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Spin-liquid phases in two-dimensional frustratedXY models
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In this paper we consider thk-J,-J; classical and quantum two-dimension& model. Spin-wave cal-
culations show that a spin-liquid phase still exists in the quantum case as for Heisenberg models. We formulate
a semiclassical approach of these models based on spin-wave action and use a variational method to study the
role played by vortices. Liquid and crystal phases of vortex could emerge in this description. These phases
seem to be directly correlated with the spin-liquid phase and to its crystalline interpretation.
[S0163-182697)00838-3

I. INTRODUCTION precisely that around which, quantically, a spin-liquid phase
is found. We hypothesize in this article, that while quantum
Low-dimensional magnetic systems have been extenfluctuations can surely not mepriori neglected in this case,
sively studied these last years since they are known to exhey are, together with vortices, responsible for a spin-liquid
hibit nontrivial quantum behaviors. This comes in particularstate in this frustrated'Y model.
from the fact that classical Heisenberg two-dimensig2aai) The paper is organized as follows: In Sec. Il, we consider
antiferromagnets can order only at zero temperature so théte classicalXY model with competing interactions. The
guantum fluctuations cannatpriori be neglected. In fact, it classical phase diagram @0 is recalled. It contains no
is now well known that in antiferromagnets, the quantumspin-liquid phase. Then, we pay special attention to the role
fluctuations can $<Sgica) OF cannot 6> S.iica) iNduce a  played by vortices and show that there is a critical line where
transition atT=0 from a Nel ordered ground state to a vortices are allowed af=0. This proves the need to incor-
quantum disordered one, characterized by short-range brdeporate quantum fluctuations. Indeed, in Sec. lll, we show
The enhancement of quantum fluctuations has naturally beghat linear quantum spin-wave computations predict a spin-
looked for in frustrated spin systems. The combination ofliquid phase(around this critical lingin the quantum frus-
frustration and quantum fluctuations can possibly lead to @&rated XY model contrary to the classical model. Then, in
spin-liquid statgfor a review about spin-liquid states, see for Sec. IV, we formulate a general Ginzburg-Landau-Wilson
example, Ref. 2 For the 2D Heisenberg model with nearest- (GLW) semiclassical action from the quantum spin-wave ac-
neighbor(NN) and next-nearest-neighbafldNN) antiferro-  tion in order to discuss the nature of this liquid phase. When
magnetic(AF) interactions, Chandra and Datcave shown approaching this phase, the spin stiffnes$S) gets very
by spin-wave calculations that it can be disordere@iaD®  small and we are priori forced to take into account the
This has been confirmed by exact diagonalizations on finiteffects of all quartic terms. We pay particular attention to the
lattices™? by series expansiorisand by a renormalization- nonperturbative sector of this action. We find a phase where
group analysis of the associated nonlineamodels®=® The  pairs of vortices can be confined at a short finite lattice dis-
latter study has shown that the couplings of the models flowwance. The phase described here is some kind of liquid of
under renormalization-group transformations towards aortex. This liquid state is favored when spin waves become
strong-coupling regime when this liquid phase issofterfwhenx(S)—0]i.e., when the usual spin-liquid phase
approached. Einarsson and Johannes8drave shown that is predicted. Finally, Sec. V contains a summary of the re-
precisely close to this liquid state, there is a proliferation ofsults and some concluding remarks.
tological excitations in the path-integral representation of the
frustrated Heisenberg moo%IThey have suggested from Il. CLASSICAL FRUSTRATED XY MODELS
these instanton considerations possible realizations of this
disordered liquid phase in analogy with works of Sachdev The purpose of this section is to study the role played by
et all0 vortices in classical frustratedY models, especially in the
In this article, we want to emphasize that there exists aveakly frustrated phase. Let us first consider the 2D classical
system where it is likely that this relationship between topo-J1—Jz, XY model
logical excitations and this liquid state is much more direct,
namely the quantum frustrated 20Y model. We have in-
deed shown in a preceding paper that a 2D classtcél
model with NN and NNN interactions has a point in the ) . )
(J,/3,,T) plane, whereT, ;=02 This result can be ex- With J;,J,>0 and§; the angles associated with the classical
tended by adding a next-next-nearest-neightdNN) in-  O(2) spinS . () is for nearest neighbor®N) and({ )) for
teraction with a whole line of Kosterlitz-Thouless transitions next-nearest neighbof®NN). Two ground states are pos-
atT=0, in the parameter spacé,(J;,J3/J;). This line is  sible in the model. WhehJ,|>2J, the ground state is fer-

H=-J,2 cos6—6,)+J, >, cogb—6), (2.1
in (<
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romagnetic, whereas, whed,|<2J,, the ground state con- 035 , , , ,
sists of two independent diagonal sublattices with
antiferromagnetic ordéf' 04
From a spin-wave approximation, an effective action can i ™ i
be derived in the ferromagnetic phase as
03[ i
A—i d2x{(3;—23,)(V 0)2+I,(V,V,0)? e
1_2T X{( 1 2)( ) 2( xVy ) } 02| Cl |
(2.2
The classical vacuum is the standard ferromagnetic one, and 01} i
therefore the termY(XVye)2 is irrelevant according to stan- F AF;
dard perturbative arguments. In this case, the system can be 00 . . . .
well approximated by arXY model with an effective NN 00 02 0.4 0.6 0.8 1.0
coupling constand; —2J,, so that the action associated with J2

a neutral pair of vortices is FIG. 1. The classical phase diagram for the-J,—J; XY

model on a square lattice. F corresponds to a ferromagnetic ground
Sp=4m(J;—23,)In P 2.3 state, AR, to two decoupled sublattices with independent AF order
1 2 al’ ' andC,,C, two incommensurate chiral phases.

with p the distance separating the two vortices. Therefore, i , . . .
there is a Kosterlitz-Thouless transition at the temperaturé‘”th A=V* the Laplacian. The neutral pair of vortices is a

Tyr=/2(3,—23,). This result can be proved more rigor- soIlJtion of Eqg. (2.5 and its_ associated action reads
ously by a Coulomb gas treatment of the original Hamil-So=47(J1~8J3)In(p/a). There is no dependence B} so
tonian (2.1).1 It has to be noticed that the pairs of vortices this result indicates that we are in a situation similar to the

play the role of the instantons in the nonlinearmodel!? ~ Previous mo_del. Since S=0 at the critical line
WhenJ;=2J,,Tr=0, a result which indicates that vortex J1~2J2—4J3=0, vortex excitations are present @t=0
solutions are allowed in the classical vacuuniTat0. This  &long the whole line suggesting that the quantum fluctuations

suggests that the model can have a nontrivial behavioh@ve to be included. Moreover, along this line, quadratic

around this point when quantum fluctuations are considered®'M$s vanish. The propagator is then governed by quartic

WhenJ,<2J,, the behavior is drastically different; the ac- terms and so is of short-range order favoring a disordered
tion (2.2) is somewhat meaningless in this “antiferromag- State atT=0. WhenJ, —2J,—-4J3<0, one has to know
netic” phase and a new effective theory must be fothd. Which wave vector minimizes the spin-wave acti@4) in
Nevertheless, if we suppose that the notion of a pair of vorrder to obtain the whole phase diagram. By this method, we
tices still makes sense in this case, the action associated wiffPt@in the same phase diagram at the classical level as for
this pair becomes negative so that it becomes energeticallj€iS€nPerg spinésee Ref. 1% This has been reported for
favorable to fill the vacuum with pairs of vortices. Indeed, it COMmpleteness in Fig. 1. At low; andJ;>J,/2, we recover
has to be noticed that the antiferromagnetic ground state d&l€ Phase with independent AF order on each sublattice

) 1 . . (noted AF,) as in theJ;—J, model. The critical line sepa-
fined aboye(for J1<3Jz) can b_e interpreted as a lattice of rates the ferromagnetic phase from two helical incommensu-
vortex antivortex(for more details, see Ref. LITo summa-

. X . ' . r?te phases with respective wave vectors,£XQ,),
rize, we have seen that the action associated with a pair +Q,,7) (phaseC,) and (+Q,,*Q,) (phaseC,), where
vortices indicates the changes in the classical vacuum a 1'Q are  defined by cofN=(2].—3Ya]
: . . : 1 2 y cof)=(2J,—J)/4J; and

especially that its value equals zero at the Lifshitz point. c0SQy) = —J;/(23,+4Js) (see Fig. 1

This analysis can be extended when a new coupling con: L2l ™3 '
stantJ;>0, corresponding to &NNNN) AF interaction, is
added to the actiof2.1). WhenJ,;—2J,—4J;>0, the clas-
sical vacuum is a standard ferromagnetic one. Let us co
sider the isotropic casel{=2J3) for convenience, the phys-
ics along the whole lind; —2J,—4J;=0 being the sam&.
The associated action, again using a spin-wave approxima-

We have seen that vortex excitations are allowed on the
classical critical linel; —2J,—4J3=0. Nevertheless, no lig-

uid phase has been found around it. Consequently, frustra-
on is not sufficient at the classical level to induce a spin-
liquid state and quantum fluctuations must be included.

tion, can be written as IIl. LINEAR SPIN-WAVE THEORY IN QUANTUM
. FRUSTRATED XY MODELS
Aff deE{A(V 0)°+B(V?0)%}, (2.4 We consider now the quantum version of these models.

We present in this section spin-wave results that are well
where A=(J;—8J3),B=J,. In the nonisotropic case, the known for the Heisenberg modef but not, to my knowl-
extra term 02—2J3)(vay0)2 has to be added to the action edge, forXY spins. The Hamiltonian can be written as
(2.4 and does not change qualitatively the results. The
saddle-point equation is

H=2, J;(SS+99), 3.1
AAH—BA?6=0, (2.5 % i (SIS +55)) (3.9
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18 . . . . . . : - - tion of J,. We can draw conclusions analogous to those

found in the study of Heisenberg spihs, namely linear

spin-wave theory, which predicts at at$/a finite region

b 1 around the Lifshitz point where the ground state is disor-
dered(see Fig. 2 This seems to indicate the presence of a

spin-liquid state.

wl | Furthermore, the quantum fluctuations diverge when

a,=J,1131|—1/2 as

178

1 1

ol ] (SH~S+ 5 YIN?(1-2a,), <3

Al | (3.9
/ 1 1

of ] <SZ>~S+§—7'(26¥2—1)_1/2, az>7,

TR 5 o7 o5 oo wherey andy’ are two unimportant real numbers.

0.5
d2 We find asymptotic behaviors similar to Heisenberg spins.
FIG. 2. First quantum corrections to the lattice magnetization inThIS Is not in fa.Ct.SO Surprising since the LIfShI.tZ pc_)lnt is the
. . same. The validity of this first-order approximation com-
the J;—J, XY model. TheO(1/S) spin-wave theory predicts an d to oth thods like Schwi b field
intermediary region where the ground state is nonmagnetic and th ared to other m? ods i .e chwinger bosons megn- 1€
can be a spin-liquid phase. theory has been discussed in Ref. 8. Second-order spin-wave
calculations go along the same line and confirm the first-
whereJ.=J. for a NN interaction.J.. = J. for a NNN in- order calculationgit also leads to a renormalization of the
teraction ar%d.]-- —J, for a NNNN ilrgter;ction The zero- SPin stiffness Moreover, some exact diagonalizations on fi-
point fluctuatiorj15 around different ordered states can b&'€ lattices agree q“a"t"?‘“"‘?'y W|F212the existence of a spin-
computed in the larg& limit by different methods: a stan- 'qlfb'\d 'sta}e arou:’ld.the L'ff)h'tz p?' ) d for tHe—J.—J
dard one with Holstein-Primakov bosofsee, for example, similar analysis can be performed for the—J,—Js,
Ref. 19, and a second one with “a semipolar” representa-X,Y modgl. We are interested in the'reg|on around the clas-
tion of spin operators introduced by Villafi.Both give the  Sical critical lineJ; —2J,—4J5=0 which separates the fer-
same results though the latter seems more appropriateyfor fomagnetic phase from two helical phases as we have seen in
models. Let us first consider thi—J,, XY model (with Sec. Il. The Villain method can be easily generalized for

J1<0,J3,>0). chiral phases® The pitch wave vecto(t)oyc, is defined by
When J,;>1J, the ground state is ferromagnetic. The ﬁQJQO,m:O with Jo being the Fourier transform associated
magnetization( %) reads with J;; . The spin-wave frequency and the staggered mag-
netization are in this case
1 1
(=St 2 — f oK = 2T (091300 =3 (Qor K+ I(Qe—KI72],
2 8w (3.5
2— np—ay(2— 7)) 1 1
s eTaT] <SZ>=s+———2f d%k
{[2— m— a2(2— ) 17— (= aami) 7} 2 8w
(3.2 o | 73(Q0)+3(Qo+ k) +3(Qo— k)4
We have defineda,=J,/J;, 7= 3[cosky)+cosk,)], and VI(Qo)[I(Qo) —I(Qo+k) +I(Qo—k)/2]
7= Ccoskcosk,). The integral overk runs over the first (3.6)

Brillouin zone[ — 7, 7]? of the two-dimensional lattice. We
see that the mean-field value 8f is decreased by including
the first corrections in 8.

Along the critical line k,=J,—2J,—4J5, the staggered
magnetization has the same kind of divergences as in the

R ) ) ~J;—J, model. For example, we evaluate at the paipt0
WhenJ;<3J; a collinear ground state is selected by spinthe |eading divergence

waves'* The same kind of calculation can be generalized,

paying attention to the anisotropy, and leads to (H~S+ 5- aln(d;—4dy). 37
1 1
(SZ>=S+———2f d?k This behavior is similar for the whole critical linGapart
2 8m from the Lifshitz poinf. We notice that we recover directly
. _ _ spin-wave calculations in the ferromagnetic phase by taking
|2—cogk,)cogky) —\,[ cogk,) —cogky)]| , 0=0. It supports the fact that we can go continuously from
2{1—cogk,)cogky)—\,[ cogk,) — cog ky)]}”2 the ferromagnetic phase to the chiral phases as is already the

3.3 case classically. These states have the same symmetries con-
trary to the case of the ferromagnetic and collinear phases
where\,=|J4|/23,. separated by a Lifshitz point, and thus both states can be
In Fig. 2, we represent spin-wave corrections as a funcdescribed by Eqs(3.5), (3.6). Since results forXY and
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Heisenberg spins are very similar at this order, it is reason- We suppose the spi to be large and analyze phase
able to think that higher-order corrections will have similar fluctuations as it is common foXY spins. Therefore, we
effects like a renormalization of the spin stiffness(S). It write S(r)=Sye' ") where S, is spatially uniform and de-
can be used to define the quantum critical linecagS)=028  pends on the parameters of the mo@e spin-wave calcu-
Therefore, to summarize this section, we have shown thdgtions. In fact, it just corresponds to the lar@eversion of
spin waves predict the presence of a spin-liquid phase arourife Villain semipolar representatidh.Fluctuations around
KR(S):O generated by the combination of quantum f|uctua_80 will be discussed later in the article. In this case, the

tions and frustration. action(4.1) reads
IV. A SEMICLASSICAL TREATMENT OF QUANTUM A= f d>X[ASH(V 6)?+BSa?(V26)?+ CSa(V )*],
FRUSTRATED XY MODELS 4.2

In this section, we want to find an effective action able towith C=B+ B’SS. The lattice spacin@ is introduced in
describe the quantum behavior of the 2,-J,—J;, XY  order to have dimensionless coupling constants. The poten-
model especially near the critical line. The most rigoroustial part has been omitted because the main effects we will
way to find an effective action for spin models is to decom-Study involve the derivative part. Normally, the operator
pose the pure spin Hamiltonian on a basis of coherent stateszSaVS|2 should have been included in the original action
which enables a path-integral description of a single 8fin. (4.1) but, since it gives a similar contribution H&S|%, it has
Another possibility is to formulate directly the most generalalso been omitted. To study this action, it seems useless to
effective action from the spin-wave action and symmetryuse perturbative arguments, because, first the critical line
considerations. The latter strategy has been already used pj~ «(S)—0] is characterized by a strong-coupling
Ferrer to study the scaling properties of the 2p-J,—J;  regime® and second the higher operators are irrelevant ac-
quantum Heisenberg mod&We follow a similar strategy.  cording to the usual perturbation scheme. Because of the

In our case, we have seen from the spin-wave analysigonlinear term ¥ 6)%, it is difficult to find the saddle points
that quartic terms coming from NNN and NNNN interac- analytically. Nevertheless, in Sec. Il, we have noticed that
tions have to be included near the critical line since quadrati¢he action associated with a vortex-antivortex pair, character-
terms vanish on this line. Therefore, the spin waves have ied by the relative distange, indicates the changes of the
propagator of the following formng},:alzerbIZ“ (in the ground state when approaching the critical lineoreover, it

isotropic casp Following Amit et al,'* we wonder what is a genuine solution whe@=0). Therefore, we use a varia-
P 9 ? tional approach based on a wave function of pairs of vortices

physical systems could be described by a theory having thﬁefined by

anomalous propagatd+k* and how it could be relevant

for the understanding of the quantum phase diagram of the y—VYi1 y—Y>

2D J;—J,—J; XY model. Therefore, we are interested in 00=arctanx_—xl—arctanx_—xz, (4.3

the sequel in the most general Landau-Ginzburg-Wilson ac- . . N )
tion for anXY spin$, with such an anomalous propagator Wit r1=(X1.¥1).r2=(x; '.y2) th(’f’ position of both vortices
(p%2=|ry—r5,|?). Introducing 6, in Eq. (4.2, we have to
. R . R compute

A:f d’x[A|VS|2+B|V252+B'|VS*+V(S)], (4.1 s

R a

. - - _ ) ) |=f J dr(V00)4=J J dzr%. (4.4

where V(S)=r,|S|?+\|S|*. This effective action has a [r—rq%r—r,)
purel)f classical origin. Indeed\=(J,—~2J,-4J3), B=Js,  f course, we must regularize the integrals. The lattice con-
andB’ =0 correspond to the classical spin-wave actbd).  gianta is the most natural regulator in our case. The compu-

We will now make an apparently “crude” approximation, tation is made in the Appendix. We obtain the following
namely we suppose that the quantum action has a form simiction for the pair of vortices:

lar to Eq.(4.1) except an extra dimension and a renormaliza-

tion of coupling constants, such that the values given above
for A,B,B’ are no longer valid. Therefore, the quantum
model takes priori different values in the space of coupling

constants. . . ._is minimum forp=a (our cutoff. Namely, we have a stan-
Nevertheless, we have an important constraint from Sping, g atractive increasing potential and charges tend to form
wave calculations: the quantum critical line is always chari,gles and so do not contribute. The classical situation cor-
acterized byA~ k,(S)— 0. Under the above hypothesis, this responds tA = kac>0C=J5>0, hence in the weakly frus-
implies that the main differences between the classical anggateq region, the vortices do not contribute except on the
quantum situations rely on the behavior of higher derivativeg|assical critical line. The above conclusions are not altered
terms. It has to be noticed that similar effective actions haven the anisotropic case. Nevertheless, Wi#A<C,/A<0,
been derived in Refs. 7 and 8 for frustrated Heisenberg modhe situation becomes totally different. We can see in Fig. 3
els. We do not claim that this simple effective action con-that the potential has now a nontrivial minimupg. This
tains all the physics associated with the spin-liquid phase butorresponds to a liquid phase of vortices. Moreover, when
nevertheless, we will see that it can be useful to understan@/A<C;/A<Cy/A the action associated with the pair of
the role played by instantonic sector when the critical linevortices can be negative, meaning that it becomes energeti-
corresponding tA~ «(S)—0 is approached. cally favorable to fill the semiclassical vacuum with pairs of

2 2

p\a a
33
p

P P
alp

a

+C

«n(

Av(p):4wsg[A|n ] (4.5

with a@,>0 a real number. WheA>0 andC>0, this action
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vortices separated by a sipg of order 2a (see Fig. 3. This Coe - - - . . . . .
result does not hardly depend on the ra@dA. It corre- "3 C<Co0 -
sponds to a crystalline phase of vortices. Note that the pos
sible role of some higher-order derivative terms in the non- ‘
perturbative sector has been already studied in lattice gaug st
theories in Ref. 17 where some rather similar conclusions :'
have been drawn. Before commenting on these results, let u :
first perform one-loop calculations, in order to see the con-* 3|
tributions of such vortex effects to the path integral. oL
In this perspective, we use the semiclassical approxima:
tion and expand the field aroundé, as 8= 6,+ n and keep
terms at most quadratic in in the action(4.1). The partition 0
function reads

Z:fDﬂeXK—%(P))eXF<—fdX[A(Vﬂ)Z ! 2 3 4 5 p 5 7 s 9 10

FIG. 3. The action associated with a pair of vortices separated
by a distance. Three cases have been represented: a positive ac-
tion without any extremum, a positive action with a minimum in
p=po and a negative action with a similar minimum aroynd2a.

+B(V29)%2+2C(V7)3(Vy)?]|. (4.6

The action in terms of; after integration by parts reads

— _ 2 2 v 2
A(n)=An0n—BnO7+2Cy[(V ) T—(d,3"6)"17. singular solutions in the path-integral compared to spin
(4.7) waves. It will be clearly dominated by the tree sector, in so

L . . . far as dgtO(p)]~def AL —BO].
After the Gaussian integration, it remains to compute the The last integral defined in E¢4.10 is carried out in the

determinant associated with the differential operator saddle-point approximation arouds po. It yields
O=A0-BO%+2CO(V 6p)°—2C(d,3"00)%. (4.9

_ *=dp
Of course, it seems impossible to obtain the spectrum Z=Ve So(Po)fo F
associated with this operator. Nevertheless, we can use the
fact that ¢,9"6,)? and (V6,)? are ultralocal functions of Xe—ZWS(ng(A,C,pO)(llpZ—l/pg)z[dew(po)]—1/2’ 411

r (po~a) whose asymptotic behaviors are, respectively, in _ . ) i
1/r® and 1t*. Therefore, one can approximate the fluctuation’Ne€9(A,C,po) is a positive function defined by the sec-
ond derivative of the vortex action pt= py. By performing

determinant by deAC]—B[?], which just corresponds to Ve X :
the determinant associated with quantum spin waves. To p&€ Gaussian integration ovpr the result is
more eXp|ICIt, we write 7= )\VefSo(pO)[de(/)(po)Zﬂ_Sgg(A,C,po)]*1/2, (412)

def O]=de{Pldef1-P *(—2C(d,0"00)%)], (4.9  where\ is an unimportant numerical constant. This expres-

with P= A — B2+ 2C0I(V 6,)2. The second determinant sion goes one step further than the vortex acti:). We

can be treated perturbatively. Indeed, asymptotically find a competitic_)n between_ the exponential tree-level factpr
and the fluctuation determinant representing quantum spin-

. _In|r=ry wave effects that are long-range ordered.
Pfl(—ZC(&Mﬁ”HO)Z(r)%I d’r——p—, We are now obliged to wonder whether and when this
51 variational approach makes sense. It is clear that in the

and so does not contribute. Similar work can be performedveakly frustrated phase, far from the quantum critical line,
on P using the ultralocality of ¥ 6,)? justifying the approxi-  SPin waves dominate the path integral. In th|_s region, t_he
mation.(The treatment of is equivalent to solving a Schro  Studies based on quantum spin-wave calculations, omitting
dinger equation in a regularized attractive potential irf1/ instanton conflgurathns, have proved to capture the essential
There will be just a few bound states plus the continuunPf the infrared behaviot®®Nevertheless, when we are close
spectrum similar to the cae=0.28) In the partition func- 0 the quantum critical line, wheA gets very small com-
tion, we now have to integrate ovey p playing now the role pared toB or C, spin waves become softer and weaker and

of the collective coordinat®’ The only scale and translation- Short-range interactiongthe quartic terms are enhanced
ally invariant measure ig2rdpp 2.2 In that case, the par- compared to spin waves. In that case, our variational method

tition function reads based on topological defects can be applied. Moreover, as it
was already mentioned, the approach of the quantum critical
+od line is characterized by a strong-coupling regime where to-

Z:VJO pre_SO(p)[de@(P)]_”% (410  pological excitations proliferat®.

Let us now summarize and comment on the results ob-
wherea is the lattice cutoff. An interesting quantity often tained so far. We have found that when spin waves fall down
used is the ratio of the partition function in the unit and zeroclose to the quantum critical line, there is a range of param-
winding number. In fact, this ratio measures the weight ofeters in the actiort4.2) where pairs of vortices can prolifer-
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shown that there is a classical critical line where vortices are
present even at =0. It justifies why quantum fluctuations
have to be included near this critical line. Quantum spin-
wave calculations predicts a spin-liquid phase around this
critical line. To study the role played by vortices when ap-
proaching this spin-liquid phase, we have considered a gen-
eral GLW action deduced from spin-wave calculations. We
have found nonperturbatively a range of parameters where a
crystal phase of vortices can take place around this critical
line. This phase seems to be directly correlated with the spin-
liquid phase predicted by spin-wave calculations. It is diffi-
cult to compare this crystalline phase with the possible dis-
- = ‘ ordered ground states of Heisenberg spins proposed by
2a Sachdewet all® except that both descriptions have a short-
range crystalline order. Yet, this study has the advantage of
FIG. 4. A schematic representation of a lattice crystal of vortexshowing qualitatively how a nontrivial liquid phase can
separated by =2a. emerge nonperturbatively in two dimensions Bt0. It
ate and stabilize in a liquid phase or a crystal phase of vorshould be very interesting to investigate numerically this
tices. It has to be noticed that the liquid phase of vorticegnodel. To test the validity of the scenario described in this
corresponds to a small area in the parameter space. Wheaper, a possibility could be to look at the nature of the
C/A<C,/A<0, we found a crystalline phase where pairs oftransition between the spin-liquid phase and the chiral
vortices are separated by a distance of order(iddepen- phases. It may correspond to a melting of this crystal of the
dently of the ratioC/A). Such a crystalline ground state is vortex phase as in Ref. 23, induced by chiral spin waves. In
represented in Fig. 4. This scenario supposes that in thdnat case, the transition could be of the KT type.
quantum situation, there is a strong renormalization of the Finally, this analysis suggests that we may build classical

gr(r)\lijspliisn%utiomngﬁnﬁipg?rl]%stig (\:/r\}gnc%%r:gfp(r:cl)z\i/sesgfag)ukt)es%%\g%pin models that can also be described by an effective action
possibility cannot be ruled ow priori. Moreover, the sce- Rimilar to Eqg.(4.1). Such spin models would include multi-

nario we describe seerasposterioriconsistent with the pro- Pody interactions. A general study of 3D classical spin sys-
liferation of vortices able to induce a crystalline ground statd®ms Without long-range order has been done by Alcaraz
discussed by Einarssat al. etal. (Ref. 24 and references thergiffhey have made a

Before concluding, a few remarks are in order. In ourgeneral classification of these spin systems from symmetry
analysis, the higher-order ternV 0)* plays an important considerations. These kinds of modelsespecially their
role. Amit et al’® have already wondered about the role of strange symmetjycould be useful in the description of cer-
such “dangerous irrelevant operatorésee also Ref. 21In  tain aspects of disordered phaan statistical systems. The
our study, we have shown that its importance relies esserink between such classical models and spin-liquid phases is
tially in the nonperturbative sector. In the usual perturbatiomot clear and will be the subject of future work.
scheme, power counting arguments eliminate these kinds of
operators because they are irrelevant in the infrared limit.
Nevertheless, the spin-liquid phase is characterized by a ACKNOWLEDGMENTS
strong-coupling regime where renormalization-group tech-
niques fail. So, the usual arguments used to eliminate such | would particularly like to thank B. Delamotte and B.
operators cannot be applied here. Near the critical line, th®ougot for useful suggestions and stimulating discussions. |
semiclassical vacuum becomes disordered and dominated laso acknowledge D. Mouhanna and J. Richert for their com-
short-range order operatothigher gradient ongsIn that ments about the manuscript.
case, it is not so surprising that such an operator can play a
role. For more justifications, we refer the reader to Ref. 17
where this question is largely addressed. APPENDIX

In our analysis, the operatorV@)* has emerged be-

2a

cause we have decompos&dx)=S.e?™ If we con- . In this appendix, we give the main steps of the computa-
POS&) =So tion of the integral(4.4). We place one vortex charge at the

sid%r amlolitude_ quctuatiQns, namely if we Writs(x) centerO(0,0) and the other i(p,0). In the polar coordi-
=[Sp+AS'(x)]e'" and integrate out the fluctuations of pate, the integral Eq. (4.4) reads

the order parametefin a potential we would generate a
series of operators Iikea(téaVS)” as described in Ref. 22.

We hope that these higher corrections do not change quali- pta?
tatively the physics presented in this section. Moreover, we |:f rdrd0r4[r2+ 2-5 2
: : - p°—2rpcog )]
will always find a range of parameters where the scenario we
have described should apply. (r2+ p2)sgr(r2—p?)
= | 2mdr—; 3 3 (A1)
V. CONCLUSION r*(r—p)°(r+p)

In this paper, we have studied the 2D classical and quan-
tum J;—J,—J3, XY model on a square lattice. We have The integration of this rational function overgives



In(r/a)
4—pz—+

1

+
2r2

In(|r+p|/a)

pz

In(|r —pl/a)

Py

| =27ma?

7 1
 8p(r+p) 8(r+p)?
B 7 B 1

8p(r—p) 8(r—p)?

+ oo

(A2)

)sgr{rz—pz)
0
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The contribution ar =0 andr=p must be taken with our
lattice regularization. We finally obtain

4In(r/a) «

2
ma 2 vl
p

2 (A3)

p

with «=2In2+5/32. Notice that with this method, we re-
cover the known result ofdx(V 6,)?>=4wIn(pla) (whereé,
represents a pair of vortices separated by a distahce
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