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Stress sum rules for the flat surface of stabilized jellium
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The surface virial theorem and a sum rule for the planar surface of simple metals modeled by a semi-infinite
stabilized jellium are derived and tested numerically. They follow from the surface stress theorem and relate
surface energy components to the number of electrons spilled out into the wvacuum region.
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I. INTRODUCTION _
E[nyn+]:Ejell[nvn+]+(8M+WR)J drn . (r)

The jellium model describes well basic properties of the
inhomogeneous electron gas near the surfacembonded +<5v>wsf d*rOy(r)[n(r)—n.(nl, @
(simple) metals'?> However, ordinary jellium is stable only

for the electron density corresponding roughly to SOdi“mwhere®V(r) is a step function equal to 1 inside the back-

which is a consequence of the complete neglect of the eﬁecﬁ’round region) and 0 outsideE, is the standard jellium

of crystallinity. To remedy this drawback of jellium, Perdew, energy with the Kkinetic, ele]ctrostatic, and exchange-

Tran, and Smithhave proposed a structureless pseudopoteroyrelation energy contributions. The last two terms in Eq.
tial model that retains the simplicity of jellium and stabilizes (1) originate from the corrections that are needed to trans-
it for any (e.g., experimentally givervalence electron den- form ordinary jellium into stabilized jellium as a more real-
sity (compare also Ref.)4The model calledstabilized jel-  stic model of a real metdl(i) the average Madelung energy

lium takes into account the discrete lattice effects in an av-sM(n_) of point ions embedded in a uniform negative back-

eraged way and equilibrates the forces at the jellium surface, . . o
The calculated surface characteristic quantifmsaface en- ground, (ii) the Ashcroft pseudopotential contributiovy,

K functi how bett ¢ with th . averaged over the Wigner-Seitz cell, afid) a “difference
ergy, work function s ow better agreement with the experi- potential” being the average over the Wigner-Seitz sphere of
mental data than for ordinary jelliuff. Another static quan-

the differencedv (r) between the pseudopotential of the ions

tity, surface stress, was calculated in Ref. 7. By modifyingang the electrostatic potential of the uniform positive back-
the electronic density profile the stabilization has an imporyround.

tant effect on the response properties of simple metal sur- Making use of the metal bulk stability condition,

faces(cf. Ref. 8. {6v)ws and consequently the prefactors of the two integrals

The wide applicability of the stabilized jellium explains in Eq. (1), can be expresséas the structureless averages
current interest in exact relations or sum rules, which allows

one to control the accuracy of the motleind are useful —

. . —de(n)
checks of the self-consistency of calculations of the elec- (80 ws= — N——, )
tronic properties. For ordinary jellium there exist several
exact relations!®~Y4involving bulk and surface quantities. In
Ref. 14 a theorem has been derived that relates mutuall\y(,heres(n_) is the total energy per particle of the uniform
different contributions to the surface energy of jellium. In electron gas. Note th&bv )\ys vanishes for the Wigner-Seitz
this paper we present the derivation and the results for nudensity parameter,=4.2, when ordinary jellium is stable.
merical checks of the stabilized-jellium counterpart of this Now, consider a flat surface of semi-infinite metal repre-
sum rule as well as of the related surface virial theorem. sented by uniform positive background of density

n =3/4«77r§ occupying the half-space<0. The ground-state

electron density(z) is constructed from the solution of the
Il. HALF-SPACE STABILIZED JELLIUM Kohn-Sham equations with the effective potential

In the stabilized jellium model, the total energy of a sys- Ver(2) = (2) + vy 2) + (80w (— 2), (3)
tem of N electrons as a functional of the electron density

n(r) and the positive background density(r)zn—(i)v(r) is  where the electrostatic potentiaz), experienced by elec-
given by trons, is obtained from the Poisson equation
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2 Ill. SURFACE STRESS AND VIRIAL THEOREMS
#(2)= —47TJ’_ dz'(z=z")[n(z')-n.(z)] (4

The Nielsen-Martin stress theoréhproves to be a dyadi-
cally generalized virial theorem. It has been derived from the
many-body Schidinger equation as well as within the one-
particle Kohn-Sham descriptidfi.Later, it was generalized
beyond LDA (Refs. 17 and 1Band in Ref. 14 it has been
) applied to semi-infinite jellium.

(Hartree atomic units are used tnrﬁ?oughbl]the effective Proceeding similarly as ‘F‘ the derivatior) of the surface
stress theorem for ordinary jelliufi,we obtain the follow-

one-particle potential for the Kohn-Sham equation di]‘fersin for stabilized iellium:
from the one for ordinary jellium by the third term on the g for stabilized Jetlium.
right-hand side of Eq(3), producing a discontinuity in the

and the exchange-correlation potentigl n(z)] is evaluated
in the local density approximatiofi.DA):

d(neye
vx(2) = (d(:l )

effective potential that stabilizes the jelliuin. | —d_de
The surface energy of stabilized jellium can be decom- nd_n__l 0=~ 0pst Oes Oxct nﬁna v,

posed into kinetic, electrostatic, exchange-correlation and
structureless pseudopotential energy terms, which follow
from Eq. (1) [note that the second term in Eq) is purely a

(11)

bulk term and does not contribute to surface engrgy _d _d_de
N—=0=40p—20,— 0o Oyt | N=n—] v, (12

O=0gF Oest Oyt Ops (6) dn dn dn

with where
- _ ! f NPT f " d

Os= Ops Uv_ﬁ 0 Mk Z . zn(z) de _ de
—gxc=f dz n2—= —(—z)nz—ﬁ} (13

X[ver(2) ~ver( —)], (7) an | dn

where 7, is the phase shift. It describes the asymptotic be-

havior of the wave function for— —c (deep in the bulk

The phase shifts obey the Sugiyama-Langreth neutrality sur the exchange-correlation component of the surface Stress
rulel? In the above expression, following the notation of and

Ref. 14, the kinetic surface energy is decomposed into the

band-structure and potential surface energies, respectively.

The other terms appearing in E@) are given by standard

expressions:? v= J'O dzn(z) (14)
1 ©
UeSZEJ_MdZ[H(Z)—ﬂ+(2)]¢(2), (8 gives the number of electroriper unit areaspilled out into

the vacuum region. Note that the stress arises generally from
" the change of the total enerdy, when scaling the back-
ch=f dznz){e I N(z)]—e,d nl}, (90  ground densityn via n(d/dn). BecauseE contains the ad-
o ditional (stabilization term n(de/dn)N,, (the last term in
0 Eq. (1), where Ny,e=—fd3r®(r)[n(r)—n.(r)] is the
gps=<5v>wsj dZn(z)—n.(2)]. (10) number of electrons outside the regidhoccupied by the
— meta) in the stress expression the additional term,
[n(d/dn)n(de/dn)]N,,. describes the stabilization. The
The jellium termsos, 0es, ando,. are influenced by stabi- left-hand sides of Eqg11) and(12) are the negative of the
lization only indirectly through a different density profile, components of the surface stress parallel and perpendicular
while o, and o, depend directly on it. to the surface, respectively.

TABLE I. The numerical values for different surface energy and surface stress compdineets/
cn?) of the virial theoren(15) for a flat surface of stabilized jellium. The last column displays the sum of the
terms appearing on the right-hand side of Ek). Ihs and rhs denote left- and right-hand side.

rs lhs 20 Tes —30xc 3n(d/dn)n(de/dn)v 3 (rhy)
2 —266 — 8362 718 2564 4813 267
3 267 —1182 129 633 686 266
4 164 —270 41 233 159 163
5 94 -76 18 105 46 94
6 57 22 9 55 15 57
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TABLE Il. The same as in Table | for the sum rul&6).

Is 4ops Ty 30es Txc n_(de/dn_)v 3 (rhy

2 14376 7775 2154 2775 1672 14376
3 2436 1200 387 695 153 2435
4 696 309 123 258 6 696

5 264 104 54 118 —-11 265

6 120 41 27 62 —-11 119

The sum of twice of Eq(11) and of(12) gives the surface with £(z)=d¢(z)/dz being the electric field. Note that the

virial theorem left-hand side of Eq(19) appears on the right-hand side of
Eqg. (12). While in Eg. (19—apart from n—only surface
( _d ) _d_ds properties appear, in the surface stress theddgn (12), in
3N——2|0=205% 0es 30y + 3| N—=n—] v, the surface virial theorerfl5), in the new sum rulé¢16), and

dn dn dn in the Monnier-Perdew theoreii18) surface properties are

(19 related to the bulk property(n_). For ordinary jellium Eg.

(18) is to be replaced by the TheophildBudd-Vannimenus
while the difference of Eqg11) and(12) eliminates thexc  theoremt’ which does not contain the tem{0); this term is
component of thesurface stress and so yields the new suna result of the stabilizatiof?>

rule holding for stabilized jellium
IV. NUMERICAL VERIFICATION

—de The validity of the surface virial theorem and the sum rule
40ps= 0, +30est Oyt nd——V- (16)  (16) has been tested numerically for thgvalues covering
n the whole range of metallic densities. The Kohn-Sham equa-
tions have been solved self-consistently with the effective
Equation(16) relates the components of the surface energyotential including the stabilizing term n[de(n)/dn] on
and unlike Eq.(15) it does not involveg,.. Note that these the metal side. The calculated surface energy components of
equations differ from the corresponding surface virialstabilized jellium (kinetic, electrostatic, and exchange-
theoremt?~141%and sum rul¥ for ordinary jellium by the correlation terms plus the structureless pseudopotential con-
appearance of the lagstabilization term? Similar to the tribution) are given in Tables | and Il. The exchange and
case of ordinary jelliuff the existence of the additional sum correlation energy was evaluated using the parametrized val-

rule (16) is because the jellium, in distinction to a crystal, hasues of Ceperley-Alder for the correlation enefgy.
— . The comparison of the numerical values of the first col-
only one geometry parameter, vim, or rg. Scaling the

back d ch llel and dicular to th ‘ umn of Table I, giving the numbers for the left-hand side of
ackground charge paraflel and perpendicular to the SuracI?q. (15 with the sum of the other columns representing
thus results in the same kind of change, and instead of rel

i for two diff t st i ts two dif “omponents of the right-hand side, shows excellent fulfill-
1ons for two difrerent Stress components, one gets tWo ity oqt of the surface virial theorem. The same is observed for

ferent equations for the same quantity/d n. the sum rule(16), whose components are given in Table II.

et e 1B ases i e whol ange of et densiese
deviations are less than 1%.

Summarizing, in this paper we have derived the surface
virial theorem(15) and the new sum rulél 6) for the surface
energy of stabilized jellium. They follow from the surface
stress theorem and, compared to the similar theorems for
ordinary jellium, each of them contains an extra term propor-
tional to the number of electrons spilled out into the vacuum
which is an explicit functional of the density and does notregion, which results from the stabilization procedure. The
involve the phase shiftsp,. Other (Hellmann-Feynman numerical tests show that the surface virial theorem and the
force) sum rules holding for the flat surface of stabilized new sum rulg(16) are very well satisfied. Hence, these sum
jellium aré rules, similar to the Vannimenus-Budd sum fdler the sur-

face virial theorent?!* for ordinary jellium, can be applied
[together with other sum rule§]18) and (19), for stabilized
0 jellium®] for checking the consistency of numerical calcula-
dz&(z), (18 tions for the flat surface of stabilized jellium.

1
o= —

4

_de
_30'v+5 ch+nd—_v +70¢s!, (17)
n

— de
[n —n(o)]d—n—— J
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