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The energetics of various low-energy intrinsic, extrinsic, and twinlike stacking fault configurations in
hexagonal-close-packed magnesium are determined from first-principles calculations. To zeroth-order, the
ordering of the energies can be understood in terms of the number of fcc-like planes in the sequence of
close-packed planes. However, such a simple model fails to quantitatively reproduce the calculated energies of
the faults. We propose a model based on a local bond orientation scheme which reproduces the calculated
results and is able to accurately predict the energies of arbitrary stacking sequences. This model has only two
independent parameters, the energy of the intrinsitacking fault and the energy difference between hcp and
fcc Mg. Both energy and entropy considerations suggest that isdlatstcking faults should predominate.
[S0163-18297)04241-G

I. INTRODUCTION ---ABCABCGC - - for fcc. In different stacking sequences,
some planes may have a local fcc-like environment, i.e.,
Stacking faults are common two-dimensional defects thahBC stacking, where fcc-like planes are marked with a dot.
occur when there is an error in the normal sequence of stackn this notation, the intrinsic fault;, or growth fault, in the
ing of atomic layers. These faults may be formed during thencp structure can be formed by removing Arplane above
growth process or created during a deformation processhe B plane, and then shearing the remaining planes above
Stacking faults are usually coupled to the existence of dislothe B plane by the displacement 1@100]:
cations in the material. The mobility of the dislocations is
governed in part by the energy of the stacking fault that is Il---ABABA'ECBCBCB .
created in the wake of the motion, such as might be the case,

in the repulsion of two partial dislocations, or the shrinkage>Milarly, the intrinsic fault , or deformation fault, can be

of a dislocation loop. formed by_directly shearing the hcp lattice by the displace-
In close-packed metals, such as hcp Mg or fcc Al, it isment 1/31100:

well known that planar defects are formed with relative ease, o

contributing to the ductile and malleable nature of these ma- l2---ABABABCACACA - - .

terials. The energies of these defects are usually small and e extrinsic stackin : : .
; . g faulE is generated by inserting an

accurate measurement of these structures is often eIusw((é:-).(traC lane into the hep stackin

For example, the only known measurenfesftthe | ; intrin- P P 9

sic stackln_g fault of Mg quotes a result of 60—150 erg dm E...ABABABCABABAB - - |

However, it has been shown recently that theoretical model-

ing of close-packed metals based on local density theoryhe (111) planes are the most frequently observed glide

gives reliable estimates of these energies, and in many implanes in hcp crystals, but they do not correspond to a twin.

stances the calculated energies might be considered moTe T, fault is a competing low energy defect structure and

accurate than the exisiting experimental numbers. Theoretis twinlike since it has mirror symmetry about the faulted

cal studies of stacking faults are attractive owing to the ideaplane:

nature of the defect systems: atomic and volume relaxations

are often negligible since in most instances the atoms in the T, - .ABABABCBABAB. - - .
faulted region maintain the close-packed coordinatidfl.
The simple(111) stacking faults of both hcp and fcc met-  In this paper, we present results for these various stacking

als can be described by a sequence of planes labeladBy defects in hcp Mg calculated using a plane wave pseudopo-
and C in the usual notation corresponding to the three postential techniquedescribed in Sec. )l The stacking fault
sible atomic positions in @111) plane. For the ideal hcp supercells used and the convergence tests with respect to
structure, this sequence is---ABABAB.- and system size, sampling of the Brillouin zone, and atomic and
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volume relaxations of the unit cell are discussed in Sec. lll. TABLE I. The calculated in-plane lattice constaatand the
Based on these calculated results, we construct a local borid1l) interplanar-spacing for Mg in the hcp and fcc phases.

orientation model in Sec. IV, and then use it to discuss the

concentration of stacking faults in Sec. V. phase a (Bohn) z (units of a)
hcp 5.895 0.812
Il. METHOD
fcc 5.895 \/g:0.816

We use the plane wave pseudopotential method within the
local density approximatiofLDA) to solve the Kohn-Sham
equations>1® A detailed account of the iterative method in Table I. The interlayer separation for hcp M= 3c/a) is
used was given previously.A crucial aspect of the algo- slightly smaller than the ideal value and is in reasonable
rithm as applied to metals is a subspace diagonalizatioagreement with experime?ﬁ.
which serves to orthogonalize the states, as well as to give e find the hcp phase to be lower in energy by 15 meV,
the best eStimate Of the eigenstates Of the Hamiltonian dur|n@h|ch Compares favorab|y W|th previous Ca'cu'atiaﬁs_
the iteration to self-consistency. The states are occupied Ugsince fcc Mg occurs at a larger volume and at a higher
ing a Fermi distribution function with a thermal broadening energy, a nonphysical negative pressure would be required to

of 0.001 Hartredapproximately room temperatyrefhe ad-  yanstorm hep Mg into fcc at zero temperatirince the
ditional degree of freedom that arises in the determination O}mp structure is lower in energy compared to fcc, to zeroth

the occupation numbers results in an entropylike contributio rder, the ordering of the energies of the various stacking
to the energy that must be included to maintain the oVer‘r’“ri)aults,may be understood in terms of the number of fcc-like
variational nature of the total energy functionl. ¢ i th 11 ol But il .

We use a separable pseudopotefitifir Mg and a plane atoms n the sequence (LD planes. But, as we will see n
wave cutoff of 12 Ry for the expansion of the wave func- the next section, a simple one-parameter model that assigns
tions. Starting with unit vectors with additional random com- an on—sne_ energy to each_ fcc-like atom in the sequence _does
ponents as the initial guess to the wave functions, we attaift describe the energetics of these systems quantitatively,
self-consistency to better than 10 Hartrees without the in- and one needs to include local bond orientational effects to
stabilities reported by other iterative methods. We calculatéccount for the results.
the Hellmann-Feynman forc®sand we then use a modified
BFGS methot?! to relax the atomic displacements such
that the forces on the atoms are less thahO ° Hartree/
Bohr. As we shall see in the next section, the atoms maintain \We use periodic supercells in our calculational scheme so
the Close'paCked coordination in the faulted geometries, th%at we necessar”y have a finite number of |ayers in the
the relaxation energies are negligible. stacking sequence. In doing so, we create additional faults in

The stacking fault energies are of the order of 10-40 mMe\he sypercell in some instances. It is imperative that these
and hence sensitive to the details of the Brillouin zone. Hereyqgitional faults be, first, well separated so as to reduce the
Wwe construct systems Of. 12 _and 16 atoms per unit CE_’"’ WHerg yit-fault interactions and, secondly, topologically identical
the finite size of the Brillouin zone must be taken into aC-yy each other in order to be able to extricate the heat of
count. In cases where the defect_ supercell and the t_)u||_< SYormation of the defects from a single total energy calcula-

. . 'fon. with this in mind, we first considered supercells of 12
faults I, and|,, we have useddentical samplings of the atoms per cell for the hcp, fct,, 1, andT, structures; the

zonen order to minimize errors. However, in the case of theE structure necessarily has an odd number of layers, so we
extrinsic faultg, the perturbed system has an extra atom per

cell compared with the bulk, thus requiring highly convergedChoose 13 atoms per cell. In Tablg Il we deS|gr1at¢ the actual

energies in terms of BriIIo{Jin zone integrations before Wesupercells that we have USEd'. NOtI.Ce that thg Intrinsic super-

can accurately extract results. Tkegoints were chosen ac- qells 1 andl, have an extra |den_t|cal fault in the calcula-

cording to the Monkhorst—Pa.ck special points techriue tional supercell. In all cases, we list the energy per fault of
) : each system under consideration.

and the point group symmetry of the lattice was used to

reduce the number of independdnpoints. Even with this

reduction, many specigk points (110-426 are required, TABLE Il. Number of atoms per cell, calculational supercell,

corresponding to 66@ points in the irreducible wedge for humber of faults per cell, and stacking fault enerdiesative to

hcp Mg for the smallesk point sampling used. On the Intel hcp for Mg. Locally fcc-like planes are denoted with a dot.

Paragon parallel computer, the calculations associated with

B. Stacking fault supercells

eachk point were distributed to a separate nade to 426 ~ System atoms supercell faults _energyeV)
nodes. hep 12 ABABABABABAB 0
fcc 12 ABCABCABCABC 15
Il RESULTS Iy 12 ABABABCBCBCB 2 11
A. Bulk magnesium Iy 12 ABABABCACACB 2 23
The calculated lattice parameters for hcp and fcc Mg obE 13 ABABAEBCABABAB 1 36
tained using 660 and 770 speclapoints in the irreducible T, 12 ABABABCBABAB 1 27

wedges for the hcp and fcc structures, respectively, are given
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and 5 atomic layers with the hcp region in between. We

777777777777777777777777777777777777777 tested the dependence of the energies of the faults on the unit
—_—— cell size by computing the energy in a 16 atom cell where the

faults are periodically separated by 5 and 7 atomic layers in

....................................... the z direction. For completeness, we also computed the en-
ergy of thel ; intrinsic fault in a 16 atom cell where the faults
hep are equidistant from each other at 8 layers apart. Our results
. show that the 12 atom cell is adequate in describing the
B A B A B C B C B system of faults accurately since the energies agree to better

. than 1 meV with the results of the larger supercell.
FIG. 1. The stacking sequence of planes around one of the two 9 P

I, stacking faults in a 16 atom cell is denoted AyB, C, with the
fault plane marked with a dot. The vertical positions of the heavy E. Brillouin zone convergence
horizontal lines connecting neighboring planes represent the values

of the interlayer separation relative to the separations found in puraependence of the stacking fault energies on the sampling of
fec (z1cd) and hep €nep) stackings;z represents the Vegard's law o gyjjinyin zone. Here we have performed two tests. First
value for the separation between an fcc-like plane and its first théince the extrinsi(; stacking fau necessarily has one éxtra ’
like neighbor. .

! 9 atom per unit cell compared to the bifkwe were com-

pelled to derive highly convergedbsolutetotal energies

: . ith respect to Brillouin zone integrations in tkgdirection.

The calculated in-plane lattice constants for _both hcp an o this effect, we doubled the densitylopoints in the(111)

fcc Mg are thf samey=5.895 Bohr, but the fcc interplanar direction for both the bulk hcp and faultdd structures, re-
distance fr.=0.81@) is larger than the hcp value of g ,1ing in 426 special points for this low symmetry defect
Zhep™ 0'.812" Because the atoms m_the faulted geometrlesSystem. The total energy of the bulk and the faulted system
maintain the close-packed coordination, we expect that therg, 5ineq unchanged to within 2 meV. As a second test, the
will Pnly be interplanar atomic and volume relaxations alongplanar sampling of the Brillouin zone was increased by 50%
the z direction in the defect systems; this assumption is supfor the |, intrinsic stacking fault; the results using this more

ported by the small maximum force on the atoms in the idealjense sampling agreed with the previous results to within 1
I, geometry of only 2.%10 “ Hartree/Bohr. Simple Veg- meV.

ard’s law arguments suggest an overall increase of1h#)
length of the unit cellrelative to hcp when a stacking fault
exists and an expansion of the interplanar separation around
those atoms that are locally fcc-like. The calculations bear Based on the convergence studies, the energies of the
out this expectation: the overall calculated increase in thetacking faults listed in Table 1l appear to be converged to
supercell length agrees to 2% with the simple estimate, the order of 1-2 meV per fault with respect to system size,
which is at the limit of the difference that can be meaning-Brillouin zone integrations, and atomic and volume relax-
fully extracted. The calculated interlayer separations betweeations. The energies of these defects are small in comparison
neighboring planes around the fcc-like atom ihyastacking  with stacking faults in fcc Al, which points to a high prepon-
fault are shown in Fig. 1 for a volume-relax€d6 atom derance for Mg to be faulted. We have not considered the
supercell. If the simple Vegard's law arguments held, theenergy paths or the unstable stacking faults which are the
separation between the fcc-like plane and its first neighbobarriers to the formation of these low-energy defects, but,

would beZ—:%(chc+ Zhep); the actual separation is slightly based on our calculations, we suggest that Mg is likely to

Iarger,z_+ 0.14 (Zicc— Zncp) - This local expansion at the fault form stacking faults with the low energy and |, faults

is then compensated by a decrease in the separation betwe%‘?‘l'gg thr?,; most pr(cj)bab_le defeclts.th tical estimat fth
the next-neighbor hcp-like planes relative to the expected Imon reviewed various €arly theoretical estimates ot the

value of zy, (see Fig. 1 but the separation of hcp-like stacking fault energies for hcp Mg using simple pseudopo-

planes further from the fault show no significant deviationst.em'al. theor_y. Thes_e estimates differ in the ch0|c_e Of. poten-
from z tial, dielectric function, and whether the calculation is per-
hcp+

The energies associated with these relaxations are sma[ rmed in real or reciprocal space. The quoted results fall in

for the I, stacking fault, the total effect is-0.4 meV per e range of 760 erg cnf for the, stacking fault com-

fault. These relatively small relaxation energies do not aﬁecﬁggidvégrgu;o\;aslléﬁ_gg r?s%is(?ura%tcz%r{ thrrfjssea?(raegfugctceatjlctuolar;ave
the energies of the faults in any substantial way within the P

overall accuracy of the numbers, and are consistent with pré—ather large uncertainities. Lo .

vious observations of stacking faults in Al There_ are also large gncertalnt|e§ In the. experlment_al de-
termination of thd ; stacking fault. Using a kinetic modeling

of the annealing of dislocation loops, Hales, Smallman, and

Dobsorf?® report energies of 60—150 erg crh for the |,

The 1, intrinsic stacking fault is most sensitive to the fault at 175 °C. A reanalysiéof the same data and using the
finite size of the unit cell since there are 4 fcc-like atoms persame model—but without neglecting one term—reduced
cell, more than in any of the other defect unit cells considthese values between 40% for the smaller values and 5% for
ered. The faults in the 12 atom supercell are separated by tBe larger values of the stacking fault energies. These results,

N

Finally in our convergence tests, we have investigated the

C. Atomic and volume relaxations

F. Discussion

D. Finite size effects
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however, are still larger than our calculated value by almost
a factor of 2.(For comparison, our calculated energies at
zero temperature for thie, E, andT, faults, in the units of
erg cm 2, are 44, 68, and 51, respectively.

Based on the previous successes of local density theory il
predicting stacking fault energies, and given the convergenct
tests that we have performed, we believe that further experi
mental studies are needed. It has been argued that a dire
measurement of the size of the dislocation loop is difficult
for systems with fault energies greater than about 20 er¢
cm™ 2 since the fault widths are approximately inversely pro-
portional to the stacking fault enerdy.For systems with |
larger energies, one is compelled to assume a physice}
model—in this case, a model describing the dislocation loop!
shrinkage due to the surface which acts as a vacanc!
sink—to extract energies from direct experimental measure: |
ments. The difficulties with this procedure are compounded;
for Mg because the thin oxide layer at the surface acts in-
stead as a source of vacancies. Analyzing the growth kinetic:
of double faulted loops, as was done in the measurement ¢
Mg, introduces more uncertainties in the results.

|
IV. MODEL OF THE STACKING FAULT ENERGETICS
The system of faulted11l) planes in hcp Mg is a near |
ideal system. Since there are no substantial atomic and voli
ume relaxations, the three-dimensional crystal may be mod !
eled in terms of a one-dimensional sequence of planes la
beledA, B, or C where no two subsequent atoms can be the g e
same, thus neglecting the high-energy unstable stacking
faults. Naively, such a simple system might be describable in ) o
terms of a model where the energetics of the system is due FIG. 2. Energy parameters associated Wl_th different local stack-
solely to the local environment, either hcp- or fcc-like. ing sequences dL11) planes. For nearest-neighbors only, there are
The two possible local environments are shown in the togWC interaction energies, for the locally hcp-like and:; for the
row of Fig. 2. An atom in the hcp-like environment will have _ocally TCC'“ke' The six dlstlnct_geometnes for se_cond-nelg_hbor
. . interactions are shown along with the corresponding energies
an energye4 and fcc-like atom will have an energy. The throughe
energy of an arbitrary sequence of atoms stacked iflth® &
direction will have an energy ofet—e1) X N relative to

the hcp structure, whend,. is the number of fcc-like atoms E(l)=2J;,-4J, (=11 meV), @)
in the sequence.

The number of fcc-like atoms ihy, I, E, andT, is 1, 2, E(l2)=4J,-4J, (=23 meV), 4
3, and 2, respectively, while the actual calculated energies of
these faults are in the ratio of 1:2.1:3.3:2.5. While the E(E)=6J,—4J, (=36 meV), ®)
ordering of the energies may be understood in these simple
terms, this one-parameter model will give large quantitative E(T2)=4J;-8J; (=27 meV). (6)
discrepancies in attempting to predict the energetics of thes'g . . .

or convenience, we have included, in brackets, our calcu-

systems.

To improve on this scheme, one could define a secon
nearest-neighbor Ising mod@l that assigns a spin of
oj=+1 to an atomj whose neighbor af+1 is in the se-
quence ofABC, ando;=—1 to an atom whose neighbor at
j+1is in the sequence @BA, wherej labels the atoms in
the sequence. The energy of such a system is then given tE?r

Jated results from section Il that this model must be fitted to.
Equations(2), (4) and (5) are consistent to within 2 meV
with 2J;=15 meV and 4,=4 meV. However, these param-
eters give unacceptably large discrepancies, predicting
E(l;)=8 meV andE(T,)=16 meV.(The energy of thd,

ult in this model is exactly twice that of tHe fault.) Im-

oving this model by going to the third-nearest neighbor is

not physical since we believe that the essential physics of

E=J,> Ujg].+1+‘]22 001 2. (1)  this system must be captured in a model with short-range

j j interactions.

In the units of the coupling constanis andJ,, the energies d ori , del
of the systems that we have considered are A. Bond orientation mode
Going beyond the model in which only the nearest-

E(fcc)=23,—2J, (=15meV), (2) neighbor local environment—either hcp-likel) or fcc-like



10 848 N. CHETTY AND M. WEINERT 56

TABLE IlI. The local bond orientation scheme for atgnwith  in good agreement with the first-principles calculated result
nearest-neighbor atomjst1. H and F are atoms that are locally (using 213 speciak points of 78 meV.
hcp-like or fcc-like, respectively. The parameters to eg have For all the test calculations we have considered, the ener-
been fitted to the results in Table II. gies predicted by the model agreed with the LDA results to
within 2 meV. For example, the predicted energy for a ran-

-1 J 1+l Energy domly chosen structure denoted BBACBACBCBAC, is
H H H £3=0.0 meV E=2¢,+2e5+e5+4e,+3eg=106 meV, while the calcu-
H H F £,=1.0 meV lated self-consistent result is 104 meV. These results demon-
F H E £5=6.6 meV strate that this bond orientation model describes the energet-
H F H £6=9.0 meV ics of arbitrary stacking faults quite well.
H F F £,=9.8 meV The relative values ot;, i=3,...,8 suggest the addi-
= F F £g=14.3 meV tional relationships among the parameters

Eg=Eg €p; (14)
F)—is considered, leads to a model in which the energy of a
® 9y e7=¢g4t 5. (15

site also depends on the local environment of the nearest
neighbors, i.e., the relativédond orientation of neighboring  Furthermore, within this model, any stacking sequence will
planes. The physical basis for this model is that if the neighhave only certain combinations of energy parameters. For
boring plane is hcp{fcc-) like, then there is(not) direct  example, going from an hcp region to a fault region will
bonding with the second-neighbor atoms. The six topologi-always add in contributions of either+eg or £,+¢e7. By

cally distinct geometries that can occur are shown in Fig. Zonsidering all distinct configurations possible, it is easy to
and summarized in Table lll. The energies &4, andes are  show that the only tw@nonzerg independent combinations

" g, derived,” andeg, €7, andeg are “g, derived.” Since  of parameters necessary to describe a given packing se-
fcc is higher in energy compared with hcp, we expect quence are

83<84<85<86<87<88. (7) 88:14.6 meV, (16)

All energies are relative to hcp, so that there are five param- _ _
eters in the model which can be fitted to the calculated en- Ell1]=284+86=11.0 meV, (17
ergies. The model predicts the following expressions for thavhere we have used the calculated values for these energies

systems that we have considered thus far: without further fitting. With these parameters, the originally
calculated stacking fault energies are again reproduced to

E(fcc)=¢g, (8 about 1 meV, while the agreement with the more compli-

cated systems is 1-3 meYThis simplified model predicts

E(l)=2e,+ €6, ©) E[I1,]=2E[l,], although the calculated values differ by

_ about 1 meV. Since energy differences of this order are

E(l2)=2e4+2¢7, (10 Within the overall accuracy limits, this is not a severe limi-

_ tation of the mode). This simplified model suggests that the

E(E)=2e,+2e,+¢g, (12) energetics of the stacking faults in Mg can be understood

E(T,) =264+ e+ 265 (12) almost entirely by the energetics of the hcp-fcc energy dif-

ference and the intrinsit; stacking fault energy.

Fitting to Egs.(7)—(12), we determine the parameters
listed in Table Ill. With this set, the energies listed in Table B. Discussion
Illare reproduced to within 1 me\_(The parameters must be  The stacking fault with the lowest energy is the simple
given to tenths of a meV to avoid roundoff errors for con-fayt, Using the models developed above, we find that iso-
figurations with large numbers of defects which would limit |5teq| , faults will always be favored compared to other con-
the predictive power of the modglThis model is effectively  figyrations having the same number of faulted planes. The
a second-neighbor model, but of a different type than conmoyement of stacking faults in a real material will proceed
sidered earhgr. If seconq neighbors wei cgrrelated, then along, for example, edge dislocations, and will be limited by
e5—2g,=0 since the shift of the second neighbors would beihe diffusion barriers between different stackings. Assuming
independent of each other. From the values of the parametefg have dislocations that can facilitate the shifting of planes,
given in Table Il, it is clear that this relationship does notye can make several observations. If a singleplane is
hold. _ o o _shifted (within an hcp- - -AB- - - region to aC plane, aT,

The real test of this model, though, is its ability to predict gt is formed. Since this fault is significantly higher in en-
the energies of other g:onflgura'glons. As a first test, we CONgrgy than the separateq faults, theT, fault should decay
sidered a hep/fc¢11) interface in a 12 atom cell: into two | ; faults. Conversely, if twd , faults exist, there is

..... a barrier to annihilation associated with tiig fault. Simi-
larly, extrinsickE stacking faults should decay intg@ andl,
Using the model, the predicted energy for this structure is faults.

These energy considerations alone do not determine the
E(interface =2e,+2e,+4eg=77 meV, (13 distribution and concentration of stacking faults. To crudely



56 STACKING FAULTS IN MAGNESIUM 10 849

TABLE IV. The distinct configurations fon<3 fcc-like planes in a crystal section containiNgayers
and M atoms per layer; the number of equivalent configuratibf€); and the energies of the stacking
sequencd(C) in terms of the parameteEs(l,) andeg. The values for general for a pure fcc region and
for separated defects are also given.

n Configuration D(C) E(C)/M
1 . F N E(Il)
2 ... FF-.. N-1 2E(1y)
... EHE- .. N-2 E(l1)+eg
o Eerr Eeeo 3(N-2) (N-3) 2E(14)
3 ... FFF. .. N-2 2E(1,) +eg
... FFHF - - 2(N-3) 2E(I4) teg
<. EHFHE. - - N-4 E(l1) +2e4
FEE--. E... (N=3) (N-24) 3E(14)
.. FHF--. F-.. (N=4) (N-5) 2E(11) +eg
R = - 3(N—=4) (N-5) (N-6) 3E(14)
n ... FF=F-=FF - . N—(n-1) 2E(l1)+(n—2)eg
.F---F---F-.- (N—Z(n—l)) nE(l,)
n

include the temperature dependence, we consider the ther- In Fig. 3, the concentrations of total fcc-like planes, and
modynamics of a one-dimensional model of stacking faultshe concentration of fcc-like planes that are in clusters, are
in which we include the energetics and the configurationashown for two different numbers of atoms per plane
entropy associated with different stackings. The thermody{M =100, 150 as a function of temperature. For the values
namical quantities as a function of temperatuie  of M shown, the contributions to the partition function from
(B=1/kgT) can be determined from the partition function n>3 were found to be small; the results with and without the
n>3 contributions are indistinguishable in the figure. Simi-
7= e BEC) (19) larly, the results for different values dd (1000—10) are
C ' also indistinguishable, suggesting that these results are in-
dicative of the thermodynamical limit. The first observation

whereE(C) is the energy of a given configuratidd. The is that the concentration of fcc-like planes is small at room

probability of a configuration to occur is then simply given
by

10® | = fec-like planes (M=100)
o -~ < fec-like clusters (M=100)

1
— _ @ BE©) | ——- fec-like planes (M=150)
P( C) Z € ' (19) —-— fec-like clusters (M=150)

10
Consider a section of a crystal withlayers andV atoms
per layer, where each plane may be represented by either H
or an F representing its local environment. For the model of 10

-10

the energetics developed above, fcc-like atoms separated by g S
two or more hcp-like atoms are effectively independent. 107"

Making use of these assumptions, all allowed configurations ‘qc‘)

and their energies can be calculated; the energies and number & Ooco°
of equivalent configurations fon=3 fcc-like planes are 8 10 $
given in Table 1V. The effect of more defects per configura- F
tion could be included by extending the results to highar o

a straightforward mannefThe general case results for sepa-
rated faults and for a pure fcc region are also given in Table
IV.) Conversely, an estimate of the contribution from all 107
configurations with more defects can be made by noting that

the energy of any configuration with fcc-like sites is

greater tharM X nE(l,) and there are,’}b such states with 10 0 200 466 500 86(’) PP

this energy. This contribution to the partition function for Temperature (K)

n>3 can then be summed analytically and provides an upper

bound to the actual contribution. As long as this estimate is F|G. 3. Concentration of total fcc-like planes and of fec-like
significantly smaller than the contributions to the partition pjanes in stacking fault cluste¢®r 100 and 150 atoms per layers
function fromn=3, the errors made by approximating the a function of temperature. Contributions to the partition function for
energy of these configurations Iye(l,) are neglible. n>3 are included.

—20
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temperature, but depends strongly on the valudMofThis V. CONCLUSIONS
strong variation occurs because the energy of a configuration
E(C) is directly proportional to the number of faulted atoms

g\gtx onn) :Qethc%r?%/rﬁ:tui?c;nwtrgctuelzn tsrrtri‘tigﬁsfﬁgcﬁéﬂoﬁgrtéagif'mation calculations. The convergence tests of finite size ef-
P ) fects, Brillouin zone integrations, and atomic and volume

plicitly, we can obtain an approximate upper bound to therelaxations suggest that the values are converged to within 2
concentrationgc, of fcc-like planes as a function dfl by

) . ) meV. The absolute magnitude of the stacking fault energies
333:::1 ?Soi?n%ptlgaE(C)sM XnE(ly) for all n; the upper are small, on the order dfgT at room temperature. While

these numbers are significantly smaller than those inferred
from experiment, we suggest that the modeling used to de-
c(M)=[efMEID 1], (20) duce the experim.ent.al numbers may need to be reexamined.
The I, and |, intrinsic faults are found to be the most
At room temperature, this equation predicts an upper boundtable and to have a lower energy cost per atom than ideal
to the concentration of fcc-like planes of 10 for M=30  fcc Mg. Based on the first-principles results, we construct a
verus the(unphysical value of 10 *%° for M =500, demon-  |ocal bond orientation model of the stacking fault energetics
strating the rapid change witl. Thus, the expected lateral that can accurately predict the self-consistently calculated
dimensions of the fault regions in a real crystal are ratheenergies. This model, with little loss in accuracy, can be
small. reduced to two independent parameters, namely the energy
Including the configurational entropy associated withof the I, stacking fault and the fcc-hcp energy difference.
atomic disorder in the plane will favor smallét, but then  While this model is useful in discussing the thermal equilib-
the energy costs of the defects will favor larddrvalues.  rium properties of stacking faults, the actual dynamics and
For values ofM much smaller than~100, the energetics concentration of stacking fault motion will require the deter-
may not be well described by the parametrization in terms ofination of far more complicated defect structures, which
E(l;) and eg, nor will the configuration entropy be ad- include dislocations and site disorder in the planes.
equately described by the simple one-dimensional approach.
As already expected from energy considerations alone,
there is no significant tendency for the fcc-like planes to
cluster; the concentration of fcc-like atoms in stacking fault We are grateful to G. Castilla and P. Thomas for discus-
complexes is several orders of magnitude less than in sepaions. The work at Brookhaven was supported by the Divi-
rated faults(see Fig. 3 This behavior can be understood sion of Materials Sciences, U.S. Department of Energy, un-
from the results in Table IV: the number of configurationsder Contract No. DE-AC02-76CHO00016, by a grant of
for separated fcc planes is of the ordeMbfimes larger than computer time at the National Energy Scientific Computing
any of the clusters. Thus, entropy considerations will favorCenter, and the support of the Department of Energy High

We have studied the low-energy planar stacking fault de-
fects in hcp Mg using first-principles local density approxi-

ACKNOWLEDGMENTS

separated; faults. Performance Computing and Communications Program.

*Permanent address. 115, schweizer, C. Elsser, K. Hummler, and M. Fale, Phys.

13. P. Hirth and J. LotheTheory of DislocationgWiley, New Rev. B 46, 14 270(1992; S. Schweizer, C. Elsaer, and M.
York, 1982. Fahnle, ibid. 48, 14 706(1993.

’R. E. Smallman and P. S. Dobson, Metall. Trahs2383(1970.  12H. Teichler and S. Sanguinetti, Phys. Status SolidL28 361

3J. P. Simon, J. Phys. & 425(1979. (1993; A. Gross and H. Teichler, Philos. Mag. B4, 413

4s. Crampin, K. Hampel, D. D. Vvedensky, and J. M. MacLaren,  (1992).
J. Mater. Res5, 2107 (1990; S. Crampin, D. D. Vvedensky, 1B, Pitveteau, M. C. Desjonques, and D. Spanjaard, J. Phys.

and R. Monnier, Philos. Mag. A67, 1447 (1993; J. M. (France 2, 1677(1992.
MacLaren, A. Gonis, and G. Schadler, Phys. Rev8314392 14K, Stokbro and K. W. Jacobsen, Phys. Rev4B 4916(1993.
(1992. 15p. Hohenberg and W. Kohn, Phys. Ré&\86, B864 (1964; W.
5A. F. Wright, M. S. Daw, and C. Y. Fong, Philos. Mag.68, 387 Kohn and L. J. Shamipid. 140, A1133(1965.
(1992; A. F. Wright and S. R. Atlas, Phys. Rev. 8, 15248 165 H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys8, 1200
(1994. (1980.
®p. J. H. Denteneer and J. M. Soler, J. Phys.: Condens. Matter 17N. Chetty, M. Weinert, T. S. Rahman, and J. W. Davenport, Phys.
8777(199)). Rev. B52, 6313(1995.
7J.-H. Xu, W. Lin, and A. J. Freeman, Phys. Rev.4B, 2018 18\ Weinert and J. W. Davenport, Phys. Rev4g 13 709(1992.
(1991). I9N. Troullier and J. L. Martins, Phys. Rev. £, 1993(1997); L.
8N. M. Rosengaard and H. L. Skriver, Phys. Rev4B 12 865 Kleinman and D. M. Bylander, Phys. Rev. LetB, 1425(1982.
(1993; 50, 4848(1994, and references therein. 20R. P. Feynman, Phys. Re§6, 340(1939; H. Hellmann,Einfu-
9B. Hammer, K. W. Jacobsen, V. Milman, and M. C. Payne, J. hrung in die Quantumchemi®euticke, Leipzig, 193/
Phys.: Condens. Mattek, 10 453(1992. 21D, F. Shano, Math. Op. Re8, 244 (1978.
10Q. Jin, P. Wang, D. Ding, and D. Wang, Phys. Lett124 437  2?H. J. Monkhorst and J. D. Pack, Phys. Rev1® 5188(1976.
(1993. 23p_Villars and L. D. CalvertPearson’s Handbook of Crystallo-

graphic Data for Intermetallic PhaseéAmerican Society for



56 STACKING FAULTS IN MAGNESIUM 10851

Metals, Metals Park, OH, 1985 26R. Hales, R. E. Smallman, and P. S. Dobson, Proc. R. Soc. Lon-
24R. M. Wentzcovitch and M. L. Cohen, Phys. Rev.38, 5571 don, Ser. A307, 71 (1968.
(1988. 2TH. P. Leighly, Philos. Mag22, 209 (1970.

*Alternately, we could have constructed a system cell with an eve®R. E. Beisser, Phys. Rev. & 5432(1973.

number of atoms, but with two extrinsic faults per cell. These25C_Cheng, R. J. Needs, and V. Heine, J. Phy21C1049(1988.
would have been three layers apart in a 12 atom supercell.



