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Quasi-one-dimensional spin-12 Heisenberg magnets in their ordered phase: Correlation functions
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We study weakly coupled antiferromagnetic spin chains in their ordered phase by combining an exact
solution of the single-chain problem with a random-phase-approximation analysis of the interchain interaction.
A single chain is described by a quantum Sine-Gordon model and dynamical staggered susceptibilities are
determined by employing the form-factor approach to quantum correlation functions. We consider both anti-
ferromagnetic order encountered in quasi-one-dimensional materials such as KCuF3 and spin-Peierls order as
found in CuGeO3. @S0163-1829~97!00941-7#
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I. INTRODUCTION

The increasing amount of neutron data on quasi-o
dimensional~1D! antiferromagnets calls for creation of
theory capable of describing the behavior of such stron
anisotropic nonlinear systems in greater detail. Of particu
interest with regard to recent experiments on CuGeO3 and
KCuF3 is the structure of the multiparticle continua. In th
present paper we discuss correlation functions of th
closely related problems involving spin-1

2 Heisenberg chains
~i! a single chain with a static alternating exchange,~ii !
a single chain in a staggered magnetic field, and~iii ! a
system of weakly coupled spin-1

2 Heisenberg chains at low
temperatures in the ordered phase. In the latter case
consider two types of order:~a! spin-Peierls1–4 and ~b!
antiferromagnetic.5–7

An experimental realization of situation~i! may be
achieved in~VO!2P2O7. The analysis of the recent exper
ments conducted by Garrettet al.8 indicates that the stron
gest exchange occurs through alternatively arranged m
ecules of two different types such that the ratio of t
exchange integrals isJ8/J'0.722.

The second situation~ii ! may be realized when a Heisen
berg magnet with a staggered Lande´ factor is placed in an
external magnetic field. This is the case for copper benzo9

but for reasons that will be discussed elsewhere the the
presented here does not apply.

The spin-Peierls transition is a magnetoelastic transi
which occurs in quasi-1D antiferromagnets due to an eff
tive four-spin interaction. Such interactions may be gen
ated by phonons which modify the exchange integrals; h
ever, the virtual absence of softening of the phonon spect
in the spin-Peierls material CuGeO3 ~Ref. 10! suggests tha
there may be also other mechanisms. The interaction
tween the staggered parts of energy densities is strongly
evant and resolves in dimerization of the lattice at a cer
temperatureTc and the formation of spectral gaps in th
spectrum of magnetic excitations. In any realistic syst
phonons are three-dimensional which determines a th
dimensional nature of the spin-Peierls transition. A sim
model with a phonon mechanism has the Hamiltonian
560163-1829/97/56~17!/11001~13!/$10.00
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H5J(
r ,n

@11~21!nun,r#S¢n,r•S¢n11,r

1
1

2 (
n,rr 8

un,rD~r2r 8!un,r81aJ(
r ,n

S¢n,r•S¢n12,r

1 (
r ,c,n

K~c!S¢n,r•S¢n,r1c , ~1!

wheren and r label lattice sites along and perpendicular
the chains andc are vectors connecting neighboring chain
In order to make contact with experiments we have includ
next-nearest-neighbor~NNN! intrachain as well as interchai
magnetic interactions.

Since J is usually much smaller than the phonon fr
quency, one can neglect the kinetic energy of theu field and
consideru as commuting numbers. One can denote

e~n,r !5~21!n~S¢n,r•S¢n11,r ! ~2!

and integrate over the displacements. The result is

HsP5J(
r ,n

S¢n,r•S¢n11,r1
1

2 (
n,r ,r8

e~n,r !J~r2r 8!e~n,r 8!

1aJ(
r ,n

S¢n,r•S¢n12,r1 (
r ,c,n

K~c!S¢n,r•S¢n,r1c , ~3!

whereJ(r2r 8) is proportional to the matrix inverse ofD.
Now one can forget about phonons and use Eq.~3! as a
general model for the spin-Peierls state.

In their low-temperature phases bothHsP and the antifer-
romagnet discussed below have order parameters. For
spin-Peierls model this is the staggered energy den
^e(n,r )&5e0 ~for simplicity we assume that there is no a
tiferromagnetic order in the spin-Peierls model!. Therefore in
the low-temperature phase it is convenient to subtract fr
e(n,r ) its average value (:e:[e2e0). This leads to the
Hamiltonian
11 001 © 1997 The American Physical Society



o

l
la

lo
e

ple

e
lin
-

ai

a

iz
ri

rk

se
th
il-
y

s of

dis-

the

he

iza-
s,
e
ron

f

-
t is

s-
ion

es.

an

11 002 56ESSLER, TSVELIK, AND DELFINO
HsP5(
r

H r
~0!1

1

2 (
n,rr 8

:e~n,r !:J~r2r 8!:e~n,r 8!:

1 (
r ,c,n

K~c!S¢n,r•S¢n,r1c , ~4!

H r
~0!5J(

n
S¢n,r•S¢n11,r1aJ(

n
S¢n,r•S¢n12,r

12~Ja1Jb!e0(
n

e~n,r !2Ne0
2~Ja1Jb!, ~5!

whereJa,b are the couplings~generated by the coupling t
the phonons! to the neighboring chains ina andb directions
~the chain direction is chosen to bec!. For definiteness we
assume in the following thatJa,b,0. However, the genera
case can be treated by minor modifications of the formu
presented below.

Sometimes the purely one-dimensional model~5! is used
to describe the low-temperature phase. We shall show be
that such approximation always becomes very poor clos
the spectral gap.

The second model we want to discuss consists of cou
spin-12 antiferromagnetic chains. Their Hamiltonian is

HAFM5J(
n,r

~S¢n,r•S¢n11,r !1J' (
n,r ,a

S¢n,r•S¢n,r1a , ~6!

where we takeJ',0 anda are lattice vectors in transvers
directions. For simplicity we assume the transverse coup
to be isotropic inx and y directions. Taking the antiferro
magnetic order~which we assume to be along thez direc-
tion! into account by a mean-field analysis of the interch
interaction one obtains the effective single-chain problem11

H05J(
n

S¢n•S¢n112h(
n

~21!nSn
z22NJ'm0

2 , ~7!

wherem05^(21)nSn
z& andh524J'm0 . The remaining in-

terchain interactions will be treated in the random-phase
proximation~RPA! ~see Sec. VI!.

II. TRANSITION TO CONTINUOUS DESCRIPTION
ALONG THE CHAINS AND BOSONIZATION

We shall discuss the spin-Peierls case of weak dimer
tion u^u&u!1. In this case one can use a continuous desc
tion of the spin-12 Heisenberg chain which, fora,ac'0.25
~Ref. 12!, is given by the Gaussian model. In the framewo
of this model one can express spin operators in terms
bosonic exponents~see, e.g., Ref. 13!. Thus, for instance, we
have

e~x!5
l

pa0
cos~bF!1 less singular terms. ~8!

The valueb5A2p was found by Nakano and Fukuyama14

by using the Jordan-Wigner transformation with a sub
quent bosonization. There is a simpler way to establish
value ofb, namely, we can use the fact that the initial Ham
tonian has an SU~2! symmetry which must be respected b
the bosonized form. Replacingun in Eq. ~1! by the order
s

w
to

d

g

n

p-

a-
p-

of

-
is

parameter, that is, treating it as a number and using Eq.~8!
we obtain the sine-Gordon model. Since the SU~2! symmetry
in the sine-Gordon model is not present for general value
b its requirement imposes a restriction on the value ofb. The
corresponding point in the sine-Gordon spectrum was
covered by Coleman15 and Haldane16 who pointed out that at
b5A2p there are only two breathers; the first one has
same mass as kink and antikink~let us call it M ! and the
second has the mass equal to)M . Therefore atb5A2p
kink, antikink and the first breather realize an SU~2! triplet
and the second breather becomes an SU~2! singlet.

In what follows we also need the bosonized form of t
spin density in the continuum~SW n→a0SW (x), x5na0!, which
is given by

S¢~x!5J¢R~x!1J¢L~x!1~21!nn¢~x!,

JR,L
z 5

1

2A2p
~]xF7P!,

JR,L
1 5

7 i

2pa0
exp@7 iA2p~F7Q!#,

nz~x!52
l

pa0
sinA2pF~x!,

n6~x!5
l

pa0
exp@6 iA2pQ~x!#. ~9!

Herena(x) are the components of the staggered magnet
tion, JR,L

6,z are the currents of left and right moving fermion
na05x, and l is a nonuniversal coefficient related to th
bandgap for the charge excitations in the itinerant elect
model that gives rise to the spin Hamiltonian. The fieldQ is
the dual of the scalar fieldF and obeys]xQ(x)52P(x),
whereP is the canonical conjugate ofF. We note that~9!
differ from the ‘‘usual’’ expressions~see pp. 270–271 o
Ref. 13! by a shift of the bosonic field byAp/8. This opera-
tion interchanges sin(A2pF) and cos(A2pF), but changes
neither derivatives ofF nor the dual fieldQ.

Notice that despite the fact thate(x) has the same dimen
sion as thez component of the staggered magnetization, i
given by a different operator~sine instead of cosine!. In fact
e(x) is the 2kF component of the charge density in the sy
tem with a frozen charge field. As we shall see the situat
is somewhat similar to that for the spin-ladder~see, for ex-
ample, Ref. 17!, but there are also certain subtle differenc
Substituting Eq.~8! into Eqs. ~4! we get the following
bosonized version of the spin-Peierls Hamiltoni
HsP5( rH r

(0)1Vphonon1Vspin:

H r
~0!5

v
2 E dx@P r

21~]xF r !
2#1mE dx cos~A2pF r !

2Ne0
2~Ja1Jb!, ~10!

Vphonon5
l2

2p2a0
2 (

r ,r8
E dx:cos@A2pF r~x!#:

3J~r2r 8!:cos@A2pF r8~x!#:, ~11!
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Vspin5
l2

p2a0
2 (

r ,c
E dx K~c!nW r~x!•nW r1c~x!, ~12!

where m5 (2e0l/pa0) (Ja1Jb). Note that we have kep
only the most relevant terms and neglected, e.g., the U
klapp term~for a discussion of the role of the Umklapp ter
see Ref. 14!. Our strategy is now to use exact results for t
sine-Gordon Hamiltonian~10! describing a single chain~see
also Refs. 18, 19! and to treat the residual interchain inte
actionV in the random-phase approximation~RPA!.

The Hamiltonian~10! describing a single chain is of th
form vH02Ne0

2(Ja1Jb). The spectrum of H0 is
well-known:20 it is described in terms of a soliton, an an
soliton, a bound state~called ‘‘breather’’! of massM and a
second breather of mass)M . The mass gapM of the model
is due to the dimerization caused by the coupling to
phonons. It is related to the scalem as21

m5
G~1/4!

pG~3/4!
FMAp

4

G~2/3!

G~1/6!
G3/2

. ~13!

The ground state energy density ofH0 is then given by
e52 (M2/4)tan(p/6), which in turn yields an expression fo
the ground state energy density ofH as a function ofe0 .
Minimization with respect toe0 yields the following mean
field expressions fore0 and mass gapM of H r

(0) as functions
of the dimensionless~nonuniversal! parameterl2/a0 and the
couplingsJa,b andJ:

e05A2

p S tan~p/6!

12 D 3/2S 2G~1/6!

ApG~2/3!
D 3

3S 2G~3/4!

G~1/4! D 2 l2

a0
S uJa1Jbu

2Jk D 1/2

5:CS uJa1Jbu
2Jk D 1/2

,

M5vM5
tan~p/6!

12 S 2G~1/6!

ApG~2/3!
D 3S 2G~3/4!

G~1/4! D 2

3
l2

a0

uJa1Jbu
2

5:C8
uJa1Jbu

2
. ~14!

Here we have usedv5 (p/2) Ja0k for the Fermi velocity,
wherek is a function of the NNN couplinga. The ratio of
the constantsC andC8 is found to be

C
C8 5

1

33/4A2p
'0.175013. ~15!

Equation~14! makes it clear that the gap originates from t
interchain interactions.

III. SINE-GORDON CORRELATION FUNCTIONS
AT b252p

In this section we derive exact results for various corre
tion functions of the sine-Gordon model~10! for b5A2p.
We start by constructing a convenient basis of states for
sine-Gordon theory by means of the Zamolodchiko
-

e

-

e
-

Faddeev algebra. This is based on the knowledge of the e
spectrum and scattering matrix of the model.22,23 We then
formulate the problem of calculating correlation functions
terms offormfactorsand finally give explicit results for the
first few terms in the formfactor expansion.

The Zamolodchikov-Faddeev~ZF! algebra for the sine-
Gordon model withb252p was derived by Affleck24 who
suggested a representation which manifestly respects
SU~2! symmetry. As mentioned above there are three sin
particle states with massM which form a triplet under the
SU~2! symmetry. The corresponding creation and annih

tion operators are denoted byZa
1(u),Za(u) (a56 1

2 ,1).
Here 1 denotes the breather state and6 1

2 denote soliton and
antisoliton states, respectively. In addition there is o
single-particle breather state with mass)M , which trans-
forms as a singlet under SU~2!. Its creation and annihilation
operators are denoted byZ2

1(u),Z2(u). As usual the eigen-
states are parametrized by a rapidity variableu such that their
momentum and energy are equal to

pj5M jsinhu j , e j5M jcoshu j , ~16!

where M j5)M for the singlet state andM j5M for the
triplet states. By definition the ZF operators~and their Her-
mitean conjugates! satisfy the algebra

Za~u1!Zb~u2!5Sa,b~u12u2!Zb~u2!Za~u1!, a,b56
1

2
,1,

Za~u1!Z2~u2!5Sa,2~u12u2!Z2~u2!Za~u1!, a56
1

2
,1,

Z2~u1!Z2~u2!5S2,2~u12u2!B~u2!B~u1!, ~17!

where the two-particle scattering matricesSi j (u) are given
by

Sa,b~u!5
sinhu1 i sin~p/3!

sinhu2 i sin~p/3!
5:S0~u!, a,b56

1

2
,1,

Sa,2~u!5S0S u1 i
p

6 DS0S u2 i
p

6 D , a56
1

2
,1,

S2,2~u!5S sinhu1 i sin~p/3!

sinhu2 i sin~p/3! D
3

. ~18!

For the creation and annihilation operators we have

Za~u1!Zb
1~u2!5S0~u22u1!Zb

1~u2!Za~u1!

12pdabd~u12u2!, a,b56
1

2
,1,

Za~u1!Z2
1~u2!5Sa,2~u22u1!Z2

1~u2!Za~u1!,

Z2~u1!Z2
1~u2!5S2,2~u22u1!Z2

1~u2!Z2~u1!

12pd~u12u2!. ~19!

From Eq. ~18! it follows that Si ,i(0)521 and
Si ,i(`)511. Therefore particles with close momenta b
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11 004 56ESSLER, TSVELIK, AND DELFINO
have as free fermions and particles far apart in momen
space behave like free bosons.

We note that the solitonS matrix S0(u) has simple poles
at u5 i (p/3) and u5 i (2p/3). These poles correspond
the two breather bound states. In other words a soliton
an antisoliton can form a bound state of either massM or
mass)M . Although theS matrix of light breathers is the
same only the poleu5 i (p/3) corresponds to a boun
state—the heavy breather. The pole atu5 i (2p/3) is
redundant.25 The soliton-breatherS matrices Sa,1(u) and
Sa,2(u) exhibit soliton poles atu5 i (p/2)6 i (p/6) and
u5 i (p/2)6 i (p/3), respectively. All other poles are redu
dant and do not indicate the presence of bound states. F
the analytic properties of theS matrices~18! we deduce re-
lations between the ZF operators. For example we find

Z2S u11u2

2 D5 lim
u12u2→ ip/3

Z1~u2!Z1~u1!. ~20!

Such relations between the ZF operators play an impor
role in what follows.

States in the Fock space are constructed by acting with
operatorsZ«

†(u) on the vacuum stateu0&

uun•••u1&«n•••«1
5Z«n

† ~un!•••Z«1

† ~u1!u0&, ~21!

where« j56 1
2 ,1,2. We note that Eq.~17! together with Eq.

~21! implies that states with different ordering of two rapid
ties and indices « i are related by multiplication with two
particleS matrices

uun•••ukuk11•••u1&«n•••«k«k11•••«1

5S«k ,«k11
~uk2uk11!

3uun•••uk11uk•••u1&«n•••«k11«k•••«1
. ~22!

The resolution of the identity is given by

15 (
n50

`

(
« i

E du1•••dun

~2p!nn!
uun•••u1&«n•••«1

«1•••«n^u1•••unu.

~23!

The form-factor approach is based on the idea of inser
Eq. ~23! between the operators in a correlation function

^O~x,t !O†~0,0!&

5 (
n50

`

(
« i

E du1•••dun

~2p!nn!
expS i (

j 51

n

pjx2e j t D
3u^0uO~0,0!uun•••u1&«n•••«1

u2, ~24!

and then determining the form factors

FO~u1•••un!«1•••«n
:5^0uO~0,0!uun•••u1&«n•••«1

~25!

by taking advantage of their known analytic properties.
From a physical point of view we are interested in t

Fourier transforms of the connected retarded two-point c
m

d

m

nt

he

g

r-

relators of (21)RcosA2pF(x) and (21)RsinA2pF(x).
Their form-factor expansions are of the form

Dcos~v,q!5E
2`

`

dxE
0

`

dt ei ~v1 i e!t2 i ~vq/a0! x

3^@cosA2pF~ t,x!,cosA2pF~0,0!#&

522p (
n50

`

(
« i

E du1•••dun

~2p!nn!

3uFcos~u1•••un!«1•••«n
u2

3H dS vq/a0 2(
j

M jsinhu j D
v2(

j
M jcoshu j1 i e

2

dS vq/a0 1(
j

M jsinhu j D
v1(

j
M jcoshu j1 i e

J . ~26!

Here we have reinserted the Fermi velocityv and lattice
spacinga0 . The Fourier transformDsin(v,q) of the con-
nected retarded two-point correlator of sinA2pF is the dy-
namical staggered susceptibility and will also be denoted
x9(v,q).

In order to implement the form-factor expansion it is ve
useful to note that~as for general values ofb! operators from
different representations behave differently under the cha
conjugation transformation

CFC2152F,

CZ61/2~u!C215Z61/2~u!, CZ1~u!C2152Z1~u!,

CZ2~u!C215Z2~u!. ~27!

These transformation properties imply the expansion

sin@A2pF~ t,x!#u0&

5F1E du

2p
e2 iM ~ t coshu2xsinhu!Z1

†~u!u0&

1E du1

2p

du2

2p
e2 iM [ t~coshu11coshu2!2x~sinhu11sinhu2!]

3U~u1 ,u2!@Z1/2
1 ~u1!Z2 1/2

1 ~u2!

2Z2 1/2
1 ~u1!Z1/2

1 ~u2!#1••• , ~28!
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whereU(u1 ,u2)5U(u2 ,u1). Significantly, due to the SU~2!
symmetry transverse components of the staggered mag
zation have the same correlation functions asnstag

z @this is
clear from the SU~2! symmetry of the Hamiltonian~5!#.
Consequently we conclude that Sine-Gordon two-point c
relation functions~for b5A2p! of sinA2pu and cosA2pu
are the same as two-point correlators of sinA2pF.

The current operator]xF is also odd inF and therefore
its expansion must begin withZ0 such that at smallq we
have

^^S¢~v,q!S¢~2v,2q!&&;
~v2/a0

2! q2

v22 ~v2/a0
2! q22M2 1••• ,

~29!

where the ellipsis denotes terms which have nonzero im
nary parts at higher energies.

As we will see the threshold of the dynamical spin su
ceptibility is equal toM for both q50 andq5p. This is a
distinct feature of the alternating chain. It is related to t
fact that kink and antikink create a bound state of the sa
mass. Recall that for the ladder chain~or S51 antiferromag-
net for this matter! where particles do not have bound stat
the value of the energy threshold atq50 is twice that at
q5p ~see Ref. 17!.

At frequencies smaller than (11))M the only contribu-
tions to the imaginary part of the magnetic susceptibi
come from the first breather and kink-antikink pairs. Kin
antikink form factors can be calculated in the Sine-Gord
model~for any value of the couplingb! along the following
lines.26,27 Let us denote byS1(u) @S2(u)# the S-matrix ei-
he
th
e

th
ob
c-
e
un
th

th
de
l
o

t i
l
co
b

in
ti-

r-

i-

-

e
e

,

n

genvalue corresponding to positive~negative! C parity ob-
tained by diagonalizing the kink-antikink scattering:

S15
sinh~p/2j! ~u1 ip!

sinh~p/2j! ~u2 ip!
S0~u!,

S25
cosh~p/2j! ~u1 ip!

cosh~p/2j! ~u2 ip!
S0~u!, ~30!

wherej5 pb2/(8p2b2) and

S0~u!52expS 2 i E
0

` dx

x

sinux sinh@~p2j!/2# x

cosh~px/2!sinh~jx/2! D .

~31!

Then, general unitarity and crossing arguments imply t
the corresponding kink-antikink form factorsF6(u) are so-
lutions of the system of functional equations

F6~2u!5S6~u!F6~u!, ~32!

F6~u22ip!56F6~2u!. ~33!

The ‘‘minimal’’ solutions of these equations are

F1~u!5
sinhu

sinh~u1 ip! ~p/2j!
F0~u!

F2~u!5
sinhu

cosh~u1 ip! ~p/2j!
F0~u!, ~34!

whereF0 is given by
F0~u!5sinh
u

2
expS E

0

` dx

x

sinh~x/2!~12 j/p!sin2 @x~ ip1u!/2p#

sinh~xj/2p!cosh~x/2!sinhx D . ~35!
ily

the
By minimal solution we mean a solution containing only t
expected bound state poles in the physical strip and with
mildest asymptotic behavior at infinity. This prescription d
termines the minimal solutionuniquely. An infinite number
of nonminimal solutions corresponding to all operators in
theory which are local with respect to the solitons are
tained multiplying the minimal solution by an analytic fun
tion of coshu. However, if we require the form factor to b
power bounded in the momenta and to have only the bo
state poles, we conclude that we can actually multiply
minimal solution only by a polynomial in coshu. For a given
operator, it is possible to put strong constraints on
asymptotic behavior of its form factors, and then on the
gree of the allowed polynomial.28 In the sine-Gordon mode
this procedure is complicated by a nontrivial behavior
correlators in the ultraviolet limit. Nevertheless, the resul
that for the operators cos and sin the allowed polynomia
of the zero degree, which means that their form factors
incide with the minimal ones. The same conclusion can
reached in a simpler way going to the free fermion po
e
-

e
-

d
e

e
-

f
s
is
-
e
t

j5p, where the form factors of sin and cos can be eas
computed remembering that

cosbF;C̄C, «mn]nF;Jm , ~36!

and that the sin is related to the elementary field by
equation of motion.

For the operators cosbF and sinbF, at the specific value
of the coupling we are interested in, we find (u125u12u2)

^0usinA2pFuu1 ,u2&215)~2d!Z1/2
coshu12/2

sinh3u12/2
z~u12!

5Fsin~u!21 , ~37!

^0ucosA2pFuu1 ,u2&215 i)~2d!Z1/2
coshu12/2

cosh3u12/2
z~u12!

5Fcos~u12!21 , ~38!
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z~u!5c sinhu/2 expH 2E
0

`

dx
sin2@x~u1 ip!/2#coshpx/6

x sinhpx coshpx/2 J ,

c5~12!1/4expH 1

2 E
0

`

dx
sinhx/2 coshx/6

x cosh2x/2 J '3.494607,

d5
3

2pc
'0.136629, ~39!

where the relative normalization between the two opera
can be fixed exploiting the asymptotic factorization of for
factors discussed in Ref. 29. We note thatz~u! is to be ana-
lytically continued using the relation

z~u!S0~u!5z~2u!. ~40!

The additional factorsd and c in Eqs. ~37! and ~38! have
been introduced in order to simplify the reduction of mul
particle form factors using the annihilation-pole conditi
~for soliton form factors!

iResFO~u1•••u2n!«1•••«2n
uu2n2u2n215 ip

5FO~u1•••u2n22!«
18•••«

2n228 d
«2n

2«2n218
$d«1

«18•••d
«2n21

«2n218

2S
t1 ,«1

«2n218 ,«18~u2n212u1!•••S
«2n21 ,«2n22

t2n23 ,«2n228

3~u2n212u2n22!%, ~41!

whereS«,«
«,«(u)5S«,«8

«,«8(u)5S1,1(u) and all other component
are zero. Multiparticle form factors are discussed in so
detail in Appendix A.

The form factor~37! has a pole atu12522ip/3 corre-
sponding to formation of a bound state–the first breath
The breather form factorF1 is given by the residue of Eq
~37! divided by the three-particle coupling

uF1u25
33/2

8p2 expS 22E
0

` dx sinhpx/6 sinhpx/3

x sinhpx coshpx/2 DZ

'0.0533Z. ~42!

Similarly Eq. ~38! has a pole atu1252 ip/3 corresponding
to the second breather. The absolute squareuF2u2 of the
breather form factor is found to be

uF2u25
33/2

8p2 expS 24E
0

` dx coshpx/6sinh2px/3

x sinhpx coshpx/2 DZ

'0.0262Z. ~43!

IV. DYNAMICAL SUSCEPTIBILITIES
FOR A SINGLE ALTERNATING CHAIN

The expression for the imaginary part of the dynami
staggered susceptibilityx9(v,q) at s25v22(v2/a0

2)
3(p2q)2,(11))2M2 is given by
rs

e

r.

l

Imx9~v,q!52puF1u2d~s22M2!12 Re
uFsin@u~s!#12u2

sAs224M2
,

~44!

whereu(s)52 ln(s/2M1As2/4M221). Note that all other
form factors do not contribute to this expression in the spe
fied range ofs as their thresholds are above (11))M . Also
the normalizationZ enters Eq.~44! only as an overall factor.
Since the functionz~u! vanishes atu50, the entire form
factor is also finite. Thus the two-particle contribution
x9(v,q) exhibits a square-root singularity at the threshold
a function ofs.

The breather andss̄ contributions to the real part ar
found to be

Rex9~v,q!

52Re
2uF1u2

s22M21 i«

22E
0

` du

p

s224M2cosh2~u/2!

@s224M2cosh2~u/2!#21«2 uFsin~u!12u2,

~45!

where the factor of 2 stems from the sum over1 and2. In
Fig. 1 we plot both the imaginary and real parts ofx9.

FIG. 1. Imaginary and real parts~in units of Z/M2!
of the dynamical staggered susceptibility as functions
s5Av22 (v2/a0

2)(p2q)2 for q'p. The dashed line depicts th
single-mode approximation that takes into account only the fi
breather.
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It is straightforward to repeat the above analysis for
current operator]xF using the explicit expressions for th
formfactors given in Ref. 27. The contribution of the fir
breather leads to to Eq.~29! with some normalization factor
As there is very little spectral weight atq'0 we concentrate
on q'p and do not repeat the above analysis for the curr
operator.

For practical purposes it is convenient to have an exp
sion interpolating between the smallq ~29! and q'p ~44!
behavior. Such an expression giving the dynamical spin s
ceptibility in the entire range ofq at frequencies below the
continuum may look as

x~v,q!5
g~q!sin2~q/2!

v22~v2/a0
2!sin2q2M2 1••• , ~46!

where g(q) is a smooth function interpolating betwee
the normalizations at q50 and q5p. The mode
v5A(v2/a0

2)sin2q1M2 is separated from the particle con
tinuum by the gap of order ofM .

Let us now turn to the two-point correlator of cosine
The contributions of the second breather and the solit
antisoliton continuum are given by

ImDcos~v,q!52puF2u2d~s223M2!

12 Re
uFcos@u~s!#12u2

sAs224M2
, ~47!

where the ratio of the single particle residues is universa

g5
uF2u2

uF1u2 5expS 2E
0

`

dx
sinhx/3

x cosh2~x/2! D'0.49131.

~48!

Note that the threshold of the breather-breather continuu
also ats52M . The corresponding contribution is taken in
account in Appendix A~see Fig. 2!. The analogous contri
butions to the real part ofDcos are given by

Re Dcos~v,q!

52Re
2uF2u2

s223M21 i«

22E
0

` du

p

s224M2cosh2u/2

„s224M2cosh2~u/2!…21«2 uFcos~u!12u2.

~49!

The remaining integrals in Eqs.~44!, ~45!, ~47!, and ~49!
have to be calculated numerically. We find that at smalls the
contributions of the two-particle continua to the real parts
both correlators are of the same magnitude as the sin
particle contributions from the breather states. As far a
single chain is concerned a single-mode approximation
ing into account only the one-particle states is therefore v
poor at smalls.

V. RPA ANALYSIS
OF THE INTERCHAIN INTERACTIONS

Let us now take into account the interchain interactio
~both of spin and staggered energy densities! in Eq. ~4!. This
e

nt

s-

s-

.
-

is

f
le-
a
k-
ry

s

is accomplished through an RPA analysis along the lines
Ref. 30. RPA becomes exact in the limit of an infinite num
ber of neighboring chains.

In the RPA we obtain the following expression for th
correlation function of energy densities:

x«~s,kW !5^^e~2v,2q;2kW !e~v,q;kW !&&5
Dcos~s!

12Dcos~s!J~kW !
,

~50!

where J(kW )52@ uJaucos(kx)1uJbucos(ky)#. Similarly the dy-
namical staggered susceptibility is given by

xzz~s,kW !5^^Sz~2v,2q;2kW !Sz~v,q;kW !&&

5
Dsin~s!

11Dsin~s!K~kW !
, ~51!

where K(kW )52@Kacos(kx)1Kbcos(ky)#. Note that in the
present approximationx«(s,kW ) is only affected by the inter-
chain interactions of staggered energy densities, whe
xzz(s,kW ) only ‘‘sees’’ the interchain interactions of spin den
sities. The reason for this decoupling is that in the sin
Gordon theory describing the individual chains

^«~ t,x!Sz~0,0!&50, ~52!

FIG. 2. Imaginary and real parts ofDcos ~in units of Z/M2! as
functions ofs5Av22 (v2/a0

2)(p2q)2 for q'p.
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because«(t,x) is even under charge conjugation where
Sz(0,0) is odd. By rotational invariance this implie

^«(t,x)SW (0,0)&50. Note that the RPA is particularly simpl
as we have taken into account only interchain interaction
the staggered part of the spin density and neglected
smooth part as being less relevant. If we take these subl
ing terms into account the RPA acquires a matrix structure
in Ref. 11 as the sectorsq'p andq'0 become coupled. An
RPA analysis then requires the calculation of form factors
the current operator. We will discuss this refined RPA in
separate publication.31

The response functionsxaa(s,kW ) andx«(s,kW ) can be eas-
ily calculated numerically for given values ofJa,b andKa,b

by using the expressions forDsin(s) andDcos(s) obtained in
Sec. IV. We note that the pole in the dynamical magne

susceptibilitiesxaa(s,kW ) corresponds to the light breathe
which has quantum numberSz51, whereas the pole in

x«(s,kW ) is due to the heavy breather withSz50. The mag-
netic mode can be measured directly by neutron scatter
whereas theSz50 excitation can be probed by measuring t
phonon spectrum which will exhibit a softening.

In order to visualize our results we now plot them for
particular choice of parameters. Being aware that our the
probably cannot be applied to CuGeO3 wherea.ac we nev-
ertheless choose these parameters to reproduce the d
sions of magnetic excitations in that material. We ta
k'0.8, M'4.58 MeV and uKbuZ/M2'3.08, uKauZ/M2

'0.25. The value ofk is chosen such that the dispersion
z-direction reproduces the experimental fit of Ref. 4, wher
the other conditions follow from the experimental band ga

for kW vectors (0,1,12 ) ('2 MeV), (0,0,12 ) ('5.7 MeV), and

( 1
2 ,1,12 ) ('2.6 MeV).

Because of Lorentz invariance the energyv and thez
component of the momentumq only enter in the combina
tion s5Av22 (v2/a0

2)(p2q)2. In Fig. 3~a! we plot the
spin-wave dispersion in thex direction @ky50, kxP(0,p)#
and in Fig. 3~b! in the x direction @kx50, kyP(0,p)#.

We see that the single-mode approximation~SMA! in
which all multiparticle contributions to the dynamical su
ceptibilities are neglected gives essentially the same resu
the exact treatment. We note that~by construction! the fits4

to the experimental results are essentially identical to
SMA as far as dispersion relations are concerned. Let us
turn to the multiparticle continuum. The imaginary part
the dynamical staggered susceptibility is directly measura
by Neutron scattering. The position of its poles yields t
dispersion discussed above. The incoherent part~as a func-
tion of s and kx,y! is plotted in Fig. 4~a! and 4~b!, respec-
tively.

In the RPA the two-particle continuum starts
s52M'9 MeV. This is in disagreement with experime
for CuGeO3.

VI. ANTIFERROMAGNETIC ORDER

In the continuum limit the model~7! is also equivalent to
the sine-Gordon model withb252p.11 The bosonization
formulas are now
s
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S¢~x!5J¢R~x!1J¢L~x!1~21!nn¢~x!,

JR,L
z 5

1

2A2p
~]xF7P!,

JR,L
1 5

1

2pa0
exp@7 iA2p~F7Q!#,

nz~x!52
l

pa0
cosA2pF~x!,

n6~x!5
l

pa0
exp@6 iA2pQ~x!#. ~53!

Since the staggered magnetization is proportional
sin(A2pF) the bosonized single-chain Hamiltonian is give
by

H5
v
2 E dx$p2~x!1@]xF~x!#2%2

hl

pa0
E dx sinA2pF

22NJ'm0
2 . ~54!

Following through the same steps as in the spin-Peierls c
we find the following mean-field results for staggered ma
netization and mass gap:

m05CU J'

J U1/2

, M5C8uJ'u, ~55!

FIG. 3. Spin-wave dispersions inx ~a! andy ~b! directions.
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where the ratio ofC andC8 is given by Eq.~15!. This relation
can be used to determine the transverse couplingJ' in terms
of J and the directly measurable quantitiesM and m0 as
follows. The gapM is equal tov~p,0,p! which is found
experimentally to be 11.060.5 MeV in KCuF3.

5 The aver-
age magnetic moment ism0'0.27 ~Ref. 6! and
J'53.1760.25 MeV.7 Using these values we find

uJ'u5
1

J S CMC8m0
D 2

'0.96 MeV. ~56!

Let us now turn to the correlation functions for a sing
chain. The correlator̂̂ SzSz&& at smallq is still given by Eq.
~29!, but for q'p is given by Eq.~47!. Therefore around
q5p the pole is ats5)M :

xzz~v,q![Dcos~s!5
2F2

2

3M21v2/a0
2 ~p2q!22v2

1 incoherent, ~57!

FIG. 4. Imaginary part~in arbitrary units! of xzz(v,q;kW ) in x ~a!
andy ~b! directions.
where ‘‘incoherent’’ denotes multiparticle contribution
Some of these are determined exactly in Appendix A. A p
of Dcos(s) is shown in Fig. 2.

Correlation functions of transverse components of
staggered magnetization are given by Eq.~44! and have a
pole ats5M

xxx~v,q![Dsin~s!5
2F1

2

M21v2/a0
2 ~p2q!22v2

1 incoherent. ~58!

Here we have used the fact that in the continuum model
correlation functions of cosA2pu, sinA2pu, and sinA2pF
are equal due to the SU~2! symmetry present atb5A2p. A
plot of Dsin(s) is shown in Fig. 1.

The difference in the correlation functions~57! and~58! is
obviously related to the broken rotational symmetry of t
Hamiltonian ~7!. Next we take into account the intercha
interaction by an RPA analysis. This yields the followin
expression for the longitudinal dynamical susceptibility:

xzz~v,q,kW !5
Dcos~s!

122uJ'u~coskx1cosky!Dcos~s!
,

xxx~v,q,kW !5
Dsin~s!

122uJ'u~coskx1cosky!Dsin~s!
. ~59!

Here we again have taken into account only the stagge
part of the spin density as it gives the most relevant con
bution to the interchain interaction. As a result the RPA e
pression for the susceptibilities are of scalar rather than
trix form.11 The transverse susceptibility must have a pole
the Néel wave vector~0,0,p! as the spin SU~2! symmetry is
spontaneously broken. This leads to the requirement tha

Dsin~0!5
1

4uJ'u
'0.12509

Z

M2 , ~60!

which fixes the normalizationZ in terms of the transverse
coupling and the breather mass asZ'1.999M2/uJ'u. The
normalization of the correlator of cosines then follows to

Dcos~0!'
0.07443

uJ'u
. ~61!

The Goldstone mode associated with the zero energy
in x' is a spin wave moving in thez direction and its dis-
persion is found from the singularities ofx'. Due to Lorentz
invarianceDsin depends only ons rather than onv and q
independently. This immediately implies that the spin-wa
dispersion forq'p is

v2~q,kW !5
v2

a0
2 ~p2q!21M2S 12

coskx1cosky

2 D
'

p2J2

4
~p2q!21M2S 12

coskx1cosky

2 D .

~62!

This is in very good agreement with experiment being alm
identical to the fit used in Ref. 5. In Fig. 5~a! we plot the
spin-wave dispersion forky50 andkxP(0,p).
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We see that the SMA works extremely well for all valu
of kx . The imaginary part of the dynamical susceptibility
directly measurable by neutron scattering. We find

Imx'~v,q,kW !5
p

2uJ'u
dS s2

M2 211
coskx1cosky

2 D
1 incoherent, ~63!

where we have used the SMA to get thed function part. The
incoherent part is plotted in Fig. 5~b!. We see that there is in
general no singularity at the threshold of the light breath
heavy breather continuum except atkx→p where
Imx'(v,q,kW)[ImDsin(v,q) so that we recover the pure 1
result. The situation for the soliton-antisoliton continuum
analogous.

Let us now turn to the longitudinal susceptibility. In th
SMA there is a pole inxzz at

v2~q,kW !5
v2

a0
2 ~p2q!21M2F32

g

2
~coskx1cosky!G ,

~64!

whereg is given by Eq.~48!. This is compared to the exac
result for the case whereky50 in Fig. 6~a!. We see that the

FIG. 5. ~a! Spin-wave dispersion as a function ofkx for ky50.
~b! Imaginary part~in arbitrary units! of x' for s.2 as a function
of kx for ky50.
r-

corrections to the SMA result are very small.
Using the SMA@which we know from Fig. 6~a! to be an

excellent approximation# to extract the coherent delta
function part we find

Imxzz~v,q,kW !5
pg

4uJ'u
dS s2

M2 231
g

2
~coskx1cosky! D

1 incoherent. ~65!

The incoherent part is plotted in Fig. 6~b!.
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APPENDIX A: MULTIPARTICLE FORM FACTORS

In this appendix we consider multiparticle form factor
We start with two-soliton two-antisoliton form factors an
explicitly derive the related three- and two-particle form fa
tors. The extension ton-soliton n-antisoliton form factors
(n53,4, . . . ) is straightforward and will not be discusse

FIG. 6. ~a! Dispersion of the longitudinal mode as a function
kx for ky50. ~b! Imaginary part~in arbitrary units! of xzz for s>2
as a function ofkx for ky50.
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here. The form-factor expansion for two-point correlati
functions is found to be rapidly converging and for smalls it
is essentially sufficient to take into account two-particle fo
factors only. Note that most of the formulas below are to
understood in terms of analytic continuation ofz~u!. A useful
formula is

uz~u1 ia!z~u2 ia!u2

5
c4

4
~coshu2cosa!2 expH 4E

0

`

dx
coshx/6

x sinhx cosh~x/2!

3S 12cos
xu

p
cosh

p2a

p
xD J

3
sinh2u cos2a1@coshu sina2sin~p/3!#2

sinh2u cos2a1@coshu sina1sin~p/3!#2 . ~A1!

Multiparticle form factors of~quasi!local operators were
studied in detail by Smirnov.27 From his work the two-
soliton two-antisoliton form factor for cosA2pF is straight-
forwardly extracted:

Fcos~u1 ,u2 ,u3 ,u4!2211

5^0ucosA2pFuu1 ,u2 ,u3 ,u4&2211

52p~2d!2AZ3S (
l 51

4

eu l D
3S (

m51

4

e2umD(
i , j

eu i1u j)
i ,k

z~u i2uk!e
2 1/2( ju j

3cosh
3

2
~u31u42u12u2!)

i 51

2

)
j 53

4
1

sinh3~u j2u i !
.

~A2!

Orderings other than2211 are obtained from Eq.~A2! by
using the generalization of Eq.~33!, e.g.,

Fcos~u1 ,u2 ,u3 ,u4!2121

5S0~u32u2!Fcos~u1 ,u3 ,u2 ,u4!2211 . ~A3!

It is easy to verify that the soliton-antisoliton form factor
cosA2pF is obtained from Eq.~A2! via the annihilation
pole condition ~41!. The two-soliton two-antisoliton form
factor for sinA2pF is very similar to the one for cosA2pF

Fsin~u1 ,u2 ,u3 ,u4!221152 i tanh
3

2
~u31u42u12u2!

3Fcos~u1 ,u2 ,u3 ,u4!2211 .

~A4!

The residue at the annihilation pole~times i ! now yields the
soliton-antisoliton form factor of sinA2pF.

Breather form factors are obtained from the residues
Eq. ~A2! at its poles. In the soliton-antisoliton-even breath
sector we find
e

f
r

Fcos~u1 ,u2 ,u3!212

522p
~2d!2AZ

23/231/4

e2 1/2~u11u2!2u3

cosh~3u21/2!cosh3u31cosh3u32

3z~u12!zS 2 i
p

3 D zS u131 i
p

6 D zS u132 i
p

6 D
3zS u231 i

p

6 D zS u232 i
p

6 D @eu11eu21)eu3#

3@e2u11e2u21)e2u3#

3@eu11u21)eu3~eu11eu2!1e2u3#. ~A5!

The corresponding form factor for sinA2pF is

Fsin~u1 ,u2 ,u3!21252 i coth
3u21

2
Fcos~u1 ,u2 ,u3!212 ,

~A6!

and different orderings are obtained by the appropriate g
eralization of Eq.~33!, e.g.,

Fcos~u1 ,u2 ,u3!2215Fcos~u2 ,u3 ,u1!212S1,2~u21!S1,2~u31!.
~A7!

The residue at the annihilation pole~times i ! in
Fcos(u1,u2,u3)221 gives the heavy breather form factorF2 .
The corresponding sin form factor has no annihilation pol
In the soliton-antisoliton-odd breather sector we obtain

Fcos~u1 ,u2 ,u3!211

522p
~2d!2AZ

23/231/4

e2 1/2~u11u2!2u3

sinh~3u21/2!sinh3u31sinh3u23

3z~u12!zS 2 i
2p

3 D zS u131 i
p

3 D zS u132 i
p

3 D
3zS u231 i

p

3 D zS u232 i
p

3 D @eu11eu21eu3#

3@e2u11e2u21e2u3#

3@eu11u21eu3~eu11eu2!1e2u3#

5 i coth
3u21

2
Fsin~u1 ,u2 ,u3!211 . ~A8!

From the residues at the poles of Eq.~A8! we can derive the
breather-breather form factors

Fcos~u1 ,u2!11

522p
4~2d!2AZ

33/2

@cosh~u12/2!#2@coshu121 1/2#

~sinh3u12!
2

3z2~u21!z
2S 2 i

2p

3 D zS u211 i
2p

3 D zS u212 i
2p

3 D
3S0S u211 i

p

3 DS0S u212 i
p

3 D . ~A9!

This is identical to the soliton-antisoliton form facto
Fcos(u1,u2)21 as can be proved by direct calculation. Som
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useful identities areS0@u1 i (p/3)#S0@u2 i (p/3)#5S0(u),
2z(u)z(u2 ip)5 sinh3u/sinhu1i sin(p/3) and

expS E
0

` dx

x

cosh~x/6! 2cosh~x/2!

sinhx cosh~x/2! D 5
2&

c
. ~A10!

The other breather-breather form factors are given by

Fcos~u1 ,u2!22

522p
4~2d!2AZ

)

@cosh~u12/2!#2@coshu121 3/2#

~cosh3u12!
2

3z2~u12!z
2S 2 i

p

3 D zS u121 i
p

3 D zS u122 i
p

3 D ,

Fsin~u1 ,u2!21522p
4~2d!2AZ

33/2

3
~coshu121)/2!@11)/2 coshu12#

~cosh3u12!
2

3zS 2 i
p

3 D zS 2 i
2p

3 D zS u121 i
p

2 D
3zS u122 i

p

2 D zS u121 i
p

6 D zS u122 i
p

6 D . ~A11!
, P

v-

K

a

T

G

The special values ofz at the breather poles are given b
z@2 i (p/3)#'21.10184i and z@2 i (2p/3)#'22.72272i .
We note thatz@2 i (p/3)#z@2 i (2p/3)#523.

It is apparent thatn-particle form factors depend only o
n21 independent rapidity variables. This fact can be used
essentially simplify expressions such as~26! for correlation
functions. For example, two-particle contributions forv>0
are given by

Dcos~v,q!u2 part52E
0

` du

p H 2uFcos~u!12u21uFcos~u!11u2

s224M2cosh2~u/2! 1 i«

1
uFcos~u!22u2

s2212M2cosh2~u/2! 1 i« J ,

Dsin~v,q!u2 part52E
0

` du

p H 2uFsin~u!12u2

s224M2cosh2~u/2! 1 i«

1
2uFsin~u!21u2

s224M2@11 ~)/2!coshu#1 i« J ,

~A12!

where we also have made use of various symmetry pro
ties of the form factors in order to perform the sum overe j .
Similarly the contribution of form factors involving one sol
ton, one antisoliton, and one~light! breather of type 1 can be
brought to the form
2E
2`

` du

2p E
2`

` du12

2p

2

s22M2$114 coshucosh~u12/2! 1@2 cosh~u12/2!#2%
uFcos~u,u12!211u2, ~A13!

where

Fcos~u,u12!211522p
~2d!2AZ

23/231/4

@2 cosh~u12/2!1eu#@2 cosh~u12/2!1e2u#@2 cosh~u12/2!12 coshu#

sinh3~u12/2!sinh3~u1 u12/2!sinh3~u2 u12/2!
z~u12!zS 2 i

2p

3 D
3zS u12

2
2u2 i

p

3 D zS u12

2
2u1 i

p

3 D zS u12

2
1u2 i

p

3 D zS u12

2
1u1 i

p

3 D . ~A14!
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