that the
riodic perturbation does not change the Ising critical behavOnsager logarithmic critical singularity is preserved. For un-
ior. This was shown analytically by Tracy in the case of thePounded fluctuations«{>0), the typical velocity vanishes
Fibonacci sequence, with=—1, for the 2D layered IM. exponentially, leading to an essential singularity for the sin-
The Onsager logarithmic singularity of the specific heat thergular part of the ground-state energy as in the case of random
keeps a nonvanishing finite amplitutfeThe same conclu- chains. Finally, when the fluctuations grow on a logarithmic
sion was reached for the Ising quantum chain with generaiscale @ =0), the typical velocity vanishes as a nonuniversal
ized Fibonacci modulations of the couplisThe low- power of L. The perturbation is marginal, and the specific
energy spectrum of the quantum chain which, through thdeat exponent is negativthe logarithmic singularity is sup-
gap-exponent relation on finite critical chains, gives the val-Pressefiand varies continuously with the amplitude of the
ues of the critical exponents was shown to be unaffected bgPeriodic modulation. This marginal behavior was checked
a quasiperiodic modulatioft. Universal behavior was also numerically.
obtained with the Thue-Morse sequence and its
generalization? In this case, the quantum chain is not qua-
siperiodic but the fluctuations remain bounded. . ) o

For an aperiodic sequence with unbounded fluctuations The results obtained so far for different aperiodic modu-
(0>0), Tracy® noticed that the Onsager singularity is sup- Ia'qon_s |r;8d|3f£erent models are z_;tll in accordance with Luck’s
pressed like in the randomly layered McCoy-Wu model. ~ criterion™=** Most of the activity in our groups was con-

The situation was later clarified by Lut4who proposed cerned with the s_tudy of the surface anq bulk crmcal prop-
a generalization of the Harris criterion for quenchederties of 2D aperiodically layered IM's, either using the 1D
randomness adapted to the case of aperiodic fluctuations ofguantum formulation or working on a triangular lattice, mak-
the couplings(see also Ref. 26 By comparing the mean iNg use of the star-triangle relation. _
shift of the local temperature in the 2D layered systegav- Although some relevant perturbations were treated in
erned by the wandering exponanl, at the scale of the cor- Refs. 28.and 29, we mgmly conS|der9d marginal aperlod!c
relation length of the unperturbed system, to the deviatioPerturbations. The continuously varying surface magnetic
from the critical temperature, one obtains a crossover expdXPonentx, =Bs/v was obtained analytically for different
nent¢=1+v(w—1). It controls the evolution of the ampli- aperiodic sequences whereas the scaling dimension of the
tude of the aperiodic modulation when one approaches thsurface energy was conjectured on the basis of finite-size
critical point. For the 2D IM withv= 1, the crossover expo- scaling studies?—%
nent is equal to the wandering exponent so that, quite gener- The marginal aperiodic models were found to display an-
ally, the aperiodic modulation becomes a relevant perturbaisotropic scaling®***The correlation length diverges with
tion and changes the Ising critical behavior when thedifferent exponents along and through the layers with a ratio
fluctuations are unbounded, as conjectured by Benzd?®  z=w,/v, giving a continuously varying anisotropy exponent.
One must notice that the correspondence between relevatich a behavior was in fact implicitly contained in Luck’s
perturbations and unbounded fluctuations holds only whemork** where a power-law dependence brwas found in

X,2Z»

B. Renormalization-group method and main results
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the marginal case. Accurate numerical calculations of the>1, which holds for sequences which modifiy the critical
anisotropy exponent led us to propose a simple scaling coupling. A simple scaling picture emerges in which the sur-
relation betweerz and the surface magnetic exponents onface magnetic exponents play a fundamental role: All the
both sides of the system,,_ andx,. The anisotropic scal- nonuniversal exponent@xcept the bulk magnetic one, not

ing of bulk and surface properties was extensively studied ir?OnSIderecj in this wor)kcar_1 be expressed as functions of
Ref. 33. these two surface magnetic exponents. The surface energy

In this paper we present the results of an exactPONeNtis given b¥e,=2°+2Xpm, 0N one side of the chain

renormalization-grougRG) study of aperiodic and hierar- @NdXe =2+ 2Xn_on the other, whereas the specific heat ex-
chical Ising and DW models. The introduction of RG tech-ponent is given byy=1-2z<0.

niques into the field of phase transitions and critical phenom- With aperiodic sequences with a vanishing density of
ena has largely contributed to our understanding of thénodified couplings, which changes the critical behavior only
properties of the critical state. For instance, the RG methoéPcally near the surface, there is no anisotropy in the bulk of
has given a natural explanation for the scaling hypothesié® system Z=1). For sufficiently strong modified cou-
and universality. At the same time, it has provided powerfulP!ings, the surface remains ordered at the bulk critical point
procedures to calculate critical exponetitsbeit generally and th‘?” the f|rs_t excitation 6!'0”6 scales in an 'anomalous
using some approximation, e.g., approximate RG transforl/ &Y with a continuously varying power of the size of the
mations, expansions in a small parameteid(N,...), or nu- system. . . -
merical methods. There are few nontrivial problems in sta- Finally one may mention that these marginal aperiodic

tistical mechanics for which the RG transformation can beISIng sytems are closer to periodic than to randomly layered

worked out exactly. One may mention the IM on the trian-O"eS: The varying exponents evolve continuously from their

gular latticé’ or different physical processes on self-similar unperturbed values when the aperiodic modulation grows. In

fractal objects® particular we checked numerically that the gap is nonvanish-

i . ing in the disordered phase, i.e., that there is no trace of a

Here we develop exact RG solutions for a class of ZDGﬁffiths phasé®3 as gxpected for systems with bounded
layered Ising and DW models. The novel feature of our ap, . A ) - )

luctuations®* Even with relevant aperiodic perturbations,

proach is that we study both problems within the frameworkfWhiCh by some aspects are closer to random ones, displaying

of the same RG transformation. It is based on a hithertq ssential singularities in the singular part of the ground-state
unnoticed connection between the eigenvalue problem for 9 9 P 9

fermionic excitations which enters the solution of the IM energ)?_ and in the S“Fface magneUzaEgG‘h,the Griffiths
(Ref. 27 and the transfer matrix of a DW in two dimensions. phaAsehls flbsent atcc]f)rdmg to I? recent s 'dy.th bulk critical
Both problems are considered on layered lattices, such th%tehaf/i(;)rr ﬁgg%uelno ﬁ/uernr?r?; feggnfﬁ;%g? € bulk critica
the walk is directed along the translationally invariant direc- The S'Eructure of t%e aper is the followiﬁ The relation
tion. The solution of the DW, which means the diagonaliza-be,[ween the IM and thep DpW is oresented ir?.Sec I after-
tion of its transfer matriXTM), provides in principle all the wards the basic properties of a| periodic se uenceé ére reca-
necessary information to obtain the zero-field thermody- itulated in Sec plllpln the follopwin sectigns Secs. IV
namical properties and correlation functions of the IM. E)/III the RG trénsfbrmation i woried out fbr différent
The qritical properties of the two models are conne_cted to?pe’riodic and hierarchical models which were chosen in or-
';hdegzga(ljlp %gesgz\g&g_tgi eegg(g:;s;{act;eztﬁg;hgf'[m aetigg;i;elzger to illustrate the different renormalization procedures one

problem of the TM is performed for different seif-similar = Lo 18 PRI 10 (R PESTRet ) B SHEe BIone
distributions of the couplings anthe critical properties of Sonlwe relations between the critical exponents of the IM aré
the IM and the DW are governed by two different fixed pOintSderived in Sec. IX and the results arepdiscussed in Sec. X
of the same RG transformation ) T

Our method is well adapted to the case of self-similarDeta"S about the derivation of the RG equations for the spe-

perturbations. It is quite different from the approximateCIfIC models are collected in the Appendixes.
renormalization-group technique recently introduced by

Fisher to treat randomly layered systefris. this approach, !l RELATION BETWEEN THE ISING QUANTUM CHAIN
which leads to exact results in the critical domain, instead of AND THE DIRECTED WALK MODEL

using the transformation to fermions, Fischer works on the Using a Jordan-Wigner transformatitfthe Ising Hamil-

Hamiltonian itself, reducing the energy scale of the problemyian 1.2) can be rewritten as a quadratic form in fermion
by & systematic elimination of the stronger couplings operators. It is then diagonalized through a canonical
The bulk and surface critical properties are examined fok,o <o -matiof” which gives

several aperiodic and hierarchical sequences. In all of the
models we studied the aperiodicity is marginal at the Ising L 1
fixed point and induces continuously varying critical expo- H= 2 Aq( ﬂgﬂq— —
nents. The bulk anisotropy exponentand the correlation q=1 2
length exponents, on the one hand, and the surface ener ; ; P
expgonentg and the surface magnetization expon gywherenf1 and », are fermion creation and anihilation opera-
_ 7S ] ] AR tors, respectively. The fermion excitations, are non-

and Xmg, ON the other hand, are obtained analytically. Wenegative and satisfy the set of equations

also prove the previously conjectured relation between the
anisotropy and surface magnetic eXPONEets, Xy + Xm_ AqW (k)= —h®y(k) - JPy(k+ 1),

: 2.1
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hk Jk Thus gﬁ’w is proportional to the inverse gap at the top of the
2k-1 2k 2+l spectrum of the TM. For the IM in the disordered phase, the
correlation length is the inverse of the lowest excitation en-
FIG. 1. Portion of two interpenetrating diagonally layered €rgy of the Hamiltoniar#t in Eq. (2.1):
square lattices involved in the transfer matrix of the directed walk.
The fugacities are alternatively, andJ, . |"M~Al_1. (2.7

- —1)— The fermionic excitation\ ; is also the lowest eigenvalue in
APk == JaWolk=D)=hebgtk), (2.2 the positive sector of the TKF

with the boundary conditiondy=J, =0. The vectorsb,’'s When any one of the two critical points is approached, the
andW,’s, which are related to the coefficients of the canoni-correlation length of the problem diverges and the corre-
cal transformation, are normalized. They enter into the exsponding part in the TM spectrum displays a scaling behav-
pressions of correlation functions and thermodynamicalor. Let us consider a finite system with transverse gize
quantities?’ >1 and denote b\ A, either A, — A, _; for the DW orA;

Usually one proceeds by eliminating eitt, or @, in  for the IM with i<L. Under a change of the length scale by
Egs.(2.2) and the excitations are deduced from the solutiora factorb>1 such thatL’=L/b, the gaps are expected to

of one of the following eigenvalue problems: transform as
Ik 1hy- 1P (k= 1) + (I +hH) D o(K) + Ih P (k+ 1) (AA)) =bYAAA;, (2.9
=AZDq(k), where the scaling dimension is generally different for differ-
ent parts of the spectrum. This leads to the finite-size scaling
Jke 1 W (k= 1) + (IE+hD) W4 (K) + Iehyes 1 ¥4 (k+ 1) behaviorAA;(L)~L YA and, according to Eq92.6) and
) (2.7, the longitudinal correlation lengths behave é&s
=Aq¥q(k), 2.3 ~LYA. Since ¢, ~L, the anisotropy exponertt, defined
2 A
with the same boundary conditions as above. This last stef0Ughé~¢1.™ is given by
can be avoided by introducing d 2dimensional vectoV _
with components Z=Ya- 2.9

_ _ In the case of the DW one is interested in the transverse
Vg(Zk=1)==0q(k), Vq(2k)=Wqk), (24 fluctuations of the walk which are characterized by a wan-

and noticing that the relations in Eq®.2) then correspond dering exponenw through¢, ~ £ (Refs. 5 and 3§so that
to the eigenvalue problem for the matrix:
w=y;t. (2.10
0 hy 0 0 O

0
hy 0 J5 0 0 0 IIl. SUBSTITUTION MATRIX

T={ 0 J; 0 h, 0 O ---|. (2.5 AND RELEVANCE-IRRELEVANCE CRITERION
0 0 h 0 J, O In the following, except for the hierarchical sequence, we
PR . consider sequences generated via substitutions on a finite

alphabet such that, in the case of two lettérsand B,

Taking the square df, odd and even components\8f are  A—S(A), B—S(B). The properties of the sequence are

decoupled, and one recovers the two eigenvalue equations governed by its substitution mattx'

Egs.(2.3). The matrixT can be interpreted as the TM of a

DW problem on two interpenetrating, diagonally layered nsA  n3®
square lattices as shown in Fig. 1. The walker makes steps M={ sa _sB) ]| 3.
Ng Ng

with weightsh, andJ, between first-neighbor sites on one of

the two square lattices and the walk is directed in the diag- . no. " .
onal direcq[ion Iwhere the matrix elemem) gives the number dfin S(j).

. UL ;
According to Eqs(2.2, changing®, into —®q in V, The matrix elements iM" give the same numbers in the

the eigenvector corresponding oA is obtained. Thus all Seduence obtained afteriterations. When the substitution
q .

the information about the DW and the IM is contained in thatStats Withj' the corresponding numbers are contained in
umnj.

art of the spectrum with ,=0. Later on we shall restrict C°! _ , o
P P q If U, denotes the right eigenvector bf with eigenvalue

ourselves to this sector. . MU
Let us now consider the correlation lengths in the direc-{}»» the asymptotic density afis given by

tion parallel to the layers in both problems. For the DW it )
can be expressed as a function of the two leading eigenvalues i_ Y1) (32
of the TM with P="3,0.3)" '
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where U; is the eigenvector corresponding to the leading
eigenvalu«) ;. The length of the sequence afteiterations hJ
is related to the leading eigenvalue through~Q so that
0,>1.

In the following, each letter in the sequence is replaced by
one digit or more(for examples,A=0, B=1). Thus one
obtains a sequence of digitg (k=1,2,..,L). The aperiodic
Hamiltonian is defined as in EQL.2) with a constant trans-
verse fieldh,=h and a modulation of the couplings follow-
ing the aperiodic sequence,

EX|xix]xix|x: | §x|x§x|x§x|x§ |

FIG. 2. Matrix elementd . ; as a function ok for the period-
doubling sequence. Components of the eigenvector to be decimated
out in the RG transformation are denoted by crosses. The heights of
solid vertical bars indicate the strength of the couplings; the grey
bars stand for the field.

J=JR'K, 3.3 Introducing t_he.reduced couplir?g= J/h, its critical value
on the aperiodic quantum chain follows from Ed8.3),
whereJ is the unperturbed interaction aRdthe modulation (3.5), and(3.8) as
ratio.
When f,=0,1, the cumulated deviatioA(L) from the Ae=R7P~. (3.9
averaged coupling defined in Eq(1.3) scales withL as
IV. PERIOD-DOUBLING SEQUENCE
A(L)=J(R=1)(n_.—Lp..)~8|Qy"~6L". (3.9

) . A. Definition and general properties
In this expression,

The period-doubling sequerféeollows from the substi-

L n. tutions A— S(A)=AB, B—S(B)=AA. Here we make the
n=2> f, p.=Ilm T (3.5 identificationA=0 andB=1, i.e.,J,=J and Jg;=JR ac-
k=1 Lo cording to Eq.(3.3). Thus starting orA, aftern iterations,

give the number of digits equal to 1 in a sequence withone obtains the following sequences of didits
lengthL and their asymptotic density, which can be deduced

from Eq.(3.2), respectively{), is the next-to-leading eigen- n=0, 0,
value of the substitution matrix§ measures the amplitude of n=1 01
the aperiodic modulation, and is the wandering exponent B '
of the sequence, given by n=2 0100,

In| Q|

=5 (3.6 n=3, 01000101,
1

Thus the mean shift of the coupling strengfi(L) at a n=4, 0100010101000100. (4.1
length scalel, proportional toL® !, is governed by the ) o .
wandering exponent. The eigenvalues of the substitution matrix &¢=2 and

The relevance of the perturbation follows when one com{}2=—1 so that the wandering exponeat g(iEXe” by Eq.
pares the deviation from the critical point to the averaged (3.6), vanishes. The asymptotic density. = p.." = 1/3 fol-
temperature shifst~ 6J(£) induced by the aperiodicity at a lows from Eq.(3.2) and leads to the Ising critical coupling

—_p-13 H
length scale given by the correlation lengtht ~*:2* A;=R™™", according to Eq(3.9.
One easily verifies on the last line of Edg.1) that the

St f\’'s satisfy the relations
T~t_¢, o=1+v(w—1). (3.7
fa=1-fy, fa:1=0. (4.2
When ¢ >0, the ratio is divergent, which indicates a relevant
perturbation. Whenp<0, the ratio vanishes at the critical B. Bulk critical behavior

point and the perturbation is irrelevant. Finally, when
=0, the perturbation is marginal and may lead to a nonuni-
versal behavior. The same conclusions can be reached
calculating the scaling dimension of the modulation ampli-
tude 8, which is equal top/v.?®

For a strongly anisotropic unperturbed systenin Eq.

We now proceed to the exact renormalization of the ei-
nvalue equations, associated with the magi%), which
llow from Egs.(2.2) and(2.4). We first treat the bulk prob-
lem on a semi-infinite system. To recover the period-
doubling sequence of interactions after one renormalization

(3.7) has to be replaced by the exponentof the correlation step, we eliminate triplets of interaction3,RJ,J) indicated

length in the direction perpendicular to the layers in the 2Dby Crosses i_n Fig. 2. Using reduced COUp”ka/h and
systerm? a reduced eigenvaluek=A/h, the RG equations, as derived

The critical transverse field of the inhomogeneous IM isin Appendix A, are given by
enerally given b
generally given by foied o 'l

: AR MR 43
he=lim [ (3. (3.9
Lo k=1 wherec andd are defined in EqQ4A2).
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According to Eqs(A3) and(A4), the components of the in agreement with known resulfts.

eigenvectors transform as For the aperiodic model the separatrix has a quadratic
, , dependenceA(x)=pB*k?> when k<1, with Bg*=(v2R
V'(2k)=V(8k), V'(2k+1)=V(8k+1). (44  _2R?)/(1-R?), in contrast to the linear behavior for the

homogeneous model. The scaling behavior of a point with
coordinatesA = Bk? k<1, close to the separatrix, can be
deduced from EQgs(4.9 as k'~«x? and A’~A, thus

The bulk IM fixed point corresponds to

Ax— * _ _p-13
AT=0, A R PR Consequently, at a fixed=«'<1 we ob-
which, using Egs(A2), leads to tain A’ ~ A2, which represents a strong repulsion. This type
S o of scaling behavior is compatible with an essential singular-
c*=-1, d*=1+R¥"+R“~ (4.6 ity in the gaps at the top of the spectrum:
Thus the eigenvalues of the linearized transformation are AA;~exp(—CL?) (4.14
given by [ ) .
with o=1/2 since the rescaling factor ls=4. From Eq.
Aol , | *

2 131 e 1/52 (4.14) the parallel correlation length of the DW is given by
b A =(RTHRTOS bytzx =4, (47 PW_(AA;)I~expCLY), and thus the transverse fluc-
tuations of the walk grow anomalously, on a logarithmic

and, withb=4, one obtains scale:
In(RY3+R™1/3) ([X(t)—=X(0)]?)¥2~In%(t). (4.15
7=———————, y,=v =1, (4.8 - .
In2 Here X(t) denotes the position of the walker at tirheWe

note that the same asymptotic behavior is found in the Sinai
1model of a one-dimensional random walk in a random
environment!’

thus confirming the conjecture of Ref. 30.

The top of the spectrum, which governs the behavior o
the DW, scales to a fixed point with— o and\ — . Thus
it is convenient to write the RG equations in terms of the

new variablesc=1/\ anda=A/\, leading to C. Surface critical behavior

We now turn to the renormalization of the surface block,
looking for the scaling behavior of the surface temperature
' ts. In order to do so, we apply a modified transverse field
h,=htg on the first site. As shown in Appendix A the RG
A=(a?—R?)(a?—-1)%+2«%a%(1—a?) + «*a?, transformation now generates an auxiliary variallein
terms of which the recursion relations are given by

— R [
K =K K’ a =a

B
_ 2
=<3

B=(a’?-R?(a’—1)+«%(1-2a%>+«* (4.9
0!2: 2

From Egs.(4.9 the DW fixed point is given by t§2=t§0_dt2, c—de’ (4.16
S S
k*=0, A*=a*?’-R’=0. (410  wherec andd are the parameters defined in E¢a2). The

_ . ) o auxiliary variabled, which does not enter into the renormal-
The scaling behavior at the DW fixed point is different for ;4tion ofts, may be discarded.

the homogeneous model, wilR=1, and for the aperiodic For the bulk Ising-fixed-point values af andd given in

one, withR# 1. First we start with the homogeneous model,gqs (4.6), the transformation of the surface temperature
where the separatrix in th@\,«) plane is linear at the fixed gives two surface fixed points with

point: A(x)=a* k. According to Egs.(4.9), a point with

coordinatesA = ek, k<1, which lies close to the separatrix, 3té2

*

is repelled by the fixed point as =z =(RVP+R Y¥)2<1, t*2=1, (4.173
S
S VI PPt } (4.11) t?[*
K :—1 = - T2, 2 N . (9 :
a’=2a a*(a®=2) x| =(RGTRT9Z>1, 22=0.  (417b
and thusa’=A'/«’ is given by s
Thus the attractive fixed point in the critical surface, corre-
o' =a*—4a’+2. (4.12  sponding to Eq(4.173, governs the surface critical behavior

. . . . and leads to the scaling dimension of the surface tempera-
The fixed-point valuex* =2 determines the equation of the ture 9 P

separatrix while the leading eigenvalue of the transforma-

tion, e;=4da’'/da|* =16, is connected to the gap exponent In(RY3+R™13)
throughy, =Ine; /Inb=2. Consequently, the wandering ex- YW= (4.18
ponent is given by

in agreement with the conjecture of Ref. 33. The same quan-
tity at the repulsive fixed point, corresponding to E417h,

(R=1), (4.13 is given by
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In(RY3+R~1/3) V. HIERARCHICAL SEQUENCE
Yy =———. 4.1
Yes 2In2 (4.19 A. Definition and general properties

W ider the critical behavior of th ¢ In the generalized hierarchical sequence associated with
'Veé now consider he criical behavior of the surfacé mags, , integerm>1, the positionk of the digitsf, satisfy the
netization of the aperiodic IM. For a semi-infinite layered relatiorf®:31

system, the surface magnetization is simply given by the first
component of the normalized eigenvectdy corresponding k=m'(ml+p), 1=0,1,.., p=1,2,..m—1.
to the lowest fermionic excitation, which vanishes in the or- (5.1)

dered phasé® _ _
With m=2, the Huberman-Kerszberg sequence is

B recovered?®
me=®,(1), 2 cp%(k): 1. (4.20 We recently noticed that these hierarchical sequences can
k=1 be also generated via substitution, using an alphabet with an
infinite number of letters. Let us put the letters in correspon-

According to Eq.(2.4), its §calling dimensionn, can be  yance with the natural numbers; thgs then follow from
deduced from the renormalization of the odd components of_, g(n) with5!

V at the Ising fixed point which correspondsAd =0.

Like V(8k+7) in Egs.(A2), the odd components inside m—1
each block can be expressed as function¥@k+ 1) and S(r)=00...0(n+1). (5.2

V(8k+8) using Eqs(Alb)—(Alg). At the fixed point, tak-
ing Egs.(4.4) into account, one obtains

O* (4k+1)=P'*(k+1), d*(4k+2)=RYVd'*(k+1), Starting withn=0, repeated applications of E¢p.2) for m
=2 leads to the following sequence at the fourth step:

* (4k+3)=—R 0" * (k+1),

0102010301020104. (5.3
O* (4k+4)=d"* (k+1). (4.21)  According to Eq.(3.3), it corresponds to the interactiods
o =3, 3,=JR Jy=J, J,=IR2,... .
Thus the normalization oP* leads to One may notice that the underlined terfisg give back

the original sequence with, replaced byf,+ 1. The same
property remains true fof,,, with any value ofm so that

© ©

> 2 D*2(4k+1)=(RPH+RP)2Y d'*2(k+1)=1.
k=0 I=1 k=0
(4.22 f= Tkt L k1= Foke2= =frkem-1=0.

' (5.4

Near the critical point, the surface magnetization transforms

as The lIsing critical coupling is still given by Eq$3.5 and

(3.9 wheren, can be evaluated recursively. Using E(s4)
for a sequence with.=mP, we obtain

(D/*(l) »
= msms y (423 mpfl

TS0 (kD))

!
mS

Np= 2 fo=Nyp-1+mP 1
so that, using Eq(4.22, m.=(R"*+ R""®m and, withb k=1

=mP l4mP 24 1= P (5.5
In(Rl/3+ R*1/3)
Xm = 2 In2 , (429 which leads to
in agreement with an analytical result for the surface _ 1 \. =R~ Mm-1) 5.6
magnetizatiorf® The thermal and magnetic surface scaling Pem—1 e ' '
dimensions are related through
1 B. Bulk critical behavior
Xm= = 5 Yty (4.29 In the exact renormalization group transformation, we
decimate out those sites of the lattice, which have connection
a relation conjectured in Ref. 33. Furthermore, comparindy @J coupling. In such a way, blocks of &(—1) sites are
Egs.(4.24 and(4.19, one may verify that eliminated as indicated by crosses in Fig. 3. Using the re-
duced variables.=J/h and A= A/h, a lengthy calculation
Xmg:’yts_ (4.26) detailed in Appendix B leads to the transformation
. . . ; ~  ~Dymes Do Dom-
These relations, which are generally valid for the IM, will be A= 2m-2 2m-8 i \R2M-2 (5.7)

discussed in Sec. IX. AL me1e Am-Lo
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R] R2J A
hJ

x>t ] oix x| oixx | oix|x DwW

FIG. 3. As in Fig. 2 for the hierarchical sequence witks 2.

With m=2 andm=23 one obtains j_/

A A
A= A(]\Z—xz—l) AN =R(A2-\2) (m=2) M
N2 ) )
(5.89 FIG. 4. Schematic RG phase diagram for the hierarchical model.
There are two nontrivial fixed points on the separatrix\ &&= 0 for
the IM and at a nonvanishing value &f* for the DW. The two

A = é[(]\Z_ A2)2—2A24)\241], fixed points generate fixed linéaot shown herg parametrized by
A the modulation ratid?, in an extended parameter space. These fixed
lines govern the marginal behavior of the IM and the DW, respec-
R - ~ tively. For the period-doubling, three-folding, and paper-folding se-
— 2_32\2_ A2 _ ' '
N'= X[(A “A)T=AT] (m=3). (5.8b quences the scaling is anomalous at the DW fixed point which is

shifted to infinity.
The RG transformation in Eq$5.7) has an Ising fixed point

with A*=0. To study the behavior of the system close to this A*=0 N\*= (—1)m-IR-UmM-1) (5.10
fixed point, we expand the determinaig,,_, andDyy_3 ’

to linear order inA: The eigenvalues of the linearized transformation are given
- by
Dom-2= (=A™ 1+ 0(A?),
Ao *(M_ |y *[—m r|*
e 122 - bZ:(gAA :|>\ ™=\ y_ N —m
Dom_3=(—1) AW—FO(A ). (59) E7N |)\~k|_|)\*|—1 ! I\ !
(5.1)
Putting these expressions into E¢s.7), we obtain the loca-
tion of the Ising fixed point: and withb=m one obtains
|
In(|Rm/(m—l)_R—m/(m—1)|)_|n(|Rl/(m—1)_R—l/(m—l)l)
= -1
z Inm ’ Yi=v 11 (512
|
in agreement with the conjecture of Ref. 31. . 1 In2
Another fixed point of the transformation with* >0 w= ﬁ: ine,’ (5.15

governs the critical behavior of the DW as shown in Fig. 4.
The position of this fixed point and the values of the corre-since the rescaling factor Is=2.
sponding critical exponents can be calculated in a closed The DW fixed point form=3, which follows from Eqg.
form only form=2 andm=3. (5.8b), is located at
The DW fixed point fom=2 is deduced from Eq5.8a

as Ao [1+R? )\*_\/?R 51
"~ V1-R’ T 1-R° (518

A= vIZR+R * _ R (5.13  The leading eigenvalue reads
1-R 1-R’ '
e,=2(R"*+R+1)+[4(R *+R+1)2-3]"2
The leading eigenvalue of the linearized transformation is (5.17
given by and the wandering exponent of the walk is given by
_ 1 _ 12 " 1 In3
€=R l+R+§+ R l+R+§ —2} , (5.19 w= o= (5.18
ya Ine;

and thus the wandering exponent of the walk is since the rescaling factor is noa= 3.
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C. Surface critical behavior RJ

At the surface of the system we define a modified surfface h J ) | , | _ ) | )
field hy=hts with scaling dimensiory, and introduce an ExIxix|x; | oixx i x|x | ix|xix]|x!
auxiliary variable 6 to take into account the asymmetry of
the renormalized couplings. In terms of the reduced vari- FIG. 5. As in Fig. 2 for the three-folding sequence.
ables, Egs(B1) have to be supplemented for=0 with the
first two equations In(1+R¥M-D 4 RYUM-D 4 ... 4 R?)

Xm, = (IM),
- s 2 Inm
—AV(1)+60t:V(2)=0, (5.29

¢ in agreement with Ref. 52 fom=2 and Ref. 31 for any
—SV(l) —/A\V(Z) +\V(3)=0. (5.19  value ofm. One can easily check that the scaling relations in
0 Egs. (4.25 and (4.26 are satisfied for the hierarchical IM

Then, besides the recursion relations of the bulk variables iﬁoo
Egs.(5.7), we have two more relations for the surface fields:
VI. THREE-FOLDING SEQUENCE

12
A. Definition and general properties

= Dom—2+Dom-4a
S | Dom-2+tiDom-4

The three-folding sequenteis generated through the
substitutionsA— S(A)=ABA and B—S(B)=ABB. Start-

, I Dom 2+ Dom 4 |2 ing on A with A=0 andB=1, at the third iteration, one
0'=0 5 , (5.20 ;
Dom—st+tsDom—4 obtains
whereD,,,,_ 4 is defined througIDZm_szzA\DZm_[l. Here, as 010011010010011011010011010. (6.1
before, the auxiliary variablé does not enter into the renor-
malization oftg and may be discarded. The substitution matrix has eigenvalu@s=3 and(},

As one can see from Eq$5.20, there are two surface =1, leading to the wandering exponenb=0. The
fixed points att¥ =0 and att* =1, from which the latter is asymptotic density i$..=1/2 and gives\;=R™ Y2 for the
stable, both on the IM and the DW critical surfaces. Evalu-Ising critical coupling. The same sequence is recovered when
ating the linearized RG transformation around the stabl@ne keeps every third term, underlined in E8,.1). The dig-
fixed point, one obtains, for the scaling dimension of theits in between are always 0 and 1 so that the following rela-

surface temperature, tions are obtained:
In(1+ R#(M-D4 RUM=D 4 ... 4+ R?) fa=Fk, fakr1=0, fagen=1. (6.2
ytS: - Inm (lM )
(5.2 B. Bulk critical behavior
for the IM as expected from numerical restitand To proceed to the bulk renormalization one considers
blocks of six eigenvalue equations from which four, indi-
InR cated by crosses in Fig. 5, are eliminated so that the rescaling
Y= " ipm  (PW), (522 factor is nowb=3. It is convenient to use the reduced eigen-
value A= A/J and the temperaturelike paramegerh/J as
for the DW. well as an auxiliary variabl& which is needed to take into

The scaling dimension of the surface temperature for th@ccount the form of the couplings after renormalization. The
DW is related to the anomalous diffusion exponégton the  decimation described in Appendix C leads to the renormal-
hierarchical lattice. According to exact resuflts®the mean-  ized variables
square displacement of a diffusive particle in a hierarchical

environment is asymptotically given byX?(t))~tdw,  ~ ~ c d| |+ _Ru® o ,C—€
where M=M=\ g]| » # = T
6.3
1-InR/Inm, R<1/m, . .
w (5.23  wherec, d, ande are the parameters defined in E¢S2).
2, R>1/m. The components of the eigenvecirtransform as
Thus/one hasl,=1+y;_for anomalous diffusion, i.e., with V' (2K)=V(6K), V'(2k+1)=V(6k+1). (6.4
R<1/m.

One can also deduce the scaling dimension of the surface At the IM fixed point
magnetization of the IM from the rescaling of the surface
component of the eigenvectdr,(1). Following the same A* -0, w*=RY2 (6.5
way as for the period-doubling sequence in Sec. IV C, with
the fixed-point parameters in Eq&.10), one obtains and, according to Eq$C2),
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c*=—R%R+1), d*=—-R(R+1), e*=R2 RJ
(6.6) h J h[3
o Y P ¥
The auxiliary parametek, which does not enter into the I Ixi|oix|x | ox|xi | %Xlx |

renormalization of the physical variables, need not be further
considered. The eigenvalues of the linearized RG transfor-
mation follow from Eqs.(6.3) with

FIG. 6. As in Fig. 2 for the paper-folding sequence.

The surface magnetization exponept follows as above

from the behavior under renormalization of the odd compo-
nentsV(6k+1), V(6k+3), andV(6k+5) which follows
from Egs.(C1b—(Cle and (6.4). At the Ising fixed point
Eqg. (2.4 leads to

Ar|* | *

B L
dA N

Thus, withb=3, one obtains the bulk scaling dimensions

3.

(6.7

_In[(2+R)(2+R™ 1]
B 21n3 :

P* (3k+1)=d'* (k+1),

y=vi=1,

(6.9

*(3k+2)=—RY®"*(k+1),

as expected, according to the numerical study of Ref. 33.
The top of the spectrum again scales to infirfity—c,
J—) such that the DW fixed point is located Aff =1,
w*=0. The equation of the separatrix is given Ay=A?
—1=v*u when u—0, i.e., close to the fixed point. The
scaling behavior of a point with coordinatds= yu, u<1is
of the formA’ ~A andu’~ w2, like for the period-doubling
sequence. Thus the highest gap in the TM spectrum displays
an essential singularity of the form given above in #3414 in agreement with a direct calculation of the surface

d*(3k+3)=d'*(k+1). (6.13
Making use of Eq(4.22 with b=3, the scaling dimension
of the surface magnetization is given by
B In(2+R)

Xm= "5 n3 (6.14

but o=1In2/In3 since the rescaling factor is ndw=3. The
transverse fluctuations scale similarly to £4.15.

C. Surface critical behavior

At the surface we define a temperaturelike paramgter
=h;/J with scaling dimensioty; and introduce as above an
auxiliary variabled to take into account the asymmetry of
the renormalized couplings.

A comparison of Eqs(C6) with Egs. (C5) leads to the
renormalized parameters
2 c-e

Clps/p)—e’

c—e

Clps/p)*—e’
(6.9

nR
e

12_ p2

12__ 2
Mg _Ms(

With the bulk Ising-fixed-point values given in Eq$.5
and(6.6), two surface fixed points are obtained with

9 12| %
P iR il uP=pri=R,
s
(9#’2*
51 =(2+R)>1, ui?=o0. (6.10
dpg

At the stable fixed poinw;‘Z:R, with b=3, the scaling
dimension of the surface temperaturelike parameter reads

In(2+R)

YW=~ "3 (6.1

a result previously conjectured on the basis of a finite-size
scaling study’® The same quantity at the unstable fixed point

is given by

~ In(2+R)

Yt~ 723 (6.12

magnetizatiod® Again x, satisfies the scaling relations
(4.25 and (4.26).

VIl. PAPER-FOLDING SEQUENCE
A. Definition and general properties

The paper-folding sequertéeresults from the recurrent
folding of a sheet of paper onto itself, right over left. After
unfolding, one obtains a succession of up and down folds to
which one associates a digit, 0 and 1, respectively. After four
steps, this process leads to the following sequence:

001001100011011.

(7.1

The sequence on the right of the central fold is the mirror
image of the left part, with each digi, replaced by its
complement *-f,. As a consequence, the asymptotic den-
sity is p..=1/2 and the Ising critical coupling is,=R~ %2,

The same sequence can be generated using the four letter
substitutions A—S(A)=AC, B—S(B)=DB, C—S(C)
=DC, and D—S(D)=AB with the identificationA= 00,
B=11, C=10, andD=01. The leading eigenvalues of the
substitution matrix,Q2;=2 and{),=1, lead to a vanishing
wandering exponenty=0.

The even termd,,, underlined in Eq.(7.1), reproduce
the sequence itself whereas odd terms are alternatively 0 and
1. Thus one has

1
fac=fio faa=5[1+ (=1, (7.2

B. Bulk critical behavior

The renormalization of the paper-folding problem is
slightly more involved than the preceding ones. In the deci-
mation process, as shown in Fig. 6 one eliminates blocks of
two sites which interact alternatively vihor RJ. As a con-
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sequence, alternating transverse fidigsand h[’3 are gener- values+1 of o. Thus the supplementary term takes the
ated at odd and even lattice sites, respectively. Furthermoréorm ¥ 3h,o”; and corresponds to a surface fietchg acting
some auxiliary asymmetry parameters are needed to retrieven o}, the sign depending on the sector.
eigenvalue equations with their original form after renormal-  The decimation of the surface block described in Appen-
ization. Altogether the exact RG transformation involves sixdix D gives the renormalized parameters
variables.

The renormalized parameters, following from the decima-

: =ap ; _ dop5 d d
tion process detailed in Appendix D, are given by 12 2,_—’% 12 29aCp g'2=p2-2%
Ms = Mg 2 PR s s ) )
dg(A“—1) dskp s
-~ ve . Balp , RaigR (7.7
AN'=AC,dp)™, pe== 1 M= 5 _
A -1 A“—R where/,=h./J andu,=h;/J are reduced surface variables
whereas# takes into account the asymmetry introduced by
2_ 2Ca ,:% _Cs us- C; andd; are the bulk parameters defined previously in
TRy et fBTdy Egs.(7.3) anddg=x,— u2/(A2—1).
Let us first consider the scaling behavionaf, i.e., of the
w? u? . surface thermal perturbation. With the bulk values given in
Ci=| Ki— _Rre) i=| Ki— 1) (i=a,B). Egs.(7.4) one obtains two Ising surface fixed points with
I s *—(1+Ry4<1 ¥2=R2?
The fixed point values of interest for the IM are us | v Hs TR
A*=0, w*=-R, ph=-1, «%2=R% «%2=R°Z o2
(7.4 Ei% =(1+R)>1, ul?=0. 7.9
A linearization of the RG transformation, Eq&.3), near Hs
this fixed point gives The stable fixed point corresponds ad =R? and, withb
~ =2, the scaling dimension of the surface temperature is
— =[(1+R)(1+ R—l)]1/2, given by
In(1+R) g
ool _ompl"_omalt o omplt_ NS e 79
I I I IHa (7.5 as expected from numerical resulfsyhereas
The first line leads to the anisotropy exponent ~  In(1+R)

=— 7.1
In(R1/2+ R—1/2) Yeg 2 In2 (7.10

z In2 '

(7.6 at the unstable fixed point.

The stable fixed point values of the parameters in the
néquation for the surface field variabf¢ lead to the transfor-
ation

previously conjectured in Ref. 33, whereas the leading eige
value in the linearized transformation of the temperaturelik
variables, which is equal to 2, gives the correlation length

exponentr=1. , _
ponenty (2= 3(1+R7Y). (7.1

C. Surface critical behavior Thus, in the extended parameter space, there is a flow from
Using Egs.(D3) and(D5) together with Eq(2.4), it may ¢ >=0 to{$?=+o0 and the critical behavior is governed by
be verified that the normalization @* here involves two the fixed point with a vanishing surface field which is un-
componentsp'* (2k+1) and®’* (2k+2). Thus the renor- stable in the direction o:_fg. Then Eq.(7.1)) gives the scal-
malization of the surface magnetization, based on the renoing dimension of the surface field for the Ising problem,
malization of the eigenvectors, becomes equivalent to a di-

rect calculation ofmg. In this case it is more convenient to In(1+R™1)
introduce, besides the surface temperature, a surfacehfield YT T o (7.12
conjugated tang in the original Hamiltonian and to study its
scaling behavior. or, using Eq.(7.6),
This can be achieved, while keeping the free-fermion
character of the Hamiltonian, through the addition of a sur- In(1+R)
face term—3hgoho} in Eq. (1.2). Since there is no trans- Xn =27 Y0~ "5 2 (7.13

verse field acting on the first siteyy, which commutes with
'H, is conserved. The eigenstates of the Hamiltonian thein agreement with the scaling relatios25 and(4.26 and
belong to one of the two sectors corresponding to the eigerthe analytical result of Ref. 33.
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C. Surface critical behavior

RJ
h J With the Fredholm sequence, the decimation of the sur-
gxl xi | ix|x: I ix|xi | ix]|xi face block introduces a multiplicative renormalization of the
) ) ) T first component of the eigenvector such tkste Appendix
E)

FIG. 7. As in Fig. 2 for the Fredholm sequence.

(A2—\2)(kA2—\2R2—1?)
VIll. FREDHOLM SEQUENCE V' (1)=6V(1), 02= S

2_y2 A2_3\2pR2)
A. Definition and general properties (A°=N"=1)(kA"=N\"R%)

. . . _— (8.6
The Fredholm sequenteis obtained via substitution on )
three lettersA— S(A)=AB, B—S(B)=BC, andC— S(C) The transformation of the other parameters follow from Eqgs.
= CC. We start the substitution process wihand here, for (E4) and(E6) as
convenience, we number the sequence starting-o0. With ~y ~y oo
A=0,B=1, andC=0, after four iterations one obtains the 22 (A=A —D(A"-AI)R
sequence * P (kA2 \2R?)(kA2-\R?—1))’

0110100010000000, 8.9

| (A2=\2)(kA?—\?R?— k)
wh_ich is the characteristic sequence_of the powers df, 2, K= (A2=\2—1)(kA2—\2R?)’ 8.7
being equal to 1 fok=2P. Even underlined terms reproduce .
the sequence and odd terms, exckpt vanish. This gives As beforets=h, /h is the surface temperature ardn aux-
the relations iliary variable generated by the transformation.
For the Ising fixed-point values of the bulk parameters
fa=fx, fx+1=0 (k>0), f;=1 (8.2  given in Egs.(8.4) and (xA?)* =0, one obtains two surface

. . _ ) fixed points with
The leading eigenvalues of the substitution matrix are

Q,=2 andQ,=1, and hence the wandering exponent once i ) 1
. S *2 *
more vanishes. 2 TR t;°=0, 6 =3
The number of digits equal to Iy , grows logarithmi- s
cally with the lengthL, and thus the asymptotic density is
- o L : aZ* R? 1
p»=0. The Ising critical coupling in Eq3.9 keeps its un- S| = *2_9_R2  gr2=
S 1

(8.9

perturbed value\;=1. This aperiodic perturbation modifies Tﬁ 2’ R%"
the surface critical behavior but does not change the bulk

properties, except near line defects which introduce local The first fixed point is stable wheR>R.=v2 and, since

marginal perturbations in the 2D IfA. ts =0 corresponds to a vanishing transverse field on the first
spin, the surface is ordered at the critical point. The second
B. Bulk critical behavior fixed point only exists in the regimR<R; where it is stable.
o . With b=2, the scaling dimension of the surface temperature
The quantum chain is assumed to startkenl; i.e., we is given by
ignore the first digit in the sequen¢8.1). As indicated in
Fig. 7 in the renormalization process, odd interaction terms 1 InR
Joks1 Which, according to Eq98.2), are equal tal in the Y= 5 o R>v2,

bulk, are eliminated so thdt=2. With the same notation as
before for the reduced parameters, the renormalized variables

follow from Egs.(E1) and(E3) with Vi = _1+2||';_Z’ R<V2. (8.9
A= é(]xz_)\Z_l) N =(A2-)\2) (8.33  These expressions were conjectured in Ref. 32 on the basis
A’ ’ ) -

of a finite-size scaling study.

The scaling dimension of the surface magnetization fol-
V'(2k)=V(4k), V'(2k+1)=V(4k+1). (8.3D  lows from the transformation of the odd components of the
eigenvector at the appropriate Ising surface fixed point. In

Near the Ising fixed point, corresponding to the bulk Eqs(2.4), (E2), and (8.3 lead to

A*=0, M=-1, (8.4 D (2k+1)=D* (2k+2)=d'*(k+1), k>0.
the eigenvalues of the linearized transformation (8.10
L . In the surface block, using Eg€ES) and (8.6), one obtains
IN' I\’
Al T2 o 2 ®9 o (1 o (1)
A 2N @*(1):_6*( ), *(2)= 0 H*R’( (8.1

lead to the unperturbed Ising values for the anisotropy and
correlation length exponents=v=1. Thus the normalization ob* gives
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el 2 *2 %2
t d'*4(1) RJ
*2 )= 4 s |- 7
2 2, O*H2kHN=| 14 2| —5m h J
Xi ix|x: | ixxix|xi | ix|x: | X
rx2 —
+2k21 O (k+1)=1. FIG. 8. As in Fig. 2 for the Fredholm defect in the bulk.
8.1 - ~
) ®.12 A2—\? K(KAZ—)\ZRZ)—Tg
According to Eqs(8.8), the coefficient ofP'*“(1) is equal K'= o Ty o2 2732l
to 2 at both fixed points so thaty_,®'*%(k+1)=%. The AT=AT=1 ] (RAT=ARYT=mgA 6.16
surface magnetization transforms according to Eg23), A )
i.e., like In the critical surface, with\* =0 and\* = —1 at the Ising
, . fixed point, the RG transformation of the local variables
mg=v26*ms. 813  takes the form
With b= 2, this leads to the following scaling dimensions in . 1 «R24 2
> S ,_ Td , d
the two regimes: =gz K'=% 1+T . (8.17
Xm =0, R>v2,
WhenR=1, 7= 74, which leads to a line of fixed points
1 InR parametrized byry, k* =1+ 74. The scaling dimension of
X, = PR R<v2, (8.19 the local temperature vanishes as expected for a thermal line

defect in the 2D IM®
as given by a direct calculation of the surface WhenR#1, two fixed points are obtained with
magnetizatiori’ The valuexy, =0 whenR>R¢ is consistent

! | *
with the vanishing surface transverse field at the fixed point. % — i F =0 k*= _R2
There is surface order when the critical point is approached drg| R T4 2R°—1"
from the low-temperature phase and, since the surface is one
dimensional, the local magnetization vanishes discontinu- (g ) [* 5 a1 .1
ously when the bulk disorders. Wh&< R, the strength of (Y =R% 73 7=0, «*7°=0. (819

the perturbed couplings is not sufficient to maintain the sur-
face order and the transition is continuous. In this latter case |n the critical surface, the fixed point at =0 is stable

the scaling relationg4.25 and(4.26) are still verified. whenR>1. The transverse field at the center of the defect
vanishes at this fixed point. Thus the defect is ordered at the
D. Aperiodic perturbation in the bulk critical point, like for the surface, but the critical value Rf

Let us consider the aperiodic perturbation which follows!S NOWRc=1 instead of2. There is no need to compensate

from the junction of the Fredholm perturbation in one half-for missing bonds as it is the case at a surface. \WMRen
space to its symmetric counterpart in the other, i.e., using the 1. the second fixed point afj = + becomes stable and

symmetrized sequence leads to a second-order transition at the defect. The appro-
priate scaling fieldty, associated with the defect tempera-
---1000101111010001- (8.159  ture, which vanishes at the fixed point is no@l. Hence,

. with b= 2, Eqs.(8.18 give the following scaling dimensions
The second half of the sequence is assumed 10 stak 0Ny, e regimes of first- and second-order local transition, re-
=1, leaving out the ternk=0 in the sequencés.l) as for spectively:

the surface perturbation. In this way one obtains a symmetric
defect in the bulk with a vanishing asymptotic density so that InR
A\ remains equal to 1. Vi, = -2 2 R>1,

The simple relation between the local magnetization and
the components of the eigenvector corresponding to the low-

S . InR

est excitation no longer holds in the bulk and one cannot =2 — R<1 8.1
. . . . . ytd I 2 1 . ( . 9
introduce a local field term conjugated & in the Hamil- n
tonian (1.2) without breaking its free-fermionic character.
Thus we shall only consider the renormalization of the local |x. RELATIONS BETWEEN ISING MODEL CRITICAL
temperaturelike variabley=h, /h. For the other parameters EXPONENTS
we keep the same notation as in Sec. VIII B for the surface. .

The decimation of the central block of eigenvalue equa- APart from the correlation length exponent1, all the
tions is illustrated in Fig. 8. The renormalized local variablescritical exponents obtained for the different aperiodic models

follow from Egs.(E7) and (ES) as are varying with the amplitude of the modulation, and thus
the critical behavior of these models is nonuniversal. How-

)\Rz(Az_)\z) ever, some kind of “weak universality” still holds and there

Ty= are relations between critical exponents which follow from

=7y—= .
(kA?—\?R?)2— 73A? the fact that the systems at the critical point obey anisotropic
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scaling** A detailed analysis of the scaling behavior can beMultiplying both sides of Eqs(9.58 and(9.5b), one arrives

found in Ref. 33. at the result
One can naotice other exponent relations which are specific

for the marginally aperiodic IM’s. One such relation con- — .

nects the scaling dimensions of the energy and magnetization Ay(L)~mg(L)mg(L) _Hl N T (9.9

densities at the surface as "

L-1

where the finite-size surface magnetizations on both sides of
Xe, =27 Y1, =2+ 2Xp. 9D the system are given B

It follows from Eq. (4.25 and anisotropic scaling. It was

conjectured in Ref. 33 on the basis of an assumption for the mg(L)=
scaling behavior ofp(1) for low-lying excitations. One can S

find another relation which surprisingly connects bulk and

surface quantities in the form

L-1 i -1/2
1+ I 22
=1

=1

L-1 i -1/2
1+ > [ A3
i=1j

=1

my(L)= 9.7

z= Xms+x_ms' (9.2

whereX,, is the scaling dimension of the surface magneti-The refation in Eq(9.6), which connects the asymptotic be-

zation on the right-hand sid&RHS) of the system. Here we Eav!or o:: tt:\]e Iom;est excnauc:p et'.‘efgy. andl_t(rjw? f|n|te—S|ze| (kj)_e—
argue that the relation in E9.2) is generally true for mar- 'av'or o' IN€ suriace magnetizations, IS vaid for generar cis-

ginally aperiodic layered IM's tributions of the couplings, provided the lowest gap in the

In the following derivation, we consider the quantum system goes tq zero faster tham. 1/ . .
Ising chain Hamiltoniar#{ given in Eq.(1.2) with homoge- .In the following, we_gpply Eg(9.6) to margma!ly apert-
neous transverse fieft, = 1. The dynamical exponent of the 29I systems at the critical point where, according to rigor-
modelz is related to the scaling behavior of the lowest gap®"S results? ITr_;'(\;).=O(1) for aperiodic perturbations
of the spectrum of the critical Hamiltonian in the form leading to a shift of the critical coupling. The finite-size sur-

face magnetizations behave g (L)~L *m and mg(L)
E,—Eg=A,~L77 (9.3 ~L ™ *m; and thus, from Egq99.6) and(9.3), one obtains the
in a finit N f size scaling relation given in Eq9.2).
n {jll'hml e S%S te';? 0 iZSIZd ) nden LY i lculated in The aperiodic sequences studied in this paper which
e asymptotic size dependence/of(L) is calculate change the bulk critical behavior are of two kinds: either

the following approximation. First we determine the leadingsymmetric with\,=\__, (period doubling or such that a

k dependence of the eigenvectobs (k) and Wy(k) from  jo rhed coupling at corresponds to an unperturbed cou-

Egs.(2.3) in such a way that the RHS’s of the equations arep”ng atL —k, which leads tp.. = 1/2 and, according to Eq.

omitted. This approximation is justified, at the critical point _ -1 : R
or in the ordered phase, by the fact that the second differen (3.9, [M(R)]e=[A (R ) ]c (paper folding, three fold

fig). F i L,R)=me(L,R
operators on the LHS of the equations &€ ~2) whereas thg)refo(:;(_syrjXmetrgtﬁzgxiesgf;%ﬂl(st( R’):)mm(sf_( R’—l))’ ;ndd
A% on the RHS i<O(L ~%?) with z>1 for marginal aperiodic mﬁ _ms'R (R SCTh, h sli ' led f
systems at criticality or exponentially small in the ordered0NS€auentyxm (R)=xm(R"7). Thus the knowledge of a
phase. In this approximation we obtain single exponent x (R) is sufficient to obtain all the varying
exponents studied in this papé&urthermore, for the period-
doubling sequencng(R) is symmetric under the exchange
of R into R™! according to Eq(4.24). It follows that for all
the aperiodic sequences one may rewrite the nonuniversal
anisotropy exponent in EQ.(9.2) as z(R)zxms(R)
04 4x, (RY.

) ) ) _ For marginal aperiodic sequences which do not change
Then the size dependence &f is estimated from the linear the pulk critical behavior, i.e., leave=1 and A=1, the

k—1
<1>1<L+1—k>:c1>1<L>i[[1 (=N\e-p)

k=1 i

1+ > [\ 3
i=1j=1

k-1
1+ 2 T A2
i=1]j

k—1
Wy =wy() I (=2 11

equations in Eqsi2.2) as scaling relation(9.1) does not hold. In this casdF(\;).
W1 w.(1) St =R~ ™ with the number of perturbed couplings growing
Ay(L)=— 1 ):_ 1(1) IT (=x)t logarithmically with L. For the Fredholm sequence_
®y(1) ®y(L) =1 =InL/In2 so that the product of the couplings in H§.6)
Lol i 1 scales ad ""R""2_ When the left surface is ordered at the
-2 critical point, i.e., forR>R.;=v2, and the right surface is
x| 1+ 21 ,—1:[1 M (9.53 free, we havex, =0, x,, =1/2 and the lowest excitation
does not scale ds™ ! like the rest of the spectrum, but with
d,(L) d,(L) iy a continuously varying exponent:
ML=- 5 =" L (M7
(L) (1) =1 AlNL—l/z—mR/mz_ 9.8
L-1 i -1
w| 1+ N2 9.5b When the surface magnetization vanishes at the critical point
i:zl ,Hl ! (950 (R<R,), theR dependence at;, in Egs.(8.14 just com-
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pensates that appearing in the product of the couplings amate not independent: Knowledge of the scaling dimensions

one recovers the normal™* behavior forA ;. of the surface magnetization is sufficient to completely de-
Finally, according to Eq(4.26), the scaling dimension of scribe the nonuniversal critical behavior studied in this work.
the surface magnetizatioqns is equal to the scaling dimen- Considering the DW problem, here the line of fixed points

sion of the surface temperat(yg at the unstable fixed point. IS discontinuous aR=1, in accordance with the relevant
This last relation is a consequence of the self-duality of th ature of the perturbation. For the hierarchical models the

Ising quantum chai® Using the dual Pauli spin matrices ine of fixed pOimS s gharacterizeq bY finite coordinates and
defined through the corresponding critical behavior is of power-law form
with R-dependent exponents. On the other hand, for the ape-
riodic models (period doubling, three folding, and paper
folding) the line of DW fixed points is shifted to infinity and
the original Hamiltonian in Eq(1.2) is transformed into its the scaling behavior is anomalous: The transverse fluctua-
dual: tions of the walk grow on a logarithmic scale.
Finally we discuss the local critical behavior at extended
. < x 1t , defects, located either at the surface or in the bulk, which are
kzl heTkTir 1™ 5 kzl JTi+1s (910 generated by the Fredholm sequence. In both cases two fixed
points exchange there stability at a critical vaRg of the
with a vanishing transverse field on the first spin. As alreadymodulation amplitudeR. This critical value separates two
shown at the beginning of Sec. VIl G commutes wity ~ regimes for the local transition:  F&>R; the local mag-
and may be replaced by its eigenvalued. Thus, in the Netization vanishes discontinuously at the bulk critical point
surface term—1h, =7 1h,;7%, h;=hts now plays the while for_R< R_C_the transition is c_ontlnuous. In both cases
role of a surface field acting ot . ohne obta!nslcrltlcal ex&onents which vary continuously with
) . - o . the marginal parametdr.
The unstable fixed point &f =0, with its associated scal- It has been already notic&dthat the surface Fredholm

N9 d|men3|onyt§, 9_0"””3 the cr|t|'cal behavior O,f the dual perturbation is closely connected to the Hilhorst—van Leeu-
surface magnetization. In the duality transformation the couywen modeB” In the same way, the bulk Fredholm defect is
plings \=h/J are changed inta, * so that the surface connected to the Bariev mod®lin these models, the pertur-
magnetizations on both sides in E8.7) are exchanged. It pation of the couplings decays as a power of the distance
follows that the scaling dimension dfr3) is X, and the  from the center of the defect with\ (1) = a! ~* in the mar-
dimension of the surface field is given @fz—x_ms, ginal case, for the 2D IM. . . .
which, according to Eq(9.2), leads to Eq(4.26). The varying exponents obtained analytically and numeri-
cally in Ref. 32 for the surface Fredholm perturbation as well
as those otained via exact RG transformations in Sec. VI
for the surface and bulk Fredholm defects can be put in cor-
In this paper we have presented a unified statisticallespondance with the exponents of the Hilhorst—van Leeu-
mechanical description of the IM and the DW on layeredwen and Bariev models witk replaced by IrR/In 2. Up to
two-dimensional lattices, taking the extreme anisotropic limithow, the values of the Bariev model's exponents had been
for the IM. The critical properties of the two problems were conjectured on the basis of conformal methods using gap-
deduced from the scaling behavior of the spectrum of th&xponent relations after a conformal transformation of the
transfer matrix of the DW, which is studied through exactinhomogeneous infinite system onto an inhomogeneous infi-
RG transformations. For a given value of the aperiodicitynite strip with periodic boundary conditioA3.0ur RG re-
parameterR the RG transformations have two nontrivial Sults for the bulk Fredholm defect and the correspondence
fixed points, as shown in Fig. 4. The bottom of the spectrunPetween both models strongly support the validity of this
scales to the IM fixed point, which controls the critical be- Procedure.
havior of the IM, whereas the top of the spectrum scales to
another fixed point, which describes the critical properties of ACKNOWLEDGMENTS
the DW. : :
The aperioc_iip sequences we considered have differgnt eg:_oc;rpt]ésra\':\ilgrzk Qr%;rt;en?n"Eiﬁgt%rﬁg\ﬂ?r):i;th‘e?eFijeensCh,&ggir:ggnan
fects on the critical properties of the two models according toEtrangees-O.M.F.B), the Hungarian National Research

Luck’s relevance-irrelevance criterion described in Sec?lll.
. . P Fund under Grant Nos. OTKA TO12830, 17485, and 23642,
For the IM, the crossover exponent in &§.7) with v=1 is and the Hungarian Ministry of Education under Grant No.

¢ém=0 whereas for the DW, withw, =1/2, it is ¢pw ; . v
C S T FKFP0765/1997. The Laboratoire de Physique des Mate
=1/2. Consequently, the nonperiodic perturbation is mar, , " jnitede Recherche Assd@ieau C.N.R.S. No. 155.

ginal at the homogeneouf®E 1) IM fixed point whereas it

is relevant for theR=1 DW fixed point. These statements

are in accordance with the exact results. APPENDIX A: RENORMALIZATION
For the IM, the marginal perturbation creates a line of OF THE PERIOD-DOUBLING SEQUENCE

fixed points, which is parametrized by, and the critical The renormalization of the period-doubling sequence in
properties are continuously varying, everRat 1. The non-  the bulk involves the following set of equations:

periodicity also induces a continuously varying anisotropic R

scaling behavior. However, the different varying exponents ARfV(8k) — AV(8k+1)+V(8k+2)=0, (Ala)

Z__ X X Z__ X X
Tk=0k—10ks  Ok= TkTir 1 (9.9

F=

N[ =

X. CONCLUSION
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V(8k+1)— AV(8k+2)+\V(8k+3)=0, (Alb) The auxiliary variabled is needed to take into account the
asymmetry resulting from the renormalization after one step.
)\V(8k+2)—/A\V(8k+3)+V(8k+4)=O (Alc) In this way the variables\, \, tg, and 6 build a closed set
' under renormalization.
o _ As above, the componentq2) andV(7) can be deduced
V(8k+3)—AV(8k+4)+ARV(8k+5)=0, (Ald) from the six central equations and read
ARV(8k+ 4)—/1V(8k+ 5)+V(8k+6)=0, (Ale) d/A\ts 3
V(2)= co
V(8k+5)— AV(8k+6)+AV(8k+7)=0, (Alf)
) RNt dA
AV(8k+6)— AV(8k+7)+\V(8k+8)=0, (Alg) V(1) == V(D + - V(8), (AB)
V(8k+7) _[\V(gk+ 8)+ ARfak+aV/(8k+9)=0. wherec andd are defined in Eq$A2). EquationgA5a) and
(Alh) (A1h), after multiplication by appropriate factors, then give
Among these eight equations we eliminate the six central ~ C— c—

ones, which amounts to rescale the system by a fdgtor

=4. This is accomplished by evaluating(8k+2) and
V(8k+7) as functions oV(8k+1) andV(8k+8), in the
linear system given by Eq§Alb)—(Alg), with the result

dA A3
V(8k+2)= ~—V(8k+1)+ — V(8k+8),

3

RA dA
V(8k+7)=——V(8k+1)+ -~ V(8k+8),

C:/”\z(/”\z_)\2_1)2_)\2R2(A2_>\2)2,

d=(A2—1)(A2=\2—1)—N2R}(A2=)\2). (A2)

Inserting these values into Eq#1a) and (Alh), after mul-
tiplication by c/(RA%) we obtain

c ~c—d
—)\ZRf4kV(8k) —A R—gV(8k+ 1)+V(8k+8)=0,

o

V(8k+1)— A =3 V(Bk+8)+ = Rf4k+4V(8k+9) 0,
(A3)

which are the renormalized equations
ARV (2K)— A’V (2k+ 1)+ V' (2k+2) =0,

V/(2k+1)—A'V'(2k+2)+ N R*+1V (2k+3) =0,
(A4)

after rescaling byb=4. Noticing that, according to Egs.
(4.2, f4=1-fy=f, R remains unchanged and one ob- components V(2m"),

tains the RG transformation as given in E4.3).

d d
-A TV(].) + Gtsc_—dth(S) =0,

R

—V(l) AS R’ V@t g zV(9) (A7)

These equations give the renormalized forms of E45a)
and(A5b) and provide the RG recursions given in E4.16).

APPENDIX B: RENORMALIZATION
OF THE HIERARCHICAL SEQUENCE

In the bulk, the set of eigenvalue equations we consider is
the following:

ARM(2m") — AV(2m+ 1)+ V(2m"+2)=0, (Bla)

V(2m'+ 1) — AV(2m"+ 2) + \V(2m"+3) =0,
(B1b)

AV(2m"+2) — AV(2m"+3) +V(2m"+4) =0,

(Blo

— AV(2m"+2m— 1)+ V(2m"+ 2m)
(B1d)

AV(2m"+2m—2)
=0,

V(2m '+ 2m—1)— AV(2m"+ 2m) + ARV(2m"+ 2m+1)
(Ble

Among the 2n equations one eliminates then2-2 central
ones, which amounts to rescaling the system by a factor of
b=m. Then we are left with two equations between the
v(i2m"+1), vV(2m"+2m), and
V(2m"+2m+1) of the form

=0.

At the surface, in terms of the reduced variables, the same

set of equations as in Eg#\1) with k=0 is obtained, except
for the two first equations which now read

—AV(1)+ 6t V(2)=0, (A5a)

%V(l)—AV(z)HV(s):o. (A5b)

AR" A—
V(2m“)— —V(2m“nL 1)+V(2m"+2m)=0,

A-s AR
V(2m"+ l)—TV(Zm”nL 2m)+T vV(2m'+2m+1)

=0. (B2)
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Here r:)\mil/Dzm_z, S:_Dzm_lezm_z, and Dzm_z
denotes the (B—2)X (2m—2) determinant

A A
N —A 1
1 —A \
Dom—2= , (B3)
1 —A A
AN —A

while D,,_3 is the lower central minor 0D,,,_,. Then

from Egs.(B2) we deduce the RG transformation given in

Egs.(5.7).

APPENDIX C: RENORMALIZATION
OF THE THREE-FOLDING SEQUENCE

11 047

Since f5=f, according to Egs(6.2), these equations take
the form
Rka’(Zk)—K’K’V’(ZkJr 1)+ u'V'(2k+2)=0,

!

A
w'V'(2k+1)— — V'(2k+2)+ R k+1v'(2k+3)=0,
(C4

with the renormalized variables given in E{6.3
At the surface, Eqs(C1g—(C1f) with k=0 have to be
supplemented by

— kAV(1)+ 0uV(2)=0,

Ms A .
?V(l)—;V(2)+V(3)—O. (CH

The eigenvalue equations take the following form in theRewritingV(2) andV(5) as functions o¥/(1) andV(6) in

bulk:

RfskV/(6K) — k AV(6K+ 1)+ uV(6k+2)=0, (Cla

A
puV(6k+1)— ;V(6k+ 2)+V(6k+3)=0, (Clb

V(6k+2)— KKV(6k+ 3)+uV(6k+4)=0, (Clo

wV(6k+3)— %V(6k+ 4)+RV(6k+5)=0, (Cld

RV(6k+4)— KKV(6k+ 5)+ uV(6k+6)=0, (Cle
A
pV(6k+5)— — V(6k+6)+ Rfak+3V(6k+7)=0.
(C1f)
Equations(C1b—(C1le can be used to write

ckA Ru?
V(6k+2)= EV(&H— 1)+ e V(6k+6),

Ru? dA
V(6k+5)=——V(6k+1)+ — V(6k+6),
e eKku

c=p2(A2-p?=R?), d=p3(N?-p?-1),

e=(A2—1)(A%2—R2)— u2A2, (C2)

which, inserted into EqgC1a and(C1f), lead to the renor-
malized equations

~ c Ru®
RakV(6k) — kAl 1— s V(6k+1)+ TV(6k+ 6)=0,

Ru® A d
TV(6k+ H-—|1-5 V(6k+6)+ R3k+3v(6k+7)

=0. (C3

the first and last equations of the surface block, one obtains
the renormalized equations

wsu’R - c—e

e clus/n)’—e

~ c (7
—KA(l—E)V(1)+ V(6)=0,

psp?R
ge

A d
V(1) (1— SV®+Vv(n=0. (CH

A comparison with Eqs(C5) leads to the renormalized pa-
rameters given in Eq4$6.9).

APPENDIX D: RENORMALIZATION
OF THE PAPER-FOLDING SEQUENCE
The following blocks have to be considered:

RfakV/(8K) — k ,k AV(8K+ 1)+ ., V(8k+2) =0,
(D1a

A
paV(8K+1)— — V(8k+2)+V(8k+3)=0, (D1b)

V(8k+2)— KKV(8k+ 3)+ugV(8k+4)=0, (D1l
KBK f
gV (8k+3)— e V(8k+4)+ R'4+2y(8k+5)=0,
(D1d)
when the central interaction &and

Rfa+2\/(8K+4) — k .k AV(8K+5) + u,V(8k+6) =0,
(D23

A
RaV(8K+5)~ —V(8k+6) +RV(8Kk+7)=0,
(D2b)

RV(8k+6)— k AV(8K+7) + uu5V(8Kk+8) =0,
(D2¢)
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KBK f
ppV(BK+T7) — ~E= V(8K-+8) + RiskaV(8K+9) =0,
(D2d)

when the central interaction iRJ. wu,=h,/J and ugz
=hg/J are reduced temperaturelike parameters Anthe

reduced eigenvalue defined before. Since in each block two
sites out of four are eliminated, lengths are rescaled by a

factorb=2.
The two intermediate equations in Eq®1) and (D2)
give

V(8k+2)= )+ =
A
V(8k+3)= = MB V(8k+4),
,u A ngR
V(B+6) = == V(8K+5)+ AZ_RZV(8k+8),
waR KL gh
V(Bk+7) = =55 V(Bk+5)+ == £ V(8k+8),
(D3)

which can be used in the first and last lines of Efl) and
(D2), together with the first relation in Eq&..2), to write the
renormalized equations

RV (4K) -k, k' A’V (4k+ 1)+ !V’ (4k+2) =0,

!

A
V' (4k+1) = V' (4k++2) + R'2aV' (4k+3) =0,

Rf2c+1V" (4k+2) — k' A"V’ (4k+3) + upV' (4k+4) =0,
K/ ~/
V' (4k+3)— i— V' (4k+4) + Rf2kr2V (4k+5)=0.
(D4)

Here the components of the eigenvectors transform accord-

ing to

V' (4K)=V(8K), V'(4k+1)=V(8k+1),

V' (4k+2)=V(8k+4), V'(4k+3)=V(8k+5).

(D5)

The renormalized parameters are given in E@<3).

The surface fieldhg=J{ introduces a supplementary

equation in the surface block which now begins with

o)+ tvin) o,

ZV(0) — Kok AV(1)+ ugV(2) =0,

Ms A _
7V(1)—;V(2)+V(3)—0, (D6)
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where, as beforeu=h,/J is a temperaturelike surface vari-
able andé an auxiliary variable.

The first equation in EqgD6) gives the value oV (0)
which can be used in the second equation to obtain a surface
block in its standard form:

- 2
—kA| ky— —== | V(1) + 0uV(2)=0,

Kp

Ms A _
7V(l)—;V(2)+V(3)—O. (D7)

The two remaining equations are given {iylc) and (D1d)
with k=0. As usual, writingV(2) andV(3) as functions of
V(1) andV(4), oneobtains the renormalized equations

£ Opsdapip
——|V(1 ——V(4 ZO,
2) W+ Ty, V@

sKp s -

- daKK 1-

Mstp
O(A%—1)

dA
V(1)- L-v(4)+Vv(5)=0, (D8
K

whereds= k —,us/(A2 1). When compared to Eq$§D7)
they Iead to the renormalized parameters given in EQ3).

APPENDIX E: RENORMALIZATION
OF THE FREDHOLM SEQUENCE

We have to consider the following block of equations:

AR'2V(4K) — AV(4k+1)+V(4k+2)=0, (E13
V(4k+1)— AV(4k+2)+\V(4k+3)=0, (E1lb
AV(4k+2)— AV(4k+3)+V(4k+4)=0, (E10

V(4k+3)— AV(4k+4) + AR"2+2V/(4k+5)=0.
(E10

Equations(E1lb) and(E1c) give the eigenvector components

A )
V(4k+ 2)= > V(4k+1)+ ———
—\2 A2—

5 V(4k+4),

V(4k+3)= V(4k+ 4),
(E2)

which can be used to rewrite the first and last equations as

A
VKD o

(A2—\2)Rf20V/(4k) — %(AZ— N2—1)V(4k+1)

+V(4k+4)=0,

A -
V(4k+1)—K(A2 A2—1)V(4k+4)

+(A2_)\2)Rf2k+2V(4k+5):O- (E3)
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Sincef, =f, andf,..,=f.,.1, the renormalized equations to Egs.(8.6). The RG equations for the other parameters are
keep their original form with the transformed parametersgiven in Eqs.(8.7).

given by Eqs(8.3). In the bulk, the block of eigenvalue equations to be renor-
The surface block reads malized, corresponding to the center of the defect, is the
- following:
—AV(1)+tV(2)=0, (E4a .
) ARV(—2)—AV(—1)+V(0)=0, (E7a
tV(1)— kAV(2)+ARV(3)=0, (E4b)
. V(—1)—AV(0)+\RV(1)=0, (E7b
ARV(2)—AV(3)+V(4)=0, (E40)
. ARV(0) — kAV(1) + 74V(2) =0, E7¢
V(3)— AV(4)+ A\RV(5)=0. (E4d) (0) = wAV(L)+7V(2) E79
where the auxiliary variable takes into account the change V(1) — KAV(2)+ARV(3)=0, (E70
of the intermediate interaction which is novR instead ofA A
for the bulk equations in EqSE1). From Egs.(E4b and ARV(2)— AV(3)+V(4)=0, (E70
(E10 we deduce the eigenvector components
. V(3)—AV(4)+\RV(5)=0. (E7H
S
V(2)= W A2— \2R2 V(L) + W A2— \2R2 V(4), With A=0 in Eq. (E70), the three last equations differ from

the surface equations in Eq&4) only through the auxiliary
tAR A factor « in the first one which is necessary to preserve the
V(3)= ————V(1)+ ———— V(4), (E5  Symmetry of the block. .
kAZ—\?R? kA%?—\?R? Expressingv(0) andV(3) in terms ofV(—1) andV(4),
the first and last equations of the block take the same form as

which are used to rewrite EqéE49 and (E4d as the two central ones,

— A OV(1)+t.V(4)=0, A
(D+1:V(4) N RV(—2)— k' A'V(— 1)+ 7jV(4) =0,

tLOV(1)— k' A'V(4)+\'RV(5)=0. (E6)

In these renormalized equatiomscan be interpreted as a
renormalization factor foi/(1) which transforms according with the renormalized local parameters given by EsL6).

7V(—1)— k' A'V(4)+\'RV(5)=0, (E9)

IM. E. Fisher, J. Phys. Soc. Jpn. Su8, 87(1969; H. Au-Yang  !'Y. Okabe and K. Niizeki, J. Phys. Soc. Jf&, 1536(1988; E.
and B. M. McCoy, Phys. Rev. B0, 886(1974; P. Hoever, W. S. Sensen, M. V. Jaricand M. Ronchetti, Phys. Rev. 84,
F. Wolff, and J. Zittartz, Z. Phys. B4, 129 (198J. 9271(199)).

’B. M. McCoy and T. T. Wu, Phys. ReWl76, 631(1968; 188 12y Okabe and K. Niizeki, J. Phys. 23, L733(1990.
982(1969; B. M. McCoy, ibid. 188 1014(1969; Phys. Rev. B 13S. Sakamoto, F. Yonezawa, K. Aoki, S. Nosed M. Hori, J.

2, 2795(1970. Phys. A22, L705(1989; C. Zhang and K. De’'Bell, Phys. Rev.
3D. S. Fisher, Phys. Rev. Let69, 534 (1995; Phys. Rev. B50, B 47, 8558(1993.

3799(1994; 51, 6411(1995. 14G. Langie and F. Iglp J. Phys. A25, L487 (1992.
4L. V. Mikheev and M. E. Fisher, Phys. Rev. 49, 378(1994. 15C. L. Henley and R. Lipowsky, Phys. Rev. Le#8, 1679(1987);
SM. E. Fisher, J. Chem. Soc. Faraday Tra8&. 1569(1986. A. Garg and D. Levineibid. 59, 1683(1987.

6B. Derrida, Phys. SciT38, 6 (1991); M. Kardar, inFluctuating 165, Kogut, Rev. Mod. Phy$1, 659 (1979.
Geometries in Statistical Mechanics and Field Theobes ''M. Queffdec, in Substitutional Dynamical Systems-Spectral
Houches Session LXII, edited by F. David, P. Ginzparg, and J.  Analysis edited by A. Dold and B. Eckmann, Lecture Notes in

Zinn-Justin(Elsevier, Amsterdam, 1996p. 1. Mathematics Vol. 1294Springer, Berlin, 1987
"D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Phys. Revt8J. M. Dumont, inNumber Theory and Physicedited by J. M.
Lett. 53, 1951(1984. Luck, P. Moussa, and M. Waldschmidt, Springer Proceedings in
8C. F. Majkrzak, J. Kwo, M. Hong, Y. Yafet, D. Gibbs, C. L. Physics Vol. 47(Springer, Berlin, 1990 p. 185.
Chien, and J. Bohr, Adv. Phyd0, 99 (1991). 19C. A. Tracy, J. Stat. Phys1, 481 (1988.
93. M. Luck, in Fundamental Problems in Statistical Mechanics ?°V. G. Benza, M. Kola, and M. K. Ali, Phys. Rev. B41, 9578
VI, edited by H. van Beijeren and M. H. Ern&lsevier, Am- (1990.
sterdam, 1994 p. 127; U. Grimm and M. Baake, ihe Math-  2F. Iglai, J. Phys. A21, L911(1988; M. M. Doria and . I. Satija,
ematics of Aperiodic Orderedited by R.V. Moody(Kluwer, Phys. Rev. Lett60, 444 (1988; H. A. Ceccatto,ibid. 62, 203
Dordrecht, 199Y, p. 199. (1989; Z. Phys. B75, 253(1989; G. V. Benza, Europhys. Lett.
10C. Godreche, J. M. Luck, and H. J. Orland, J. Stat. PAgs777 8, 321(1989; M. Henkel and A. Patks, J. Phys. A25, 5223

(1986. (1992.



11 050

22M. M. Doria, F. Nori, and I. |. Satija, Phys. Rev. B9, 6802
(1989; Z. Lin and R. Tao, J. Phys. 25, 2483(1992.

23C. A. Tracy, J. Phys. 21, L603(1988.

243. M. Luck, J. Stat. Phys/2, 417(1993.

25, B. Harris, J. Phys. @, 1671(1974.

263. M. Luck, Europhys. Lett24, 359 (1993; F. Igldi, J. Phys. A
26, L703 (1993.

27E. Lieb, T. Schultz, and D. Mattis, Ann. Phyg\.Y.) 16, 407
(1961); P. Pfeuty, Ann. PhysParig 57, 79 (1970.

28, Turban, F. Iglé, and B. Berche, Phys. Rev. B9, 12 695
(1994.

29k |gloi and L. Turban, Europhys. Let27, 91 (1994.

30B. Berche, P-E. Berche, M. Henkel, F. 1g1. Lajko, S. Morgan,
and L. Turban, J. Phys. 88, L165 (1995.

31F. Igloi, P. Lajko, and F. Szalma, Phys. Rev.32, 7159(1995.

32D, Karevski, G. Palgyi, and L. Turban, J. Phys. 28, 45(1995.

33p.E. Berche, B. Berche, and L. Turban, J. Phy8, 621 (1996.

34F. Igloi and F. Szalma, Phys. Rev.®, 1106(1996.

35L. Turban, P. E. Berche, and B. Berche, J. Phys2A 6349
(1994; U. Grimm and M. Baake, J. Stat. Phy&l, 1233(1994);
F. Igloi and P. LajKg J. Phys. A29, 4803(1996; Z. Phys. B99,
281 (1996); J. Phys. A29, 4803 (1996; D. Karevski and L.
Turban,ibid. 29, 3461(1996.

36phase Transitions and Critical Phenomerelited by C. Domb
and M. S. GreerfAcademic Press, London, 1976/0l. 6.

37H. J. Hilhorst, M. Schick, and J. M. J. van Leeuwen, Phys. Rev.

B 19, 2749(1979.

IGLéI, TURBAN, KAREVSKI, AND SZALMA 56

4R. M. Hornreich, M. Luban, and S. Shtrikman, Phys. Rev. Lett.
35, 1678(1975; K. Binder and J. S. Wang, J. Stat. Phgs, 87
(1989.

“Sp. Pfeuty, Phys. Letf72A, 245(1979.

46p. Collet and J. P. Eckmaniterated Maps in the Interval as
Dynamical System@irkhauser, Boston, 1980

47Ja. G. Sinai, Theor. Probab. Appl7, 247 (1982.

48| peschel, Phys. Rev. B0, 6783(1984).

“W. P. Keirstead and B. A. Huberman, Phys. Rev3#, 5392
(1987.

50H. A. Simon and A. Ando, Econometric29, 111 (1961); B. A.
Huberman and M. Kerszberg, J. Phys18 1331 (1985.

51Such substitutions have been independently considered in the
context of quantum Turing machines: P. Benioff, Phys. Rev.
Lett. 78, 590(1997).

527 Lin and M. Goda, Phys. Rev. B1, 6093(1995.

53M. Dekking, M. Mends-France, and A. van der Poorten, Math.
Intelligencer4, 190(1983.

54M. Dekking, M. Mends-France, and A. van der Poorten, Math.
Intelligencer4, 130(1983.

5R. Z. Bariev, Zh. Kksp. Teor. Fiz.77, 1217(1979 [ Sov. Phys.
JETP50, 613(1979].

56For the hierarchical guantum IM, the relevance-irrelevance crite-
rion in Sec. Il does not apply directly since the perturbation is
not small(some local couplings even go to infinityn this case,
in order to apply the criterion, one should go back to the classi-
cal layered IM and put the hierarchical perturbation on the ver-
tical couplings, as described in Ref. 31.

38A. Giacometti, A. Maritan, and A. L. Stella, Int. J. Mod. Phys. B 57H. J. Hilhorst and J. M. J. van Leeuwen, Phys. Rev. L4T.

5, 709 (1997).

39R. B. Griffiths, Phys. Rev. Let23, 17 (1969.

4OF, Igloi, D. Karevski, and H. Rieger, cond-mat/9707 1@Hpub-
lished.

41F. Igloi and L. Turban, Phys. Rev. Leff7, 1206(1996.

42p. Jordan and E. Wigner, Z. Phy&?, 631(1928.

1188(1981); T. W. Burkhardt, I. Guim, H. J. Hilhorst, and J. M.
J. van Leeuwen, Phys. Rev.3), 1486(1984; H. W. J. Blae
and H. J. Hilhorst, J. Phys. A8, 3039(1985; T. W. Burkhardt
and F. Iglo, ibid. 23, L633 (1990.

58R. Z. Bariev, zZh. ksp. Teor. Fiz.94, 374 (1988 [ Sov. Phys.
JETP67, 2170(1988)].

“3In the ordered phasA ;=0 and the correlation length involves °F. Igloi, B. Berche, and L. Turban, Phys. Rev. Le5, 1773

the second eigenvaluk, .

(1990.



