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Stress sum rules for the flat surface of stabilized jellium
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The surface virial theorem and a sum rule for the planar surface of simple metals modeled by a semi-infinite
stabilized jellium are derived and tested numerically. They follow from the surface stress theorem and relate
surface energy components to the number of electrons spilled out into the vacuum region.
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I. INTRODUCTION

The jellium model describes well basic properties of t
inhomogeneous electron gas near the surface ofs-p-bonded
~simple! metals.1,2 However, ordinary jellium is stable only
for the electron density corresponding roughly to sodiu
which is a consequence of the complete neglect of the eff
of crystallinity. To remedy this drawback of jellium, Perdew
Tran, and Smith3 have proposed a structureless pseudopo
tial model that retains the simplicity of jellium and stabiliz
it for any ~e.g., experimentally given! valence electron den
sity ~compare also Ref. 4!. The model calledstabilized jel-
lium takes into account the discrete lattice effects in an
eraged way and equilibrates the forces at the jellium surfa
The calculated surface characteristic quantities~surface en-
ergy, work function! show better agreement with the expe
mental data than for ordinary jellium.5,6 Another static quan-
tity, surface stress, was calculated in Ref. 7. By modify
the electronic density profile the stabilization has an imp
tant effect on the response properties of simple metal
faces~cf. Ref. 8!.

The wide applicability of the stabilized jellium explain
current interest in exact relations or sum rules, which allo
one to control the accuracy of the model9 and are useful
checks of the self-consistency of calculations of the el
tronic properties.1 For ordinary jellium there exist severa
exact relations2,10–14involving bulk and surface quantities. I
Ref. 14 a theorem has been derived that relates mutu
different contributions to the surface energy of jellium.
this paper we present the derivation and the results for
merical checks of the stabilized-jellium counterpart of th
sum rule as well as of the related surface virial theorem.

II. HALF-SPACE STABILIZED JELLIUM

In the stabilized jellium model, the total energy of a sy
tem of N electrons as a functional of the electron dens

n(r ) and the positive background densityn1(r )5 n̄QV(r ) is
given by
560163-1829/97/56~3!/1095~4!/$10.00
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E@n,n1#5Ejell@n,n1#1~«M1w̄R!E d3rn1~r !

1^dv&WSE d3rQV~r !@n~r !2n1~r !#, ~1!

whereQV(r ) is a step function equal to 1 inside the bac
ground regionV and 0 outside.Ejell is the standard jellium
energy with the kinetic, electrostatic, and exchang
correlation energy contributions. The last two terms in E
~1! originate from the corrections that are needed to tra
form ordinary jellium into stabilized jellium as a more rea
istic model of a real metal:3 ~i! the average Madelung energ
«M( n̄ ) of point ions embedded in a uniform negative bac
ground, ~ii ! the Ashcroft pseudopotential contributionw̄R ,
averaged over the Wigner-Seitz cell, and~iii ! a ‘‘difference
potential’’ being the average over the Wigner-Seitz sphere
the differencedv(r ) between the pseudopotential of the io
and the electrostatic potential of the uniform positive ba
ground.

Making use of the metal bulk stability condition
^dv&WS and consequently the prefactors of the two integr
in Eq. ~1!, can be expressed3 as the structureless averages

^dv&WS52 n̄
d«~ n̄ !

d n̄
, ~2!

where«( n̄ ) is the total energy per particle of the uniform
electron gas. Note that^dv&WS vanishes for the Wigner-Seit
density parameterr s54.2, when ordinary jellium is stable.

Now, consider a flat surface of semi-infinite metal rep
sented by uniform positive background of dens
n̄53/4pr s

3 occupying the half-spacez<0. The ground-state
electron densityn(z) is constructed from the solution of th
Kohn-Sham equations with the effective potential

veff~z!5f~z!1vxc~z!1^dv&WSQ~2z!, ~3!

where the electrostatic potentialf(z), experienced by elec
trons, is obtained from the Poisson equation
1095 © 1997 The American Physical Society
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f~z!524pE
2`

z

dz8~z2z8!@n~z8!2n1~z8!# ~4!

and the exchange-correlation potentialvxc@n(z)# is evaluated
in the local density approximation~LDA !:

vxc~z!5
d~n«xc!

dn U
n~z!

. ~5!

~Hartree atomic units are used throughout.! The effective
one-particle potential for the Kohn-Sham equation diffe
from the one for ordinary jellium by the third term on th
right-hand side of Eq.~3!, producing a discontinuity in the
effective potential that stabilizes the jellium.3

The surface energy of stabilized jellium can be deco
posed into kinetic, electrostatic, exchange-correlation
structureless pseudopotential energy terms, which fol
from Eq.~1! @note that the second term in Eq.~1! is purely a
bulk term and does not contribute to surface energy#:

s5ss1ses1sxc1sps ~6!

with

ss5sbs2sv5
1

2p2E
0

kF
dkk3S hk2

p

4 D2E
2`

`

dzn~z!

3@veff~z!2veff~2`!#, ~7!
wherehk is the phase shift. It describes the asymptotic
havior of the wave function forz→2` ~deep in the bulk!.
The phase shifts obey the Sugiyama-Langreth neutrality
rule.1,2 In the above expression, following the notation
Ref. 14, the kinetic surface energyss is decomposed into the
band-structure and potential surface energies, respecti
The other terms appearing in Eq.~6! are given by standard
expressions:1,2

ses5
1

2E2`

`

dz@n~z!2n1~z!#f~z!, ~8!

sxc5E
2`

`

dzn~z!$«xc@n~z!#2«xc@ n̄ #%, ~9!

sps5^dv&WSE
2`

0

dz@n~z!2n1~z!#. ~10!

The jellium termssbs, ses, andsxc are influenced by stabi
lization only indirectly through a different density profile
while sv andsps depend directly on it.
s

-
d
w

-

m
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III. SURFACE STRESS AND VIRIAL THEOREMS

The Nielsen-Martin stress theorem15 proves to be a dyadi-
cally generalized virial theorem. It has been derived from
many-body Schro¨dinger equation as well as within the on
particle Kohn-Sham description.16 Later, it was generalized
beyond LDA ~Refs. 17 and 18! and in Ref. 14 it has been
applied to semi-infinite jellium.

Proceeding similarly as in the derivation of the surfa
stress theorem for ordinary jellium,14 we obtain the follow-
ing for stabilized jellium:

S n̄ d

d n̄
21D s52sbs1ses2gxc1S n̄ d

d n̄
n̄
d«

d n̄
D n,

~11!

n̄
d

d n̄
s54sbs22sv2ses2gxc1S n̄ d

d n̄
n̄
d«

d n̄
D n, ~12!

where

2gxc5E dzFn2d«xc
dn U

n~z!

2Q~2z! n̄2
d«xc

d n̄
G ~13!

is the exchange-correlation component of the surface stre19

and

n5E
0

`

dzn~z! ~14!

gives the number of electrons~per unit area! spilled out into
the vacuum region. Note that the stress arises generally f
the change of the total energyE, when scaling the back
ground densityn̄ via n̄ (d/d n̄!. BecauseE contains the ad-
ditional ~stabilization! term n̄ (d«/d n̄)Nvac „the last term in
Eq. ~1!, where Nvac52*d3rQV(r )@n(r )2n1(r )# is the
number of electrons outside the regionV occupied by the
metal… in the stress expression the additional ter

@ n̄ (d/d n̄) n̄ (d«/d n̄)#Nvac, describes the stabilization. Th
left-hand sides of Eqs.~11! and ~12! are the negative of the
components of the surface stress parallel and perpendic
to the surface, respectively.
the

TABLE I. The numerical values for different surface energy and surface stress components~in erg/

cm2) of the virial theorem~15! for a flat surface of stabilized jellium. The last column displays the sum of
terms appearing on the right-hand side of Eq.~15!. lhs and rhs denote left- and right-hand side.

r s lhs 2ss ses 23gxc 3 n̄ (d/d n̄) n̄ (d«/d n̄)n S ~rhs!

2 2266 28362 718 2564 4813 2267
3 267 21182 129 633 686 266
4 164 2270 41 233 159 163
5 94 276 18 105 46 94
6 57 222 9 55 15 57
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TABLE II. The same as in Table I for the sum rule~16!.

r s 4sbs sv 3ses sxc n̄ (d«/d n̄)n S ~rhs!

2 14376 7775 2154 2775 1672 14376
3 2436 1200 387 695 153 2435
4 696 309 123 258 6 696
5 264 104 54 118 211 265
6 120 41 27 62 211 119
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The sum of twice of Eq.~11! and of~12! gives the surface
virial theorem

S 3 n̄ d

d n̄
22D s52ss1ses23gxc13S n̄ d

d n̄
n̄
d«

d n̄
D n,

~15!

while the difference of Eqs.~11! and~12! eliminates the~xc
component of the! surface stress and so yields the new s
rule holding for stabilized jellium

4sbs5sv13ses1sxc1 n̄
d«

d n̄
n. ~16!

Equation~16! relates the components of the surface ene
and unlike Eq.~15! it does not involvegxc . Note that these
equations differ from the corresponding surface vir
theorem12–14,19 and sum rule14 for ordinary jellium by the
appearance of the last~stabilization! term.20 Similar to the
case of ordinary jellium14 the existence of the additional su
rule ~16! is because the jellium, in distinction to a crystal, h
only one geometry parameter, viz.,n̄ or r s . Scaling the
background charge parallel and perpendicular to the sur
thus results in the same kind of change, and instead of r
tions for two different stress components, one gets two
ferent equations for the same quantityds/d n̄.

Combining Eq.~16! with Eqs. ~6! and ~7!, the total sur-
face energy of stabilized jellium can be written in the for

s5
1

4F23sv15S sxc1 n̄
d«

d n̄
n D 17sesG , ~17!

which is an explicit functional of the density and does n
involve the phase shiftshk . Other ~Hellmann-Feynman
force! sum rules holding for the flat surface of stabilize
jellium are9

@ n̄2n~0!#
d«

d n̄
5E

2`

0

dzE~z!, ~18!

4sbs22sv2ses2gxc5 n̄E
2`

0

dzzE~z!, ~19!
y

l

ce
la-
f-

t

with E(z)5df(z)/dz being the electric field. Note that th
left-hand side of Eq.~19! appears on the right-hand side
Eq. ~12!. While in Eq. ~19!—apart from n̄—only surface
properties appear, in the surface stress theorem~11!, ~12!, in
the surface virial theorem~15!, in the new sum rule~16!, and
in the Monnier-Perdew theorem~18! surface properties are
related to the bulk property«( n̄ ). For ordinary jellium Eq.
~18! is to be replaced by the Theophilou~Budd-Vannimenus!
theorem,10 which does not contain the termn~0!; this term is
a result of the stabilization.9,22

IV. NUMERICAL VERIFICATION

The validity of the surface virial theorem and the sum ru
~16! has been tested numerically for ther s values covering
the whole range of metallic densities. The Kohn-Sham eq
tions have been solved self-consistently with the effect
potential including the stabilizing term2 n̄ @d«( n̄ )/d n̄# on
the metal side. The calculated surface energy componen
stabilized jellium ~kinetic, electrostatic, and exchang
correlation terms plus the structureless pseudopotential
tribution! are given in Tables I and II. The exchange a
correlation energy was evaluated using the parametrized
ues of Ceperley-Alder for the correlation energy.21

The comparison of the numerical values of the first c
umn of Table I, giving the numbers for the left-hand side
Eq. ~15! with the sum of the other columns representi
components of the right-hand side, shows excellent fulfi
ment of the surface virial theorem. The same is observed
the sum rule~16!, whose components are given in Table
In both cases, in the whole range of electron densitiesn̄ , the
deviations are less than 1%.

Summarizing, in this paper we have derived the surfa
virial theorem~15! and the new sum rule~16! for the surface
energy of stabilized jellium. They follow from the surfac
stress theorem and, compared to the similar theorems
ordinary jellium, each of them contains an extra term prop
tional to the number of electrons spilled out into the vacu
region, which results from the stabilization procedure. T
numerical tests show that the surface virial theorem and
new sum rule~16! are very well satisfied. Hence, these su
rules, similar to the Vannimenus-Budd sum rule11 or the sur-
face virial theorem12,13 for ordinary jellium, can be applied
@together with other sum rules,~18! and ~19!, for stabilized
jellium9# for checking the consistency of numerical calcu
tions for the flat surface of stabilized jellium.
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