
PHYSICAL REVIEW B 1 NOVEMBER 1997-IVOLUME 56, NUMBER 17
Spin-liquid phases in two-dimensional frustratedXY models
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In this paper we consider theJ1-J2-J3 classical and quantum two-dimensionalXY model. Spin-wave cal-
culations show that a spin-liquid phase still exists in the quantum case as for Heisenberg models. We formulate
a semiclassical approach of these models based on spin-wave action and use a variational method to study the
role played by vortices. Liquid and crystal phases of vortex could emerge in this description. These phases
seem to be directly correlated with the spin-liquid phase and to its crystalline interpretation.
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I. INTRODUCTION

Low-dimensional magnetic systems have been ex
sively studied these last years since they are known to
hibit nontrivial quantum behaviors. This comes in particu
from the fact that classical Heisenberg two-dimensional~2D!
antiferromagnets can order only at zero temperature so
quantum fluctuations cannota priori be neglected. In fact, i
is now well known that in antiferromagnets, the quantu
fluctuations can (S,Scritical) or cannot (S.Scritical) induce a
transition atT50 from a Néel ordered ground state to
quantum disordered one, characterized by short-range or1

The enhancement of quantum fluctuations has naturally b
looked for in frustrated spin systems. The combination
frustration and quantum fluctuations can possibly lead t
spin-liquid state~for a review about spin-liquid states, see f
example, Ref. 2!. For the 2D Heisenberg model with neare
neighbor~NN! and next-nearest-neighbors~NNN! antiferro-
magnetic~AF! interactions, Chandra and Douc¸ot have shown
by spin-wave calculations that it can be disordered atT50.3

This has been confirmed by exact diagonalizations on fi
lattices,4,2 by series expansions,5 and by a renormalization
group analysis of the associated nonlinears models.6–8 The
latter study has shown that the couplings of the models fl
under renormalization-group transformations towards
strong-coupling regime when this liquid phase
approached.8 Einarsson and Johannesson6 have shown that
precisely close to this liquid state, there is a proliferation
tological excitations in the path-integral representation of
frustrated Heisenberg model.9 They have suggested from
these instanton considerations possible realizations of
disordered liquid phase in analogy with works of Sachd
et al.10

In this article, we want to emphasize that there exist
system where it is likely that this relationship between top
logical excitations and this liquid state is much more dire
namely the quantum frustrated 2DXY model. We have in-
deed shown in a preceding paper that a 2D classicalXY
model with NN and NNN interactions has a point in th
(J2 /J1 ,T) plane, whereTKT50.11 This result can be ex
tended by adding a next-next-nearest-neighbor~NNNN! in-
teraction with a whole line of Kosterlitz-Thouless transitio
at T50, in the parameter space (J2 /J1 ,J3 /J1). This line is
560163-1829/97/56~17!/10975~7!/$10.00
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precisely that around which, quantically, a spin-liquid pha
is found. We hypothesize in this article, that while quantu
fluctuations can surely not bea priori neglected in this case
they are, together with vortices, responsible for a spin-liq
state in this frustratedXY model.

The paper is organized as follows: In Sec. II, we consi
the classicalXY model with competing interactions. Th
classical phase diagram atT50 is recalled. It contains no
spin-liquid phase. Then, we pay special attention to the r
played by vortices and show that there is a critical line wh
vortices are allowed atT50. This proves the need to incor
porate quantum fluctuations. Indeed, in Sec. III, we sh
that linear quantum spin-wave computations predict a sp
liquid phase~around this critical line! in the quantum frus-
trated XY model contrary to the classical model. Then,
Sec. IV, we formulate a general Ginzburg-Landau-Wils
~GLW! semiclassical action from the quantum spin-wave
tion in order to discuss the nature of this liquid phase. Wh
approaching this phase, the spin stiffness,k(S) gets very
small and we area priori forced to take into account th
effects of all quartic terms. We pay particular attention to t
nonperturbative sector of this action. We find a phase wh
pairs of vortices can be confined at a short finite lattice d
tance. The phase described here is some kind of liquid
vortex. This liquid state is favored when spin waves beco
softer@whenk(S)→0# i.e., when the usual spin-liquid phas
is predicted. Finally, Sec. V contains a summary of the
sults and some concluding remarks.

II. CLASSICAL FRUSTRATED XY MODELS

The purpose of this section is to study the role played
vortices in classical frustratedXY models, especially in the
weakly frustrated phase. Let us first consider the 2D class
J12J2, XY model

H52J1(
^ i , j &

cos~u i2u j !1J2 (
^^k,l &&

cos~uk2u l !, ~2.1!

with J1 ,J2.0 andu i the angles associated with the classic
O(2) spinSW i . ^ & is for nearest neighbors~NN! and ^^ && for
next-nearest neighbors~NNN!. Two ground states are pos
sible in the model. WhenuJ1u.2J2 the ground state is fer
10 975 © 1997 The American Physical Society
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10 976 56P. SIMON
romagnetic, whereas, whenuJ1u,2J2, the ground state con
sists of two independent diagonal sublattices w
antiferromagnetic order.14

From a spin-wave approximation, an effective action c
be derived in the ferromagnetic phase as

A15
1

2TE d2x$~J122J2!~¹u!21J2~¹x¹yu!2%.

~2.2!

The classical vacuum is the standard ferromagnetic one,
therefore the term (¹x¹yu)2 is irrelevant according to stan
dard perturbative arguments. In this case, the system ca
well approximated by anXY model with an effective NN
coupling constantJ122J2, so that the action associated wi
a neutral pair of vortices is

S054p~J122J2!lnS r

aD , ~2.3!

with r the distance separating the two vortices. Therefo
there is a Kosterlitz-Thouless transition at the tempera
TKT5p/2(J122J2). This result can be proved more rigo
ously by a Coulomb gas treatment of the original Ham
tonian ~2.1!.11 It has to be noticed that the pairs of vortic
play the role of the instantons in the nonlinears model.12

WhenJ152J2 ,TKT50, a result which indicates that vorte
solutions are allowed in the classical vacuum atT50. This
suggests that the model can have a nontrivial beha
around this point when quantum fluctuations are conside
WhenJ1,2J2, the behavior is drastically different; the a
tion ~2.2! is somewhat meaningless in this ‘‘antiferroma
netic’’ phase and a new effective theory must be found11

Nevertheless, if we suppose that the notion of a pair of v
tices still makes sense in this case, the action associated
this pair becomes negative so that it becomes energetic
favorable to fill the vacuum with pairs of vortices. Indeed,
has to be noticed that the antiferromagnetic ground state

fined above~for J1, 1
2 J2) can be interpreted as a lattice

vortex antivortex~for more details, see Ref. 11!. To summa-
rize, we have seen that the action associated with a pa
vortices indicates the changes in the classical vacuum
especially that its value equals zero at the Lifshitz point.

This analysis can be extended when a new coupling c
stantJ3.0, corresponding to a~NNNN! AF interaction, is
added to the action~2.1!. WhenJ122J224J3.0, the clas-
sical vacuum is a standard ferromagnetic one. Let us c
sider the isotropic case (J252J3) for convenience, the phys
ics along the whole lineJ122J224J350 being the same.8

The associated action, again using a spin-wave approx
tion, can be written as

A25E d2x
1

2T
$A~¹u!21B~¹2u!2%, ~2.4!

where A5(J128J3),B5J3. In the nonisotropic case, th
extra term (J222J3)(¹x¹yu)2 has to be added to the actio
~2.4! and does not change qualitatively the results. T
saddle-point equation is

ADu2BD2u50, ~2.5!
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with D5¹2 the Laplacian. The neutral pair of vortices is
solution of Eq. ~2.5! and its associated action read
S054p(J128J3)ln(r/a). There is no dependence inB, so
this result indicates that we are in a situation similar to
previous model. Since S050 at the critical line
J122J224J350, vortex excitations are present atT50
along the whole line suggesting that the quantum fluctuati
have to be included. Moreover, along this line, quadra
terms vanish. The propagator is then governed by qua
terms and so is of short-range order favoring a disorde
state atT50. When J122J224J3,0, one has to know
which wave vector minimizes the spin-wave action~2.4! in
order to obtain the whole phase diagram. By this method,
obtain the same phase diagram at the classical level as
Heisenberg spins~see Ref. 15!. This has been reported fo
completeness in Fig. 1. At lowJ3 andJ2.J1/2, we recover
the phase with independent AF order on each sublat
~noted AF2) as in theJ12J2 model. The critical line sepa
rates the ferromagnetic phase from two helical incommen
rate phases with respective wave vectors (p,6Q1),
(6Q1 ,p) ~phaseC1) and (6Q2 ,6Q2) ~phaseC2), where
Q1, Q2 are defined by cos(Q1)5(2J22J1)/4J3 and
cos(Q2)52J1 /(2J214J3) ~see Fig. 1!.

We have seen that vortex excitations are allowed on
classical critical lineJ122J224J350. Nevertheless, no liq-
uid phase has been found around it. Consequently, frus
tion is not sufficient at the classical level to induce a sp
liquid state and quantum fluctuations must be included.

III. LINEAR SPIN-WAVE THEORY IN QUANTUM
FRUSTRATED XY MODELS

We consider now the quantum version of these mod
We present in this section spin-wave results that are w
known for the Heisenberg model3,15 but not, to my knowl-
edge, forXY spins. The Hamiltonian can be written as

H5(
i , j

Ji j ~Si
xSj

x1Si
ySj

y!, ~3.1!

FIG. 1. The classical phase diagram for theJ12J22J3 XY
model on a square lattice. F corresponds to a ferromagnetic gro
state, AF2 to two decoupled sublattices with independent AF ord
andC1 ,C2 two incommensurate chiral phases.
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56 10 977SPIN-LIQUID PHASES IN TWO-DIMENSIONAL . . .
whereJi j 5J1 for a NN interaction,Ji j 5J2 for a NNN in-
teraction, andJi j 5J3 for a NNNN interaction. The zero
point fluctuations around different ordered states can
computed in the largeS limit by different methods: a stan
dard one with Holstein-Primakov bosons~see, for example
Ref. 15!, and a second one with ‘‘a semipolar’’ represen
tion of spin operators introduced by Villain.16 Both give the
same results though the latter seems more appropriate foXY
models. Let us first consider theJ12J2, XY model ~with
J1,0, J2.0).

When J1. 1
2 J2 the ground state is ferromagnetic. Th

magnetization̂ Sz& reads

^Sz&5S1
1

2
2

1

8p2E d2k

3
22hk2a2~22hk8!

$@22hk2a2~22hk8!#22~hk2a2hk8!2%1/2
.

~3.2!

We have defineda25J2 /J1 ,hk5 1
2 @cos(kx)1cos(ky)#, and

hk85cos(kx)cos(ky). The integral overk runs over the first
Brillouin zone@2p,p#2 of the two-dimensional lattice. We
see that the mean-field value ofSz is decreased by including
the first corrections in 1/S.

WhenJ1, 1
2 J2 a collinear ground state is selected by sp

waves.14 The same kind of calculation can be generaliz
paying attention to the anisotropy, and leads to

^Sz&5S1
1

2
2

1

8p2E d2k

3
u22cos~kx!cos~ky!2l2@cos~kx!2cos~ky!#u

2$12cos~kx!cos~ky!2l2@cos~kx!2cos~ky!#%1/2
,

~3.3!

wherel25uJ1u/2J2.
In Fig. 2, we represent spin-wave corrections as a fu

FIG. 2. First quantum corrections to the lattice magnetization
the J12J2 XY model. TheO(1/S) spin-wave theory predicts a
intermediary region where the ground state is nonmagnetic and
can be a spin-liquid phase.
e

-

,

-

tion of J2. We can draw conclusions analogous to tho
found in the study of Heisenberg spins,3,15 namely linear
spin-wave theory, which predicts at anyS a finite region
around the Lifshitz point where the ground state is dis
dered~see Fig. 2!. This seems to indicate the presence o
spin-liquid state.

Furthermore, the quantum fluctuations diverge wh
a25J2 /uJ1u→1/2 as

^Sz&;S1
1

2
2g ln2~122a2!, a2,

1

2
~3.4!

^Sz&;S1
1

2
2g8~2a221!21/2, a2.

1

2
,

whereg andg8 are two unimportant real numbers.
We find asymptotic behaviors similar to Heisenberg spi

This is not in fact so surprising since the Lifshitz point is t
same. The validity of this first-order approximation com
pared to other methods like Schwinger bosons mean-fi
theory has been discussed in Ref. 8. Second-order spin-w
calculations go along the same line and confirm the fi
order calculations~it also leads to a renormalization of th
spin stiffness!. Moreover, some exact diagonalizations on
nite lattices agree qualitatively with the existence of a sp
liquid state around the Lifshitz point.4,2

A similar analysis can be performed for theJ12J22J3,
XY model. We are interested in the region around the c
sical critical lineJ122J224J350 which separates the fer
romagnetic phase from two helical phases as we have se
Sec. II. The Villain method can be easily generalized
chiral phases.16 The pitch wave vectorQW 0,cl is defined by
]QJQ0 ,cl50 with JQ being the Fourier transform associate

with Ji j . The spin-wave frequency and the staggered m
netization are in this case

vk52AJ~Q0!@J~Q0!2J~Q01k!1J~Q02k!/2#,
~3.5!

^Sz&5S1
1

2
2

1

8p2E d2k

3
u2J~Q0!1J~Q01k!1J~Q02k!/4u

AJ~Q0!@J~Q0!2J~Q01k!1J~Q02k!/2#
.

~3.6!

Along the critical line kcl5J122J224J3, the staggered
magnetization has the same kind of divergences as in
J12J2 model. For example, we evaluate at the pointJ250
the leading divergence

^Sz&;S1
1

2
2a ln~J124J3!. ~3.7!

This behavior is similar for the whole critical line~apart
from the Lifshitz point!. We notice that we recover directl
spin-wave calculations in the ferromagnetic phase by tak
Q050. It supports the fact that we can go continuously fro
the ferromagnetic phase to the chiral phases as is alread
case classically. These states have the same symmetries
trary to the case of the ferromagnetic and collinear pha
separated by a Lifshitz point, and thus both states can
described by Eqs.~3.5!, ~3.6!. Since results forXY and

n
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10 978 56P. SIMON
Heisenberg spins are very similar at this order, it is reas
able to think that higher-order corrections will have simi
effects like a renormalization of the spin stiffnesskR(S). It
can be used to define the quantum critical line askR(S)50.8

Therefore, to summarize this section, we have shown
spin waves predict the presence of a spin-liquid phase aro
kR(S)50 generated by the combination of quantum fluctu
tions and frustration.

IV. A SEMICLASSICAL TREATMENT OF QUANTUM
FRUSTRATED XY MODELS

In this section, we want to find an effective action able
describe the quantum behavior of the 2D,J12J22J3, XY
model especially near the critical line. The most rigoro
way to find an effective action for spin models is to deco
pose the pure spin Hamiltonian on a basis of coherent sta
which enables a path-integral description of a single spin9,6

Another possibility is to formulate directly the most gene
effective action from the spin-wave action and symme
considerations. The latter strategy has been already use
Ferrer to study the scaling properties of the 2DJ12J22J3
quantum Heisenberg model.8 We follow a similar strategy.

In our case, we have seen from the spin-wave anal
that quartic terms coming from NNN and NNNN intera
tions have to be included near the critical line since quadr
terms vanish on this line. Therefore, the spin waves hav
propagator of the following form:PSW

215akW21bkW4 ~in the
isotropic case!. Following Amit et al.,13 we wonder what
physical systems could be described by a theory having
anomalous propagatork21k4 and how it could be relevan
for the understanding of the quantum phase diagram of
2D J12J22J3 XY model. Therefore, we are interested
the sequel in the most general Landau-Ginzburg-Wilson
tion for anXY spin SW , with such an anomalous propagato

A5E d2x@Au¹SW u21Bu¹2SW u21B8u¹SW u41V~SW !#, ~4.1!

where V(SW )5r 0uSW u21luSW u4. This effective action has a
purely classical origin. Indeed,A5(J122J224J3), B5J3,
andB850 correspond to the classical spin-wave action~2.4!.
We will now make an apparently ‘‘crude’’ approximation
namely we suppose that the quantum action has a form s
lar to Eq.~4.1! except an extra dimension and a renormali
tion of coupling constants, such that the values given ab
for A,B,B8 are no longer valid. Therefore, the quantu
model takesa priori different values in the space of couplin
constants.

Nevertheless, we have an important constraint from sp
wave calculations: the quantum critical line is always ch
acterized byA;k r(S)→0. Under the above hypothesis, th
implies that the main differences between the classical
quantum situations rely on the behavior of higher derivat
terms. It has to be noticed that similar effective actions h
been derived in Refs. 7 and 8 for frustrated Heisenberg m
els. We do not claim that this simple effective action co
tains all the physics associated with the spin-liquid phase
nevertheless, we will see that it can be useful to underst
the role played by instantonic sector when the critical l
corresponding toA;k(S)→0 is approached.
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We suppose the spinS to be large and analyze phas
fluctuations as it is common forXY spins. Therefore, we
write S(r )5S0eiu(r ) whereS0 is spatially uniform and de-
pends on the parameters of the model~see spin-wave calcu
lations!. In fact, it just corresponds to the large-S version of
the Villain semipolar representation.16 Fluctuations around
S0 will be discussed later in the article. In this case, t
action ~4.1! reads

A5E d2x@AS0
2~¹u!21BS0

2a2~¹2u!21CS0
2a2~¹u!4#,

~4.2!

with C5B1B8S0
2. The lattice spacinga is introduced in

order to have dimensionless coupling constants. The po
tial part has been omitted because the main effects we
study involve the derivative part. Normally, the operat
u]mSW ]nSW u2 should have been included in the original acti
~4.1! but, since it gives a similar contribution asu¹SW u4, it has
also been omitted. To study this action, it seems useles
use perturbative arguments, because, first the critical
@A;k(S)→0# is characterized by a strong-couplin
regime,8 and second the higher operators are irrelevant
cording to the usual perturbation scheme. Because of
nonlinear term (¹u)4, it is difficult to find the saddle points
analytically. Nevertheless, in Sec. II, we have noticed t
the action associated with a vortex-antivortex pair, charac
ized by the relative distancer, indicates the changes of th
ground state when approaching the critical line~moreover, it
is a genuine solution whenC50). Therefore, we use a varia
tional approach based on a wave function of pairs of vorti
defined by

u05arctan
y2y1

x2x1
2arctan

y2y2

x2x2
, ~4.3!

with rW15(x1 ,y1),rW25(x2 ,y2) the position of both vortices
(r25urW12rW2u2). Introducing u0 in Eq. ~4.2!, we have to
compute

I 5E E dr~¹u0!45E E d2rW
r4a2

urW2rW1u4urW2rW2u4
. ~4.4!

Of course, we must regularize the integrals. The lattice c
stanta is the most natural regulator in our case. The com
tation is made in the Appendix. We obtain the followin
action for the pair of vortices:

AV~r!54pS0
2H AlnS r

aD1CF4lnS r

aDa2

r22a2

a2

r2G J , ~4.5!

with a2.0 a real number. WhenA.0 andC.0, this action
is minimum forr5a ~our cutoff!. Namely, we have a stan
dard attractive increasing potential and charges tend to f
dipoles and so do not contribute. The classical situation c
responds toA5kclas.0C5J3.0, hence in the weakly frus
trated region, the vortices do not contribute except on
classical critical line. The above conclusions are not alte
in the anisotropic case. Nevertheless, whenC/A,C0 /A,0,
the situation becomes totally different. We can see in Fig
that the potential has now a nontrivial minimumr0. This
corresponds to a liquid phase of vortices. Moreover, wh
C/A,C1 /A,C0 /A the action associated with the pair o
vortices can be negative, meaning that it becomes ener
cally favorable to fill the semiclassical vacuum with pairs
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vortices separated by a sizer0 of order 2a ~see Fig. 3!. This
result does not hardly depend on the ratioC/A. It corre-
sponds to a crystalline phase of vortices. Note that the p
sible role of some higher-order derivative terms in the n
perturbative sector has been already studied in lattice ga
theories in Ref. 17 where some rather similar conclusi
have been drawn. Before commenting on these results, le
first perform one-loop calculations, in order to see the c
tributions of such vortex effects to the path integral.

In this perspective, we use the semiclassical approxi
tion and expand the fieldu aroundu0 asu5u01h and keep
terms at most quadratic inh in the action~4.1!. The partition
function reads

Z5E Dhexp„2S0~r!…expS 2E dx@A~¹h!2

1B~¹2h!212C~¹h!2~¹u0!2# D . ~4.6!

The action in terms ofh after integration by parts reads

A~h!5Ahhh2Bhh2h12Ch@~¹u0!2h2~]m]nu0!2#h.

(4.7)

After the Gaussian integration, it remains to compute
determinant associated with the differential operator

O5Ah2Bh212Ch~¹u0!222C~]m]nu0!2. ~4.8!

Of course, it seems impossible to obtain the spectr
associated with this operator. Nevertheless, we can use
fact that (]m]nu0)2 and (¹u0)2 are ultralocal functions of
rW (r0;a) whose asymptotic behaviors are, respectively,
1/r 6 and 1/r 4. Therefore, one can approximate the fluctuat
determinant by det@Ah2Bh2#, which just corresponds to
the determinant associated with quantum spin waves. To
more explicit, we write

det@O#5det@P#det@12P21
„22C~]m]nu0!2

…#, ~4.9!

with P5Ah2Bh212Ch(¹u0)2. The second determinan
can be treated perturbatively. Indeed, asymptotically

P21
„22C~]m]nu0!2~rW !…;E d2rW1

lnurW2rW1u

r 1
6

,

and so does not contribute. Similar work can be perform
onP using the ultralocality of (¹u0)2 justifying the approxi-
mation.~The treatment ofP is equivalent to solving a Schro¨-
dinger equation in a regularized attractive potential in 1/r 4.
There will be just a few bound states plus the continu
spectrum similar to the caseC50.18! In the partition func-
tion, we now have to integrate overr, r playing now the role
of the collective coordinate.19 The only scale and translation
ally invariant measure isd2rdrr23.20 In that case, the par
tition function reads

Z5VE
0

1`dr

r3 e2S0~r!@detO~r!#21/2, ~4.10!

where a is the lattice cutoff. An interesting quantity ofte
used is the ratio of the partition function in the unit and ze
winding number. In fact, this ratio measures the weight
s-
-
ge
s
us
-

a-

e

m
he

n

be

d

o
f

singular solutions in the path-integral compared to s
waves. It will be clearly dominated by the tree sector, in
far as det@O(r)#;det@Ah2Bh#.

The last integral defined in Eq.~4.10! is carried out in the
saddle-point approximation aroundr5r0. It yields

Z5Ve2S0~r0!E
0

1`dr

r2

3e22pS0
2g~A,C,r0!~1/r221/r0

2
!2

@detO~r0!#21/2, ~4.11!

whereg(A,C,r0) is a positive function defined by the se
ond derivative of the vortex action atr5r0. By performing
the Gaussian integration overr, the result is

Z5lVe2S0~r0!@detO~r0!2pS0
2g~A,C,r0!#21/2, ~4.12!

wherel is an unimportant numerical constant. This expre
sion goes one step further than the vortex action~4.5!. We
find a competition between the exponential tree-level fac
and the fluctuation determinant representing quantum s
wave effects that are long-range ordered.

We are now obliged to wonder whether and when t
variational approach makes sense. It is clear that in
weakly frustrated phase, far from the quantum critical lin
spin waves dominate the path integral. In this region,
studies based on quantum spin-wave calculations, omit
instanton configurations, have proved to capture the esse
of the infrared behavior.3,6,8 Nevertheless, when we are clos
to the quantum critical line, whenA gets very small com-
pared toB or C, spin waves become softer and weaker a
short-range interactions~the quartic terms! are enhanced
compared to spin waves. In that case, our variational met
based on topological defects can be applied. Moreover, a
was already mentioned, the approach of the quantum crit
line is characterized by a strong-coupling regime where
pological excitations proliferate.6

Let us now summarize and comment on the results
tained so far. We have found that when spin waves fall do
close to the quantum critical line, there is a range of para
eters in the action~4.2! where pairs of vortices can prolifer

FIG. 3. The action associated with a pair of vortices separa
by a distancer. Three cases have been represented: a positive
tion without any extremum, a positive action with a minimum
r5r0 and a negative action with a similar minimum aroundr52a.
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ate and stabilize in a liquid phase or a crystal phase of v
tices. It has to be noticed that the liquid phase of vortic
corresponds to a small area in the parameter space. W
C/A,C1 /A,0, we found a crystalline phase where pairs
vortices are separated by a distance of order 2a ~indepen-
dently of the ratioC/A). Such a crystalline ground state
represented in Fig. 4. This scenario supposes that in
quantum situation, there is a strong renormalization of
coupling constants able to change the classical beha
This is our main hypothesis. We cannot prove it, but suc
possibility cannot be ruled outa priori. Moreover, the sce-
nario we describe seemsa posterioriconsistent with the pro-
liferation of vortices able to induce a crystalline ground st
discussed by Einarssonet al.

Before concluding, a few remarks are in order. In o
analysis, the higher-order term (¹u)4 plays an important
role. Amit et al.13 have already wondered about the role
such ‘‘dangerous irrelevant operators’’~see also Ref. 21!. In
our study, we have shown that its importance relies ess
tially in the nonperturbative sector. In the usual perturbat
scheme, power counting arguments eliminate these kind
operators because they are irrelevant in the infrared lim
Nevertheless, the spin-liquid phase is characterized b
strong-coupling regime where renormalization-group te
niques fail. So, the usual arguments used to eliminate s
operators cannot be applied here. Near the critical line,
semiclassical vacuum becomes disordered and dominate
short-range order operators~higher gradient ones!. In that
case, it is not so surprising that such an operator can pl
role. For more justifications, we refer the reader to Ref.
where this question is largely addressed.

In our analysis, the operator (¹u)4 has emerged be
cause we have decomposedSW (x)5S0eiu(x). If we con-
sider amplitude fluctuations, namely if we writeSW (x)
5@SW 01DSW 8(x)#eiu(x) and integrate out the fluctuations o
the order parameter~in a potential! we would generate a
series of operators like (]mSW ]nSW )n as described in Ref. 22
We hope that these higher corrections do not change q
tatively the physics presented in this section. Moreover,
will always find a range of parameters where the scenario
have described should apply.

V. CONCLUSION

In this paper, we have studied the 2D classical and qu
tum J12J22J3, XY model on a square lattice. We hav

FIG. 4. A schematic representation of a lattice crystal of vor
separated byr52a.
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shown that there is a classical critical line where vortices
present even atT50. It justifies why quantum fluctuation
have to be included near this critical line. Quantum sp
wave calculations predicts a spin-liquid phase around
critical line. To study the role played by vortices when a
proaching this spin-liquid phase, we have considered a g
eral GLW action deduced from spin-wave calculations. W
have found nonperturbatively a range of parameters whe
crystal phase of vortices can take place around this crit
line. This phase seems to be directly correlated with the s
liquid phase predicted by spin-wave calculations. It is dif
cult to compare this crystalline phase with the possible d
ordered ground states of Heisenberg spins proposed
Sachdevet al.10 except that both descriptions have a sho
range crystalline order. Yet, this study has the advantag
showing qualitatively how a nontrivial liquid phase ca
emerge nonperturbatively in two dimensions atT50. It
should be very interesting to investigate numerically t
model. To test the validity of the scenario described in t
paper, a possibility could be to look at the nature of t
transition between the spin-liquid phase and the ch
phases. It may correspond to a melting of this crystal of
vortex phase as in Ref. 23, induced by chiral spin waves
that case, the transition could be of the KT type.

Finally, this analysis suggests that we may build class
spin models that can also be described by an effective ac
similar to Eq.~4.1!. Such spin models would include mult
body interactions. A general study of 3D classical spin s
tems without long-range order has been done by Alca
et al. ~Ref. 24 and references therein!. They have made a
general classification of these spin systems from symm
considerations. These kinds of models~especially their
strange symmetry! could be useful in the description of ce
tain aspects of disordered phases24 in statistical systems. The
link between such classical models and spin-liquid phase
not clear and will be the subject of future work.

ACKNOWLEDGMENTS

I would particularly like to thank B. Delamotte and B
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APPENDIX

In this appendix, we give the main steps of the compu
tion of the integral~4.4!. We place one vortex charge at th
centerO(0,0) and the other inA(r,0). In the polar coordi-
nate, the integralI Eq. ~4.4! reads

I 5E rdrdu
r4a2

r 4@r 21r222rrcos~u!#2

5E 2pdr
~r 21r2!sgn~r 22r2!

r 3~r 2r!3~r 1r!3
. ~A1!

The integration of this rational function overr gives

x
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I 52pa2F S 24
ln~r /a!

r2 1
1

2r 212
ln~ ur 1ru/a!

r2

2
7

8r~r 1r!
2

1

8~r 1r!212
ln~ ur 2ru/a!

r2

2
7

8r~r 2r!
2

1

8~r 2r!2D sgn~r 22r2!G
0

1`

. ~A2!
The contribution atr 50 and r 5r must be taken with our
lattice regularization. We finally obtain

I 54pa2F4ln~r /a!

r2 2
a

r2G ~A3!

with a52ln215/32. Notice that with this method, we re
cover the known result of*dx(¹u0)254p ln(r/a) ~whereu0
represents a pair of vortices separated by a distancer).
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