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Quasi-one-dimensional spirk-Heisenberg magnets in their ordered phase: Correlation functions

Fabian H. L. Essler and Alexei M. Tsvelik
Department of Physics, Theoretical Physics, Oxford University, 1 Keble Road, Oxford OX1 3NP, United Kingdom

Gesualdo Delfino
Laboratoire de Physique Theque, Universitede Montpellier Il, Place Eugee Batallion, 34095 Montpellier, France
(Received 21 May 1997

We study weakly coupled antiferromagnetic spin chains in their ordered phase by combining an exact
solution of the single-chain problem with a random-phase-approximation analysis of the interchain interaction.
A single chain is described by a quantum Sine-Gordon model and dynamical staggered susceptibilities are
determined by employing the form-factor approach to quantum correlation functions. We consider both anti-
ferromagnetic order encountered in quasi-one-dimensional materials such ag &@uspin-Peierls order as
found in CuGeQ. [S0163-182@07)00941-7

. INTRODUCTION L
H=32 [1+(=1)"p 1S Shi s

The increasing amount of neutron data on quasi-one- o
dimensional(1D) antiferromagnets calls for creation of a 1
theory capable of describing the behavior of such strongly + 2
anisotropic nonlinear systems in greater detail. Of particular
interest with regard to recent experiments on Cugea@d s o
KCuF; is the structure of the multiparticle continua. In the +r;n K(©)Shr Snrees @)
present paper we discuss correlation functions of three v
closely related problems involving spinHeisenberg chains:
(i) a single chain with a static alternating exchange),
a single chain in a staggered magnetic field, diid a
system of weakly coupled spihHeisenberg chains at low
temperatures in the ordered phase. In the latter case
consider two types of ordera) spin-Peierl¥™* and (b)
antiferromagnetic:’

An experimental realization of situatioi) may be
achieved in(VO),P,0,;. The analysis of the recent experi-
ments conducted by Garregt al® indicates that the stron-

E un,rD(r_r,)un,r’+aJE ér1,r'én+2,r

nrr’ r.n

wheren andr label lattice sites along and perpendicular to

the chains ana are vectors connecting neighboring chains.

In order to make contact with experiments we have included

next-nearest-neighb@NNN) intrachain as well as interchain
V\fﬁagnetic interactions.

Since J is usually much smaller than the phonon fre-
guency, one can neglect the kinetic energy ofuHeeld and
consideru as commuting numbers. One can denote

gest exchange occurs through alternatively arranged mol- e(n,N)=(—1"S; Si1s) 2
ecules of two different types such that the ratio of the
exchange integrals i3'/J~0.722. and integrate over the displacements. The result is

The second situatiofii) may be realized when a Heisen-
berg magnet with a staggered Lani@etor is placed in an 1
external magnetic field. This is the case for copper ben2oate He=Jd> S Siairt = 2 e(nn)d(r—r")e(n,r’)

but for reasons that will be discussed elsewhere the theory r.n 2
presented here does not apply.
The spin-Peierls transition is a magnetoelastic transition +ad> S, 50+ > KOS, S he, (3)
rn ' " oren ' '

which occurs in quasi-1D antiferromagnets due to an effec-
tive four-spin interaction. Such interactions may be gener-
ated by phonons which modify the exchange integrals; howwhereJ(r—r') is proportional to the matrix inverse @.

ever, the virtual absence of softening of the phonon spectruiow one can forget about phonons and use &j.as a

in the spin-Peierls material CuGgQRef. 10 suggests that general model for the spin-Peierls state.

there may be also other mechanisms. The interaction be- In their low-temperature phases bdthy and the antifer-
tween the staggered parts of energy densities is strongly retemagnet discussed below have order parameters. For the
evant and resolves in dimerization of the lattice at a certairspin-Peierls model this is the staggered energy density
temperatureT, and the formation of spectral gaps in the (e(n,r))= ¢y (for simplicity we assume that there is no an-
spectrum of magnetic excitations. In any realistic systentiferromagnetic order in the spin-Peierls maddherefore in
phonons are three-dimensional which determines a threghe low-temperature phase it is convenient to subtract from
dimensional nature of the spin-Peierls transition. A simplee(n,r) its average value €=e—¢y). This leads to the
model with a phonon mechanism has the Hamiltonian Hamiltonian
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o 1 parameter, that is, treating it as a number and using(8gq.
Hep= 2> HO+ > > te(nn):d(r—r'):e(n,r’): we obtain the sine-Gordon model. Since the(®$ymmetry
' nrr’ in the sine-Gordon model is not present for general values of
.. B its requirement imposes a restriction on the valug.ofhe
+ > KOS Sores (4)  corresponding point in the sine-Gordon spectrum was dis-

r,c,n

covered by Colemdn and Haldan¥ who pointed out that at
B=/27 there are only two breathers; the first one has the
HO=3> § S +ad> S Shiar same mass as kink and antikirilet us call itM) and the
n n second has the mass equalv®M. Therefore atB= 2=
kink, antikink and the first breather realize an @Utriplet
+2(J,+ Jb)eoz e(n,r)— NeS(JaJr Jo), (5 and the second breather becomes aii2ginglet.
n In what follows we also need the bosonized form of the
whereJ, ,, are the couplingggenerated by the coupling to spin density in the continuutt®,—a,S(x), x=nay), which
the phononkto the neighboring chains ia andb directions is given by
(the chain direction is chosen to lo¢. For definiteness we

assume in the following that, ,<0. However, the general S(x) =Jr(x) + I () + (= 1)"n(x),
case can be treated by minor modifications of the formulas
presented below. 52 1 (0.0 1D)
. _di . . =— -+ y
Sometimes the purely one-dimensional mo@lis used R.L 2\2m X

to describe the low-temperature phase. We shall show below

that such approximation always becomes very poor close to =i

the spectral gap. I =—exd Fi2m(®F0)],
The second model we want to discuss consists of coupled T 2mag

spin+ antiferromagnetic chains. Their Hamiltonian is

. . L nZ(X)Z—%sin\/ﬁtb(x),
HAFM:JE (sn,r-sm,r)mnErasn,r-sn,Ha, (6) 0

A
where we takel, <0 anda are lattice vectors in transverse n=(x)= o eXH i V27O (X)]. 9
directions. For simplicity we assume the transverse coupling 0
to be isotropic inx andy directions. Taking the antiferro- Heren?(x) are the components of the staggered magnetiza-
magnetic ordefwhich we assume to be along tlzedirec-  tion, Jéf are the currents of left and right moving fermions,
tion) into account by a mean-field analysis of the interchainna;=x, and X\ is a nonuniversal coefficient related to the
interaction one obtains the effective single-chain problem bandgap for the charge excitations in the itinerant electron
model that gives rise to the spin Hamiltonian. The fi@lds
_ a2 2 hez 2 the dual of the scalar field and obeys3, 0 (x) = —T1I(x),
HO_J};‘ s"'s“““_h}n: (=1"S=2NJimg, (7)) \yherell is the canonical conjugate @. We note that(9)
, o differ from the “usual” expressiongsee pp. 270-271 of
wheremo=((—1)"S;) andh=—4J, my. The remaining in-  Ref. 13 by a shift of the bosonic field by/x/8. This opera-
terchain interactions will be treated in the random-phase ap;g, interchanges sin@#®) and cos(27®), but changes

proximation(RPA) (see Sec. VL neither derivatives of® nor the dual field®.
Notice that despite the fact thafx) has the same dimen-
Il. TRANSITION TO CONTINUOUS DESCRIPTION sion as the component of the staggered magnetization, it is
ALONG THE CHAINS AND BOSONIZATION given by a different operatdsine instead of cosineln fact

We shall discuss the spin-Peierls case of weak dimeriza€(X) 1 the Xg component of the charge density in the sys-
tem with a frozen charge field. As we shall see the situation

tion [(u)|<1. In this case one can use a continuous descrip: . .
tion of the spin} Heisenberg chain which, far< @,~0.25 'S somewhat similar to that for the spin-laddsee, for ex-

(Ref. 12, is given by the Gaussian model. In the frameworkample' Ref. 1Y, but there are also certain subtle differences.

of this model one can express spin operators in terms §ubstituting Eq.(8) into Egs. (4) we get the following

bosonic exponentssee, e.g., Ref. 13Thus, for instance, we osonized version of the spin-Peierls Hamiltonian
LT ’ ’ Hep==HO+ V ponorit Vepin:
sP— <rlly phonon spin-

have
A 0_Y 2 2
€(x)= — cog fP) +less singular terms.  (8) H =3 fdx[nrﬂ&xq)r) Hf“f dx cog y27®;)
0
2
The valueB= 27 was found by Nakano and Fukuyatfia ~Neg(Jat ), (10
by using the Jordan-Wigner transformation with a subse- \2
guent bosonization. There is a simpler way to establish this v _ f dx:cod 27D (x)]:
value of 8, namely, we can use the fact that the initial Hamil- phonon™ 3 7252 o :cog N2m P ()]:

tonian has an S(2) symmetry which must be respected by , ,
the bosonized form. Replacing, in Eq. (1) by the order XJ(r—r'):cod V2P (X)]:, (11)
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Faddeev algebra. This is based on the knowledge of the exact
Vepin™ —z E f dxK(O)n,(x)-nr1(X), (12 spectrum and scattering matrix of the mo#fel® We then
m’ formulate the problem of calculating correlation functions in

where u= (2€p\/ mag) (J,+Jp). Note that we have kept terms offormfactorsand finally give explicit results for the
only the most relevant terms and neglected, e.g., the Urfirst few terms in the formfactor expansion.
klapp term(for a discussion of the role of the Umklapp term  The Zamolodchikov-Faddee{ZF) algebra for the sine-
see Ref. 1)1 Our strategy is now to use exact results for theGordon model with3?=27 was derived by Affleck who
sine-Gordon Hamiltoniaiil0) describing a single chaifsee  suggested a representation which manifestly respects the
also Refs. 18, 19and to treat the residual interchain inter- SU(2) symmetry. As mentioned above there are three single
actionV in the random-phase approximatiGRPA). particle states with magsl which form a triplet under the

The Hamiltonian(lO) describing a single chain is of the SU(2) symmetry. The corresponding creation and annihila-
form vHgy— Neo(J +Jp). The spectrum of Hy is  tion operators are denoted W&, (6),Z.(6) (a==*3,1).
well-known?° it is described in terms of a soliton, an anti- Here 1 denotes the breather state anfidenote soliton and
soliton, a bound statécalled “breather’) of massM and a  antisoliton states, respectively. In addition there is one
second breather of magdM. The mass gaM of the model  single-particle breather state with mag&M, which trans-
is due to the dimerization caused by the coupling to theforms as a singlet under $2) Its creation and annihilation
phonons. It is related to the scaleas™ operators are denoted I8} (6),Z,(6). As usual the eigen-

['(1/4) r'23) 32 states are parametrized by a rapidity variabeich that their
a
KT aT (30 {M \/;F(1/6)

(13) momentum and energy are equal to
The ground state energy density Bffy is then given by
e=— (M?/4)tan@/6), which in turn yields an expression for where M;=v3M for the singlet state ant1;=M for the
the ground state energy density idf as a function ofeg. triplet states. By definition the ZF operatdiand their Her-
Minimization with respect tae, yields the following mean mitean conjugatgssatisfy the algebra
field expressions foe; and mass gapA of HEO) as functions
of the dimensionles@onuniversal parametei?/a, and the
couplingsJ, , andJ:

p]:MJS|nh0J , 6j=|\/|]-COSh9j , (16)

1
Za(01)Z(02) = Sap( 01— 02)Z5(02)Z5(01), @ b=+51,

\F tar(qr/G))3/2 2l o 3 Z:(01)Z5(02)=Ss5(0,— 05)Z5(0,)Z,(6 11
en= _ = — y a:i_, y
0 - 12 AT (213 a(01)Z5(02) = Sa5( 01— 02)Z5(62)Zo(01) 5
232 1/2
(2”?;/4) A [[Jat 3ol Z(01)Z(02)=Sp A 01— 02)B(02)B(0,),  (17)
/4 a 2]
(14 0 “ where the two-particle scattering matricBg(6) are given
o[ Pa +Jb|)l/2 by
2]
“ s (0 sinhg+i sin(m/3) s, ab R
= H a1 :—_1 1
e tar(w/6)( T'(1/6) 2r(3/4)) w0 sinhg—i sin(w/3) 2
Jrr(2/3)) \ T'(1/4) - - 1
S 0: 0+_ 0__ ’ :i_lli
210005, 13+ 3 AN =S| OGS 071 ) AT
= 2 =:C 5 (14
° sinhg+i sin(w/3) 3
Here we have used= (/2)Jagx for the Fermi velocity, S2 A0 =\ Ginra = Sin(7/3) (18
where k is a function of the NNN couplingr. The ratio of
the constantg and(C’ is found to be For the creation and annihilation operators we have
C 1 Z,(01)Z5 (605)=So( 02— 61)Z, (0,)Z4(6
& oamsma 1y ZaltZ5(0)=S(62= 00Z] (0 Za( )
Ne®m 1
+278,p0(0,—6,), ab==x-1,
Equation(14) makes it clear that the gap originates from the 7Oapd 61~ 62) 2
interchain interactions.
Za(61)Z5 (62)=Sa o 62— 01)Z; (65)Z4(61),
Ill. SINE-GORDON CORRELATION FUNCTIONS
AT B?=2m Z5(61)Z; (62) =S, A 02— 01)Z5 (02)Z5(61)
In this section we derive exact results for various correla- +278(60,— 65). (19

tion functions of the sine-Gordon mod@l0) for B= 2.
We start by constructing a convenient basis of states for the From Eq. (18 it follows that S ;(0)=-1 and
sine-Gordon theory by means of the Zamolodchikov-S;i(«)=+1. Therefore particles with close momenta be-
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have as free fermions and particles far apart in momenturfelators of (1)Rcosy27®(x) and (—1)Rsiny27®(x).

space behave like free bosons. Their form-factor expansions are of the form
We note that the solito® matrix Sy(#) has simple poles

at =i (w/3) and =i (27/3). These poles correspond to o ST,
the two breather bound states. In other words a soliton and Dcos(w,Q)=f dxf dtelerioti(valagx
an antisoliton can form a bound state of either mk®r o 0

massv3M. Although theS matrix of light breathers is the X ([cosy27®(t,x),cosy27®(0,0)])
same only the poled=i (7/3) corresponds to a bound

state—the heavy breather. The pole éti (27/3) is dé,---dé,
redundanf® The soliton-breathelS matrices S, 4(6) and :_27720 2 2mm
S,2(6) exhibit soliton poles atd=i(w/2)*i(x/6) and i

=i (w/2)xi (7/3), respectively. All other poles are redun- X|F 0, 0”)81"'%'2

dant and do not indicate the presence of bound states. From
the analytic properties of th® matrices(18) we deduce re-
lations between the ZF operators. For example we find

o Uq/ao _2 MJS|nh0J)
J

0.+ 0,
2

_ o=, Mcoshy;+ie
01— 6,— i7l3

2

Such relations between the ZF operators play an important 6(vq/ao +; M‘Slnm‘)

role in what follows. - : (26)
States in the Fock space are constructed by acting with the w+ E Mjcoshy; +ie

operatorsZ!(¢) on the vacuum stat®) J

; : Here we have reinserted the Fermi velocityand lattice
|00~ 01), e, =Zs (0n)--Z; (61)]0), (21)  spacingay,. The Fourier transforrD*"(w,q) of the con-
nected retarded two-point correlator of §Bwr® is the dy-
wheres =+ 1 1,2. We note that E¢(17) together with Eq. namical staggered susceptibility and will also be denoted by

(21) implies that states with different ordering of two rapidi- X"(@,0). _ o

ties and indices e, are related by multiplication with two- !N order to implement the form-factor expansion it is very

particle S matrices useful to note thatas for general values ¢) operators from
different representations behave differently under the charge

conjugation transformation
|6~ OO 17 01)s

nEKEK+1T 8L

=S, e, (O Okr1) COC l=—,
X|0n”'0k+10k.”01>8 ek 18K (22)
-1_ -1_
The resolution of the identity is given by CZoy0)C " =Z.1(0), CZy(0)C "=—2,(0),
dé,---dé, o
1[=n§0 ;. Wlﬁn”'01>sn-~~sl UGy O CZ,(0)C 1=2,(#). (27)
(23

The form-factor approach is based on the idea of insertinghese transformation properties imply the expansion
Eq. (23) between the operators in a correlation function

(0(x)0'(00)) sir| \27(1,%)1/0)
- dé,--
:go . f (ZT [{ z pJX 6] ) :Flf Zd_ze—iM(t cosm—xsinW)ZI(6)|O>
X[(0]O(0,0)[ 6+~ 1), ..o, |, (24)

+ f d01 dt92 e—iM[t(cosrﬂ1+cosl"92)—x(sinh01+sinh02)]

and then determining the form factors
2w 2m

FO(O1+0n)s,e, = (010(0.0] 0y}, oy (25)

£

XU(0y,0,)[Z1A600)Z7 10
by taking advantage of their known analytic properties. (01,02)1 242 02) 2= 11 6)

From a physical point of view we are interested in the . .
Fourier transforms of the connected retarded two-point cor- —ZZ 00 Zy0) ]+, (28)
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genvalue corresponding to positiyeegative C parity ob-
whereU(6,,6,)=U(6,,0,). Significantly, due to the S@)  tained by diagonalizing the kink-antikink scattering:
symmetry transverse components of the staggered magneti-

zation have the same correlation functionsrdg, [this is _sinh(w/2§) (6+im)
clear from the SI) symmetry of the Hamiltoniar(5)]. 7 sinh(7/2¢€) (6—im) (
Consequently we conclude that Sine-Gordon two-point cor-

relation functions(for 8= +/2) of siny276 and cos/2m6 cos{m/2¢) (0+im)

are the same as two-point correlators of&ar®. = So(0), (30)
The current operata#,® is also odd in® and therefore
its expansion must begin wit&, such that at smalfj we

have

cosim/2¢) (0—i)

whereé= 78%/(8w— 8%) and

(v%/a2) g _ l{ dx singx sinH (7— g)/Z]x
w2—(02/a§)q2—|v|2 So() ex fo X cosh wx/2)sinh(éx/2)

(S0, —w,— )~

(29) (31

where the ellipsis denotes terms which have nonzero imagil "€ general unitarity and crossing arguments imply that
nary parts at higher energies. the corresponding kink-antikink form factoFs. (6) are so-

As we will see the threshold of the dynamical spin sus-utions of the system of functional equations
ceptibility is equal toM for bothq=0 andqg=. This is a o
distinct feature of the alternating chain. It is related to the Fa(=0)=S.(0)F-(0), (32)
fact that kink and antikink create a bound state of the same EPTRE B
mass. Recall that for the ladder chéar S=1 antiferromag- Fe(0-2im)==F.(=0). (33
net for this matterwhere particles do not have bound states,The “minimal” solutions of these equations are
the value of the energy threshold @0 is twice that at

q= (see Ref. 1Y, E.(g)= sinhg E (o
At frequencies smaller than @v3)M the only contribu- +(0)= sinh( @+ i) (w/2€) o(6)
tions to the imaginary part of the magnetic susceptibility
come from the first breather and kink-antikink pairs. Kink- sinhg
antikink form factors can be calculated in the Sine-Gordon F_(0)= cost o<1 ) (/28) Fo(0), (34)

model (for any value of the couplingd) along the following
lines?%2” Let us denote by, (6) [S_(6)] the S-matrix ei-  whereF, is given by

Fo(6)=sinh~ exl{f dx sinh(x/2)(1— &/ m)sir? [x(i 7+ 6)/2m] o

sinh(x&/27r)coshx/2)sintx

By minimal solution we mean a solution containing only the ¢= 7, where the form factors of sin and cos can be easily
expected bound state poles in the physical strip and with theomputed remembering that

mildest asymptotic behavior at infinity. This prescription de-

termines_ t_he minim_al solutionnique!y An infinite numbfar cosBCI>~\ITlP e g'D~] (36)

of nonminimal solutions corresponding to all operators in the #

theory which are local with respect to the solitons are ob-
tained multiplying the minimal solution by an analytic func-
tion of coshy. However, if we require the form factor to be
power bounded in the momenta and to have only the boungf
state poles, we conclude that we can actually multiply the
minimal solution only by a polynomial in coghFor a given o102
operator, it is possible to put strong constraints on the ; _ 1/2 COSIP1 2
asymptotic behavior of its form factors, and then on the de- <O|sm\/§®|61,02> +=v3(2d)z smh30 192 £(612)
gree of the allowed polynomidf.In the sine-Gordon model _psin 3
this procedure is complicated by a nontrivial behavior of =F0) - (37
correlators in the ultraviolet limit. Nevertheless, the result is

that for the operators cos and sin the allowed polynomial is coshg /2

of the zero degree, which means that their form factors co- (Olcos\2m®| 6y, 6,) +—"f(2d)zmm (612)
incide with the minimal ones. The same conclusion can be

reached in a simpler way going to the free fermion point =F°09)_ ., (38

and that the sin is related to the elementary field by the
equation of motion.
For the operators c@& and sirBd, at the specific value
the coupling we are interested in, we find = 6,— 0,)
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sSirP[x(0+im)/2]coshrx/6
X sinhmx coshmrx/2

£(8)=c sinha/2 exp[ Zf:dx

Ua f sinhx/2 cosh/6
=(12)""ex ~3.494607,
X cosix/2
3
d=-—~0.136629, (39

2mC

where the relative normalization between the two operators

can be fixed exploiting the asymptotic factorization of form
factors discussed in Ref. 29. We note tljed) is to be ana-
lytically continued using the relation

£(0)S(0)=4(—0). (40)
The additional factorsl and c in Egs. (37) and (38) have
been introduced in order to simplify the reduction of multi-
particle form factors using the annihilation-pole condition
(for soliton form factors

iIReF (01 O2n) s, |0, 0y y=im
:|:O((91...92n_2)5i 2n , Ezszn 1{581 52::1
_STZnsl 81(02n - 01) :Zn 3 ‘Zzn 2
1 2n—1'°2n-2
X (0n—1—02n—2)}, (41

whereS;'5(60) = S o (0) S;.1(6) and all other components
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1.0
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FIG. 1. Imaginary and real part€in units of Z/M?)

of the dynamical staggered susceptibility as functions of
s=w?— (v¥ad)(m—Qq)? for g=m. The dashed line depicts the
single-mode approximation that takes into account only the first

are zero. Multlpartlcle form factors are discussed in somebreather.

detail in Appendix A.
The form factor(37) has a pole a#,,=—2i#/3 corre-

sponding to formation of a bound state—the first breather.Imy”(w,q)=2|F|?8(s?

The breather form factoF, is given by the residue of Eq.
(37) divided by the three-particle coupling

33/2 .
8.2 exp{ 2 f
0

~0.053Z.

dx sinhmx/6 sinhmx/3
X sinhmx coshmrx/2

|Fal?=
(42)

Similarly Eq. (38) has a pole at;,= —i#/3 corresponding
to the second breather. The absolute squy&g? of the
breather form factor is found to be

312 .
|F2|2=3—ex —4f
8’7T2 0

~0.026Z.

dx coshrx/6sintfrx/3
X sinhmx coshmrx/2

IV. DYNAMICAL SUSCEPTIBILITIES
FOR A SINGLE ALTERNATING CHAIN

The expression for the imaginary part of the dynamical

staggered susceptibility y"(w,q) at s°=w?—(v%/a3)

X(7m—q)%2<(1+v3)2M? is given by

|FSir[ 9(5)]+7|2

s\s?°—4M?

(44)

where 6(s) =2 In(s/2M + \/s?/4M?—1). Note that all other
form factors do not contribute to this expression in the speci-
fied range of as their thresholds are above{¥3)M. Also
the normalizatiorZ enters Eq(44) only as an overall factor.
Since the function/(6) vanishes atd=0, the entire form
factor is also finite. Thus the two-particle contribution to
x"(w,q) exhibits a square-root singularity at the threshold as
a function ofs.

The breather angs contributions to the real part are
found to be

M?)+2 Re

Rex"(w,q)
2R
B eSZ—Mz—Hs
2] de —4M?costt(6/2) sin )
0 [s —4M?cosH(0/2)]*+ & 2 [P0 1%,
(45

where the factor of 2 stems from the sum ovemland —. In
Fig. 1 we plot both the imaginary and real partsydt
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It is straightforward to repeat the above analysis for the 0.50
current operaton,® using the explicit expressions for the
formfactors given in Ref. 27. The contribution of the first 040 +

breather leads to to ER9) with some normalization factor.
As there is very little spectral weight g&=0 we concentrate

; S 030
on g~ 7 and do not repeat the above analysis for the current %
operator. 8

. . . [=]
For practical purposes it is convenient to have an expres- ¢ 020 ¢

sion interpolating between the small(29) and g~ 7 (44)
behavior. Such an expression giving the dynamical spin sus- 0.10
ceptibility in the entire range off at frequencies below the

continuum may look as 000, T

9(q)siré(q/2) @ s/M

xX(@.q)= w?—(v®lad)sirftg—M? ’ (46) 10
where g(q) is a smooth function interpolating between
the normalizations atgq=0 and gq=w. The mode
w=/(v?/ad)sirfg+M? is separated from the particle con-
tinuum by the gap of order dfl.

Let us now turn to the two-point correlator of cosines.
The contributions of the second breather and the soliton-
antisoliton continuum are given by

05

Re D™*(s/M)
)
°

IMD®Y w,q) = 27| F,|?8(s*—3M?) e
Foya(s)],_|?
+2 Re%, (47) %% 10 20 3.0
(b) s/M

where the ratio of the single particle residues is universal:
FIG. 2. Imaginary and real parts &S (in units of Z/M?) as

|F,|? o sinhx/3 . = — >
= = — A~ functions ofs= — /a — for g=~r.
Y —lel ex fo deX cosR(x/2) 0.49131. Vo= (v 0)(m—a) q

(48) is accomplished through an RPA analysis along the lines of

Note that the threshold of the breather-breather continuum igef. 30. RPA becomes exact in the limit of an infinite num-
also ats=2M. The corresponding contribution is taken into ber of neighboring chains.

account in Appendix Alsee Fig. 2 The analogous contri- In the RPA we obtain the following expression for the
butions to the real part dd°°s are given by correlation function of energy densities:
Re Dcos(w,q) . . . DCOS(S)
2IF,|2 X:(5,K)=((e(—w,— 0, =K e(w,q;K))) = —————,
—_Re—— 2 1-D*¥s)J(k)
s°—3M?+ie (50)
OC 2_AM?2 .
_y f do  s’—4M*costo/2 Feoyg), 2. Where J(K)=2[|3|cosk)+|Jlcosky)]. Similarly the  dy-
o 7 (sS°—4MZcosi(6/2))*+&* o namical staggered susceptibility is given by
(49) ) . -
z — Z( AN — Z .
The remaining integrals in Eq$44), (45), (47), and (49) X8 K =((S(~0,~q; -k S(w,q:k)))
have to be calculated numerically. We find that at smdie DSIN(s)
contributions of the two-particle continua to the real parts of = (51)
both correlators are of the same magnitude as the single- 1+DM(s)K(k)

particle contributions from the breather states. As far as a
single chain is concerned a single-mode approximation takyhere K(IZ)=2[KaCOS(<X)+KbCOS(<y)]. Note that in the

ing into account only the one-particle states is therefore Vehresent approximatiomg(s,ﬁ) is only affected by the inter-

poor at smalk. chain interactions of staggered energy densities, whereas
V. RPA ANALYSIS XZZ(S,IZ) only “sees” the interchain interactions of spin den-
OF THE INTERCHAlN INTERACTIONS sities. The reason for this decoupling is that in the sine-
Gordon theory describing the individual chains

Let us now take into account the interchain interactions
(both of spin and staggered energy densjtie€q. (4). This (e(t,x)S%0,0))=0, (52
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becauses(t,x) is even under charge conjugation whereas
$%(0,0) is odd. By rotational invariance this implies

(£(,%)$(0,0))=0. Note that the RPA is particularly simple

as we have taken into account only interchain interactions of
the staggered part of the spin density and neglected the
smooth part as being less relevant. If we take these sublead-
ing terms into account the RPA acquires a matrix structure as
in Ref. 11 as the sectog~ 7 andq~0 become coupled. An
RPA analysis then requires the calculation of form factors of
the current operator. We will discuss this refined RPA in a
separate publicatiof. .8

The response functiong*“(s,k) and y,(s,k) can be eas- 0.0 1.0 2.0 3.0 4.0
ily calculated numerically for given values df , andK, ,, (@) k,
by using the expressions f@"(s) and D°Ys) obtained in
Sec. IV. We note that the pole in the dynamical magnetic

susceptibilitieSX““(s,IZ) corresponds to the light breather
which has quantum numbe®’=1, whereas the pole in

XE(S,E) is due to the heavy breather wisf=0. The mag-
netic mode can be measured directly by neutron scattering,
whereas th&?= 0 excitation can be probed by measuring the
phonon spectrum which will exhibit a softening.

In order to visualize our results we now plot them for a
particular choice of parameters. Being aware that our theory
probably cannot be applied to CuGg@®herea> «, we nev-
ertheless choose these parameters to reproduce the disper- 1.0 ‘ ‘ -
sions of magnetic excitations in that material. We take 0.0 1.0 2.0 3.0 40
xk~0.8, M~4.58 MeV and |K,|Z/M2~3.08, |K,/Z/M? ® Ky
~0.25. The value ok is chosen such that the dispersion in
z-direction reproduces the experimental fit of Ref. 4, whereas
the other conditions follow from the experimental band gaps

Exact

FIG. 3. Spin-wave dispersions in(a) andy (b) directions.

for k vectors (0,12) (=2 MeV), (0,0%) (=5.7 MeV), and S(x)=Jr(X) + I () +(=1)"n(x),
(3,13) (=2.6 MeV).
Because of Lorentz invariance the energyand thez z :L 5
. . R,L (9@ =+11),
component of the momentuip only enter in the combina- T2V 27w

tion s=\w?— (v¥aj)(w—q)% In Fig. 3a we plot the
spin-wave dispersion in the direction [k,=0, k, e (0,7)] N 1 . B
and in Fig. 3b) in the x direction[k,—=0, k, < (0,m)]. JR,LZEGXQ+'@(¢+®)]'
We see that the single-mode approximati®MA) in
which all multiparticle contributions to the dynamical sus- A
ceptibilities are neglected gives essentially the same result as n*(x)=— — cos\/ﬂtb(x),
the exact treatment. We note thaty construction the fits' mao
to the experimental results are essentially identical to the
SMA as far as dispersion relations are concerned. Let us now n*(x)= Lexp{ +i \/ﬂ(x)]_ (53)
turn to the multiparticle continuum. The imaginary part of A
the dynamical staggered susceptibility is directly measurablg. th ¢ q tizat . tional t
by Neutron scattering. The position of its poles yields the ince e staggered magnetization 1S proportional 1o
dispersion discussed above. The incoherent @t func- sin(y27®) the bosonized single-chain Hamiltonian is given
tion of s andk, ) is plotted in Fig. 4a) and 4b), respec-
tively.

In the RPA the two-particle continuum starts at szfdx{wz(x)+[ax<1>(x)]2}—h—)\fdx Sim/27®
s=2M=9 MeV. This is in disagreement with experiment 2 ek
for CuGeQ.

—2NJ, m3. (54)

Following through the same steps as in the spin-Peierls case
VI. ANTIFERROMAGNETIC ORDER we find the following mean-field results for staggered mag-

. . . ) netization and mass gap:
In the continuum limit the mod€([7) is also equivalent to gap

the sine-Gordon model witt8?=27.1! The bosonization 3,
formulas are now mo=C 5l

12
, M=C'J,], (55




zz

Imy

(@)

7z

Im %

(b)

FIG. 4. Imaginary partin arbitrary unit$ of y?{w,q;K) in x ()
andy (b) directions.

where the ratio of andC’ is given by Eq(15). This relation
can be used to determine the transverse cougljnim terms
of J and the directly measurable quantiti®s and my as
follows. The gapM is equal tow(s,0,7) which is found
experimentally to be 11:00.5 MeV in KCuR.® The aver-
age magnetic moment ismy=~0.27 (Ref. 6 and
J~53.17+0.25 MeV.’ Using these values we find

1/cCM\?
|JJ_|=j C,—mo ~0.96 MeV. (56)

Let us now turn to the correlation functions for a single

chain. The correlatof( S*°S?)) at smallq is still given by Eqg.
(29), but for g~ is given by Eq.(47). Therefore around
g= the pole is as=v3M:

2F3
3M2+v2/ag(ﬂ'—q)2—w2

X*(@,q)=D*s)=

+incoherent, (57)
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where “incoherent” denotes multiparticle contributions.
Some of these are determined exactly in Appendix A. A plot
of D®s) is shown in Fig. 2.

Correlation functions of transverse components of the
staggered magnetization are given by E4¢) and have a
pole ats=M

2F2
M2+v2/ag(77—q)2— w?

XX ,q)=D%"(s)=

+incoherent. (58

Here we have used the fact that in the continuum model the
correlation functions of ca@ 6, siny2w6, and sin/27®

are equal due to the $) symmetry present g8=\2m. A

plot of D(s) is shown in Fig. 1.

The difference in the correlation functio(s7) and(58) is
obviously related to the broken rotational symmetry of the
Hamiltonian (7). Next we take into account the interchain
interaction by an RPA analysis. This yields the following
expression for the longitudinal dynamical susceptibility:

] lZ - DCO%S)
X100 = 72313, T(cosk, + co%, ) D7s)'

DSin(S)
1-2]J, [(cosky+cok,)D>(s) ’

Here we again have taken into account only the staggered
part of the spin density as it gives the most relevant contri-
bution to the interchain interaction. As a result the RPA ex-
pression for the susceptibilities are of scalar rather than ma-
trix form.!! The transverse susceptibility must have a pole at
the Neel wave vector(0,0,m7) as the spin S{2) symmetry is
spontaneously broken. This leads to the requirement that

x*(,0,k) = (59)

Z
m%0.125ogw, (60)
which fixes the normalizatioZ in terms of the transverse
coupling and the breather mass &s-1.99M?/|J,|. The
normalization of the correlator of cosines then follows to be

DSin(O) —

0.07443

PO

(61

The Goldstone mode associated with the zero energy pole
in x* is a spin wave moving in the direction and its dis-
persion is found from the singularities of . Due to Lorentz
invarianceDS" depends only ors rather than onw and g
independently. This immediately implies that the spin-wave
dispersion forg~ 7 is

R 2 cok, + cok
WA R) = 5 (m— Q)2+ M2 1-
ag 2
7232 cok, + cok
S A

(62

This is in very good agreement with experiment being almost
identical to the fit used in Ref. 5. In Fig(® we plot the
spin-wave dispersion fdk,=0 andk, e (0,7).
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1.0 -
08 1 1.70 |
06 I
/ =
s ;o SMA 5 165
0 ,’
04 |
7 ———  Exact 1.60 r
o2t /
0.0 : ‘ : 1'5500 10 2‘0 3.0 4
0.0 1.0 2.0 3.0 4.0 @ : : > : 0
(a) K, y

02 0.08
Im X(xa 0.15 Imxzz 0.06 )
0.1 0.04
0.05 0.02
0 0
s/M
(b) (b) 2
FIG. 5. (a) Spin-wave dispersion as a function lof for k,=0. FIG. 6. (a) Dispersion of the longitudinal mode as a function of
(b) Imaginary part(in arbitrary unit$ of y- for s>2 as a function K for k,=0. (b) Imaginary part(in arbitrary unit$ of x**for s=2
of k, for k,=0. as a function ok, for k,=0.

We see that the SMA works extremely well for all values corrections to the SMA result are very small.
of k.. The imaginary part of the dynamical susceptibility is  Using the SMA[which we know from Fig. 6a) to be an
directly measurable by neutron scattering. We find excellent approximation to extract the coherent delta-
function part we find

R T s2 coKy+ cosk,
Imy*(0,9,K)=5==6l =3 -1+ —————
213, "\ ™M 2  my [ y
. |mXZZ(w,q,k)=m5 2 ~ 3+ 5 (cosk,+cosky)
+incoherent, (63 L
+incoherent. (65)

where we have used the SMA to get théunction part. The
incoherent part is plotted in Fig(®. We see that there is in ) ) o
general no singularity at the threshold of the light breather-The incoherent part is plotted in Fig(t8.
heavy breather continuum except dt,—m where
Imx*(w,0,K)=ImMD"(w,q) so that we recover the pure 1D ACKNOWLEDGMENTS
result. The situation for the soliton-antisoliton continuum is
analogous.

Let us now turn to the longitudinal susceptibility. In the
SMA there is a pole iny** at

We thank R. Cowley, S. Nagler, L.-P. Regnault, and F.
Smirnov for interesting and valuable conversations.

5 APPENDIX A: MULTIPARTICLE FORM FACTORS

N v
®?(q,k) = ;(77'—@2Jr M? 3~ %(COSkaF cosky) |, In this appendix we consider multiparticle form factors.
0 (64) We start with two-soliton two-antisoliton form factors and
explicitly derive the related three- and two-particle form fac-
wherey is given by Eq.(48). This is compared to the exact tors. The extension tm-soliton n-antisoliton form factors
result for the case wheilg, =0 in Fig. §a). We see that the (n=3,4,...) isstraightforward and will not be discussed
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here. The form-factor expansion for two-point correlationFesg,,6,,63)_ .,
functions is found to be rapidly converging and for snsaill

is essentially sufficient to take into account two-particle form (2d)%z e 1201102~ b3

factors only. Note that most of the formulas below are to be  — T 53123174 C0SH 36,,/2) coshF5,c0sh P,

understood in terms of analytic continuation{6#). A useful

formula is T T T
X§(012)§(_i 3¢ brsti 5 |¢| Orai g)

[L(0+ia)l(0—ia)|?

LT
Ot =

coslx/6 X :

X sinlx coshx/2)

'

ct > Op3—i z)[e‘91+ e’2+v3e’]
=Z(cosh9—cos)z)2 ex 4f dx 6
0

X[e 1+e 24+v3e %]
x| 1 X6 hw_a 6,+6 0a( a0 0 20
cos— cosh——x X [eh %2+ v3e%(el1+ ef%2) + e2%]. (A5)

The corresponding form factor for Si@w® is

sink? 6 coga+[costy sina— sin(7/3)]?
X Sint?o coSa+[cosh sina+sin(w/3)]%"

(A1)
A ) 365
F(0,,05,03) o= —1i cothTF°°5(01,02,63),+2,
Multiparticle form factors of(quas)local operators were (AB)
studied in detail by Smirno%. From his work the two-

soliton two-antisoliton form factor for cq@«® is straight-
forwardly extracted:

and different orderings are obtained by the appropriate gen-
eralization of Eq(33), e.g.,

FCY61,65,03),_ . =FX0,,03,607) _ 1 2S; o 621)S1 A O31).
FY,,0,,05,04) 4+ 01,02,63)2—+ 02,03,01) - 1251 A 021)S; A (%)

_ The residue at the annihilation poldtimes i) in
=(0|cosy27®|0,,605,05,04)_ _ .
(ol mP[01,02,03,0a) -+ + FY6,,65,65),_ . gives the heavy breather form factBp.

4 The corresponding sin form factor has no annihilation poles.
=2m(2d)?\Z3 IZI e In the soliton-antisoliton-odd breather sector we obtain
4 FCX61,65,03) 11
— O 0;+ 0; o - 1256,
X P2y e 2 e JiE[k L(6,— 0, )e i% :_ZW(Zd)Z\/Z o~ U2(01+0)— 03
5 4 . 25723Y4 sinh(36,4/2)sinh363;5inh36,5
2 i=1j=3 sinh36;—6) XL(012) 8| =1 —=|{| Ozt 5 ]L| b1
3 3 3
(A2) - -
_ _ X | Opgti —)g 05— = |[ef1+ e+ e%]
Orderings other thar — + + are obtained from EqA2) by 3 3

using the generalization of E€33), e.qg., X[e 1+e t2t e b

FX61,605,03,04) 4. X [e91+‘92+ efs(ef1+ef%2) + 9203]
_ _ co 360 )
SO( 03 HZ)F S(01!93!02!04)——4—+ . (A3) =i coth 221F5m(91,(92,03),+1. (A8)

It is easy to verify that the soliton-antisoliton form factor of
cos/27® is obtained from Eq(A2) via the annihilation From the residues at the poles of E48) we can derive the
pole condition(41). The two-soliton two-antisoliton form breather-breather form factors
factor for sin/27® is very similar to the one for cq@7® F% 0, . 0,)
1:Y2)11

. . 3 2 2
F0y,65,05,00) =1 tanh_ (0;+ 6~ 6, 0,) _ _2W4(2d3)/2\/f [ cosK 012/2.)] [cosrf12+ 1/2]
3 (sinh36,5,)
CO:
xXF %01702103104)7*++' ) ) . 20 . 2 . 2
(A4) XE(0) 87| =1 5[ {] O+l 5] L O 1 =
The residue at the annihilation paliémesi) now yields the - -
soliton-antisoliton form factor of si2 7®. X Sp| Op1ti 3 SO( 0y1—1i 3/ (A9)
Breather form factors are obtained from the residues of

Eq. (A2) at its poles. In the soliton-antisoliton-even breatherThis is identical to the soliton-antisoliton form factor
sector we find F°Y6,,6,)_, as can be proved by direct calculation. Some
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useful identities areSy[ 0+i(7/3)]So[ 6—i(7/3)]=Sp(6), The special values of at the breather poles are given by

27(0)¢(6—i)= sinh3/sinhd+i sin(#/3) and {[—i(m/3)]=—1.10184 and {[—i(27/3)]~—2.72272.
We note that[ —i(#/3)]¢[ —i(2#/3)]=—3.
= dx COSKX/G —coshix/2)| 2v2 It is apparent thah-particle form factors depend only on
ex sinhx coshx/2) =— - (AL1O n—1 independent rapidity variables. This fact can be used to
_ essentially simplify expressions such @$) for correlation
The other breather-breather form factors are given by functions. For example, two-particle contributions for=0
are given b
F01,0,)2 ’ ’ | 24| 12
» d [ 2|FY ). _|2+|F°Y6)
- 4(2d)2\/—[cosf(612/2)]2[cosr012+ 3/2] D% w,q)l, pan=—f0 ;{ = AMZcosR(012) +ie
V3 (cosh,,)? ,
N |F°Y6),7]
X 201 ( —ij Z)g 0o+ i g §< 01— g), s°—12M?cosH(6/2) +ie

Dsin( )l __fx% 2|FSII’I(0)+7|2
E 0, 0,) -2 2INZ @Dz par™ " | 7| = aMZcosR(012) +ie
' 37

2|FS"(6) 59|
% (coshg o+ \/3/2)[14' V312 cosho,,] + s2—4AM 2[1+ (\/3/2)C05m]+i8
(cosh3,,)? (A12)
i —i Z f —i 2_77 ¢ o+ m where we also have made use of various symmetry proper-
3 3 12772 ties of the form factors in order to perform the sum owgr
Similarly the contribution of form factors involving one soli-
LT LT . T ton, one antisoliton, and oright) breather of type 1 can be
X —i = — —i—=].
£ 022~ 2)5 b12%1 § §< 612~ 6) (ALD brought to the form
F a0 F A9 2 FoY 0,0 2 A13
27 )_w 27 S°—M?{1+4 costcosh 6,,/2) +[2 coshi012/2)]2}| 0,012 —+1l% (AL3)
where

o (2d)2\Z [2 coshi 615/2) +e?][ 2 cosli 615/2) + e~ ?][ 2 costt 8,,/2) + 2 cosh9] ( 2 )
F0,00) =27 22318 SINh3 0,/2)SINNA 0+ 6,2)SiNh3 0— 0.,12) (098] =i =~

015 cm\ [ 61 L\ [ 61 | [ 01 T
Xg 7—0—|§)§(7—9+|§§7+0—|§§7+9+|§ . (A14)
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