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Stacking faults in magnesium
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The energetics of various low-energy intrinsic, extrinsic, and twinlike stacking fault configurations in
hexagonal-close-packed magnesium are determined from first-principles calculations. To zeroth-order, the
ordering of the energies can be understood in terms of the number of fcc-like planes in the sequence of
close-packed planes. However, such a simple model fails to quantitatively reproduce the calculated energies of
the faults. We propose a model based on a local bond orientation scheme which reproduces the calculated
results and is able to accurately predict the energies of arbitrary stacking sequences. This model has only two
independent parameters, the energy of the intrinsicI 1 stacking fault and the energy difference between hcp and
fcc Mg. Both energy and entropy considerations suggest that isolatedI 1 stacking faults should predominate.
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I. INTRODUCTION

Stacking faults are common two-dimensional defects t
occur when there is an error in the normal sequence of st
ing of atomic layers. These faults may be formed during
growth process or created during a deformation proc
Stacking faults are usually coupled to the existence of di
cations in the material. The mobility of the dislocations
governed in part by the energy of the stacking fault tha
created in the wake of the motion, such as might be the c
in the repulsion of two partial dislocations, or the shrinka
of a dislocation loop.1

In close-packed metals, such as hcp Mg or fcc Al, it
well known that planar defects are formed with relative ea
contributing to the ductile and malleable nature of these m
terials. The energies of these defects are usually small an
accurate measurement of these structures is often elu
For example, the only known measurement2 of the I 1 intrin-
sic stacking fault of Mg quotes a result of 60–150 erg cm22.
However, it has been shown recently that theoretical mo
ing of close-packed metals based on local density the
gives reliable estimates of these energies, and in many
stances the calculated energies might be considered m
accurate than the exisiting experimental numbers. Theo
cal studies of stacking faults are attractive owing to the id
nature of the defect systems: atomic and volume relaxat
are often negligible since in most instances the atoms in
faulted region maintain the close-packed coordination.3–14

The simple~111! stacking faults of both hcp and fcc me
als can be described by a sequence of planes labeled byA, B,
andC in the usual notation corresponding to the three p
sible atomic positions in a~111! plane. For the ideal hcp
structure, this sequence is•••ABABAB••• and
560163-1829/97/56~17!/10844~8!/$10.00
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•••ABCABC••• for fcc. In different stacking sequence
some planes may have a local fcc-like environment, i
AḂC stacking, where fcc-like planes are marked with a d
In this notation, the intrinsic faultI 1, or growth fault, in the
hcp structure can be formed by removing anA plane above
the B plane, and then shearing the remaining planes ab
the B plane by the displacement 1/3@ 1̄100#:

I 1•••ABABAḂCBCBCB••• .

Similarly, the intrinsic faultI 2, or deformation fault, can be
formed by directly shearing the hcp lattice by the displa
ment 1/3@ 1̄100#:

I 2•••ABABAḂĊACACA••• .

The extrinsic stacking faultE is generated by inserting a
extraC plane into the hcp stacking

E•••ABABAḂĊȦBABAB••• .

The ~111! planes are the most frequently observed gl
planes in hcp crystals, but they do not correspond to a tw
The T2 fault is a competing low energy defect structure a
is twinlike since it has mirror symmetry about the faulte
plane:

T2•••ABABAḂCḂABAB••• .

In this paper, we present results for these various stack
defects in hcp Mg calculated using a plane wave pseudo
tential technique~described in Sec. II!. The stacking fault
supercells used and the convergence tests with respe
system size, sampling of the Brillouin zone, and atomic a
10 844 © 1997 The American Physical Society
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56 10 845STACKING FAULTS IN MAGNESIUM
volume relaxations of the unit cell are discussed in Sec.
Based on these calculated results, we construct a local b
orientation model in Sec. IV, and then use it to discuss
concentration of stacking faults in Sec. V.

II. METHOD

We use the plane wave pseudopotential method within
local density approximation~LDA ! to solve the Kohn-Sham
equations.15,16 A detailed account of the iterative metho
used was given previously.17 A crucial aspect of the algo
rithm as applied to metals is a subspace diagonaliza
which serves to orthogonalize the states, as well as to
the best estimate of the eigenstates of the Hamiltonian du
the iteration to self-consistency. The states are occupied
ing a Fermi distribution function with a thermal broadeni
of 0.001 Hartree~approximately room temperature!. The ad-
ditional degree of freedom that arises in the determination
the occupation numbers results in an entropylike contribu
to the energy that must be included to maintain the ove
variational nature of the total energy functional.18

We use a separable pseudopotential19 for Mg and a plane
wave cutoff of 12 Ry for the expansion of the wave fun
tions. Starting with unit vectors with additional random com
ponents as the initial guess to the wave functions, we at
self-consistency to better than 1027 Hartrees without the in-
stabilities reported by other iterative methods. We calcu
the Hellmann-Feynman forces20 and we then use a modifie
BFGS method17,21 to relax the atomic displacements su
that the forces on the atoms are less than;1025 Hartree/
Bohr. As we shall see in the next section, the atoms main
the close-packed coordination in the faulted geometries,
the relaxation energies are negligible.

The stacking fault energies are of the order of 10–40 m
and hence sensitive to the details of the Brillouin zone. He
we construct systems of 12 and 16 atoms per unit cell, wh
the finite size of the Brillouin zone must be taken into a
count. In cases where the defect supercell and the bulk
percell are of the same size, as is the case for the intri
faults I 1 and I 2, we have usedidentical samplings of the
zone in order to minimize errors. However, in the case of
extrinsic faultE, the perturbed system has an extra atom
cell compared with the bulk, thus requiring highly converg
energies in terms of Brillouin zone integrations before
can accurately extract results. Thek points were chosen ac
cording to the Monkhorst-Pack special points techniqu22

and the point group symmetry of the lattice was used
reduce the number of independentk points. Even with this
reduction, many specialk points ~110–426! are required,
corresponding to 660k points in the irreducible wedge fo
hcp Mg for the smallestk point sampling used. On the Inte
Paragon parallel computer, the calculations associated
eachk point were distributed to a separate node~up to 426
nodes!.

III. RESULTS

A. Bulk magnesium

The calculated lattice parameters for hcp and fcc Mg
tained using 660 and 770 specialk points in the irreducible
wedges for the hcp and fcc structures, respectively, are g
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in Table I. The interlayer separation for hcp Mg (z5 1
2c/a) is

slightly smaller than the ideal value and is in reasona
agreement with experiment.23

We find the hcp phase to be lower in energy by 15 me
which compares favorably with previous calculations24

~Since fcc Mg occurs at a larger volume and at a hig
energy, a nonphysical negative pressure would be require
transform hcp Mg into fcc at zero temperature.! Since the
hcp structure is lower in energy compared to fcc, to zer
order, the ordering of the energies of the various stack
faults may be understood in terms of the number of fcc-l
atoms in the sequence of~111! planes. But, as we will see in
the next section, a simple one-parameter model that ass
an on-site energy to each fcc-like atom in the sequence d
not describe the energetics of these systems quantitativ
and one needs to include local bond orientational effects
account for the results.

B. Stacking fault supercells

We use periodic supercells in our calculational scheme
that we necessarily have a finite number of layers in
stacking sequence. In doing so, we create additional fault
the supercell in some instances. It is imperative that th
additional faults be, first, well separated so as to reduce
fault-fault interactions and, secondly, topologically identic
to each other in order to be able to extricate the heat
formation of the defects from a single total energy calcu
tion. With this in mind, we first considered supercells of
atoms per cell for the hcp, fcc,I 1, I 2, andT2 structures; the
E structure necessarily has an odd number of layers, so
choose 13 atoms per cell. In Table II we designate the ac
supercells that we have used. Notice that the intrinsic su
cells I 1 and I 2 have an extra identical fault in the calcula
tional supercell. In all cases, we list the energy per fault
each system under consideration.

TABLE I. The calculated in-plane lattice constanta and the
~111! interplanar-spacingz for Mg in the hcp and fcc phases.

phase a ~Bohr! z ~units of a)

hcp 5.895 0.812
fcc 5.895 A 2

3 50.816

TABLE II. Number of atoms per cell, calculational superce
number of faults per cell, and stacking fault energies~relative to
hcp! for Mg. Locally fcc-like planes are denoted with a dot.

system atoms supercell faults energy~meV!

hcp 12 ABABABABABAB 0
fcc 12 ȦḂĊȦḂĊȦḂĊȦḂĊ 15

I 1 12 ABABAḂCBCBCḂ 2 11

I 2 12 ABABAḂĊACAĊḂ 2 23

E 13 ABABAḂĊȦBABAB 1 36

T2 12 ABABAḂCḂABAB 1 27
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10 846 56N. CHETTY AND M. WEINERT
C. Atomic and volume relaxations

The calculated in-plane lattice constants for both hcp
fcc Mg are the same,a55.895 Bohr, but the fcc interplana
distance (zfcc50.816a) is larger than the hcp value o
zhcp50.812a. Because the atoms in the faulted geometr
maintain the close-packed coordination, we expect that th
will only be interplanar atomic and volume relaxations alo
the ẑ direction in the defect systems; this assumption is s
ported by the small maximum force on the atoms in the id
I 1 geometry of only 2.531024 Hartree/Bohr. Simple Veg-
ard’s law arguments suggest an overall increase of the~111!
length of the unit cell~relative to hcp! when a stacking fault
exists and an expansion of the interplanar separation aro
those atoms that are locally fcc-like. The calculations b
out this expectation: the overall calculated increase in
supercell length agrees to;2% with the simple estimate
which is at the limit of the difference that can be meanin
fully extracted. The calculated interlayer separations betw
neighboring planes around the fcc-like atom in aI 1 stacking
fault are shown in Fig. 1 for a volume-relaxed~16 atom!
supercell. If the simple Vegard’s law arguments held,
separation between the fcc-like plane and its first neigh

would be z̄5 1
2 (zfcc1zhcp); the actual separation is slightl

larger, z̄10.14 (zfcc2zhcp). This local expansion at the fau
is then compensated by a decrease in the separation bet
the next-neighbor hcp-like planes relative to the expec
value of zhcp ~see Fig. 1!, but the separation of hcp-like
planes further from the fault show no significant deviatio
from zhcp.

The energies associated with these relaxations are sm
for the I 1 stacking fault, the total effect is;0.4 meV per
fault. These relatively small relaxation energies do not aff
the energies of the faults in any substantial way within
overall accuracy of the numbers, and are consistent with
vious observations of stacking faults in Al.9

D. Finite size effects

The I 2 intrinsic stacking fault is most sensitive to th
finite size of the unit cell since there are 4 fcc-like atoms
cell, more than in any of the other defect unit cells cons
ered. The faults in the 12 atom supercell are separated

FIG. 1. The stacking sequence of planes around one of the
I 1 stacking faults in a 16 atom cell is denoted byA, B, C, with the
fault plane marked with a dot. The vertical positions of the hea
horizontal lines connecting neighboring planes represent the va
of the interlayer separation relative to the separations found in p

fcc (zfcc) and hcp (zhcp) stackings;z̄ represents the Vegard’s law
value for the separation between an fcc-like plane and its first h
like neighbor.
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and 5 atomic layers with the hcp region in between. W
tested the dependence of the energies of the faults on the
cell size by computing the energy in a 16 atom cell where
faults are periodically separated by 5 and 7 atomic layer
the ẑ direction. For completeness, we also computed the
ergy of theI 1 intrinsic fault in a 16 atom cell where the fault
are equidistant from each other at 8 layers apart. Our res
show that the 12 atom cell is adequate in describing
system of faults accurately since the energies agree to b
than 1 meV with the results of the larger supercell.

E. Brillouin zone convergence

Finally in our convergence tests, we have investigated
dependence of the stacking fault energies on the samplin
the Brillouin zone. Here we have performed two tests. Fi
since the extrinsic stacking faultE necessarily has one extr
atom per unit cell compared to the bulk,25 we were com-
pelled to derive highly convergedabsolute total energies
with respect to Brillouin zone integrations in thek̂z direction.
To this effect, we doubled the density ofk points in the~111!
direction for both the bulk hcp and faultedE structures, re-
sulting in 426 special points for this low symmetry defe
system. The total energy of the bulk and the faulted sys
remained unchanged to within 2 meV. As a second test,
planar sampling of the Brillouin zone was increased by 5
for the I 1 intrinsic stacking fault; the results using this mo
dense sampling agreed with the previous results to withi
meV.

F. Discussion

Based on the convergence studies, the energies of
stacking faults listed in Table II appear to be converged
the order of 1–2 meV per fault with respect to system si
Brillouin zone integrations, and atomic and volume rela
ations. The energies of these defects are small in compar
with stacking faults in fcc Al, which points to a high prepon
derance for Mg to be faulted. We have not considered
energy paths or the unstable stacking faults which are
barriers to the formation of these low-energy defects, b
based on our calculations, we suggest that Mg is likely
form stacking faults with the low energyI 1 and I 2 faults
being the most probable defects.

Simon3 reviewed various early theoretical estimates of t
stacking fault energies for hcp Mg using simple pseudo
tential theory. These estimates differ in the choice of pot
tial, dielectric function, and whether the calculation is pe
formed in real or reciprocal space. The quoted results fal
the range of 7–60 erg cm22 for the I 1 stacking fault com-
pared to our value of 21 erg cm22. These previous calcula
tions were not self-consistent and thus are expected to h
rather large uncertainities.

There are also large uncertainties in the experimental
termination of theI 1 stacking fault. Using a kinetic modeling
of the annealing of dislocation loops, Hales, Smallman, a
Dobson2,26 report energies of 60–150 erg cm22 for the I 1
fault at 175 °C. A reanalysis27 of the same data and using th
same model—but without neglecting one term—reduc
these values between 40% for the smaller values and 5%
the larger values of the stacking fault energies. These res

o

y
es
re

p-



o
a

ry
n
e
ir
ul
e

ro

ic
o
n
r
e
in
ti
t

r
v
o

th
ki
e
d

to
e

s
he
p

iv
e

n
f

t

n

lcu-
to.

-
ting

is
of

nge

st-

ck-
are

or

56 10 847STACKING FAULTS IN MAGNESIUM
however, are still larger than our calculated value by alm
a factor of 2.~For comparison, our calculated energies
zero temperature for theI 2, E, andT2 faults, in the units of
erg cm22, are 44, 68, and 51, respectively.!

Based on the previous successes of local density theo
predicting stacking fault energies, and given the converge
tests that we have performed, we believe that further exp
mental studies are needed. It has been argued that a d
measurement of the size of the dislocation loop is diffic
for systems with fault energies greater than about 20
cm22 since the fault widths are approximately inversely p
portional to the stacking fault energy.28 For systems with
larger energies, one is compelled to assume a phys
model—in this case, a model describing the dislocation lo
shrinkage due to the surface which acts as a vaca
sink—to extract energies from direct experimental measu
ments. The difficulties with this procedure are compound
for Mg because the thin oxide layer at the surface acts
stead as a source of vacancies. Analyzing the growth kine
of double faulted loops, as was done in the measuremen
Mg, introduces more uncertainties in the results.

IV. MODEL OF THE STACKING FAULT ENERGETICS

The system of faulted~111! planes in hcp Mg is a nea
ideal system. Since there are no substantial atomic and
ume relaxations, the three-dimensional crystal may be m
eled in terms of a one-dimensional sequence of planes
beledA, B, or C where no two subsequent atoms can be
same, thus neglecting the high-energy unstable stac
faults. Naively, such a simple system might be describabl
terms of a model where the energetics of the system is
solely to the local environment, either hcp- or fcc-like.

The two possible local environments are shown in the
row of Fig. 2. An atom in the hcp-like environment will hav
an energy«1 and fcc-like atom will have an energy«2. The
energy of an arbitrary sequence of atoms stacked in the~111!
direction will have an energy of («22«1)3Nfcc relative to
the hcp structure, whereNfcc is the number of fcc-like atoms
in the sequence.

The number of fcc-like atoms inI 1, I 2, E, andT2 is 1, 2,
3, and 2, respectively, while the actual calculated energie
these faults are in the ratio of 1 : 2.1 : 3.3 : 2.5. While t
ordering of the energies may be understood in these sim
terms, this one-parameter model will give large quantitat
discrepancies in attempting to predict the energetics of th
systems.

To improve on this scheme, one could define a seco
nearest-neighbor Ising model29 that assigns a spin o
s j511 to an atomj whose neighbor atj 11 is in the se-
quence ofABC, ands j521 to an atom whose neighbor a
j 11 is in the sequence ofCBA, wherej labels the atoms in
the sequence. The energy of such a system is then give

E5J1(
j

s js j 111J2(
j

s js j 12 . ~1!

In the units of the coupling constantsJ1 andJ2, the energies
of the systems that we have considered are

E~ fcc!52J122J2 ~515 meV!, ~2!
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E~ I 1!52J124J2 ~511 meV!, ~3!

E~ I 2!54J124J2 ~523 meV!, ~4!

E~E!56J124J2 ~536 meV!, ~5!

E~T2!54J128J2 ~527 meV!. ~6!

For convenience, we have included, in brackets, our ca
lated results from section II that this model must be fitted
Equations~2!, ~4! and ~5! are consistent to within 2 meV
with 2J1515 meV and 4J254 meV. However, these param
eters give unacceptably large discrepancies, predic
E(I 1)58 meV andE(T2)516 meV.~The energy of theT2
fault in this model is exactly twice that of theI 1 fault.! Im-
proving this model by going to the third-nearest neighbor
not physical since we believe that the essential physics
this system must be captured in a model with short-ra
interactions.

A. Bond orientation model

Going beyond the model in which only the neare
neighbor local environment—either hcp-like~H! or fcc-like

FIG. 2. Energy parameters associated with different local sta
ing sequences of~111! planes. For nearest-neighbors only, there
two interaction energies:«1 for the locally hcp-like and«2 for the
locally fcc-like. The six distinct geometries for second-neighb
interactions are shown along with the corresponding energies«3

through«8.
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10 848 56N. CHETTY AND M. WEINERT
~F!—is considered, leads to a model in which the energy o
site also depends on the local environment of the nea
neighbors, i.e., the relative~bond! orientation of neighboring
planes. The physical basis for this model is that if the nei
boring plane is hcp-~fcc-! like, then there is~not! direct
bonding with the second-neighbor atoms. The six topolo
cally distinct geometries that can occur are shown in Fig
and summarized in Table III. The energies«3, «4, and«5 are
‘‘ «1 derived,’’ and«6, «7, and«8 are ‘‘«2 derived.’’ Since
fcc is higher in energy compared with hcp, we expect

«3,«4,«5,«6,«7,«8 . ~7!

All energies are relative to hcp, so that there are five par
eters in the model which can be fitted to the calculated
ergies. The model predicts the following expressions for
systems that we have considered thus far:

E~ fcc!5«8 , ~8!

E~ I 1!52«41«6 , ~9!

E~ I 2!52«412«7 , ~10!

E~E!52«412«71«8 , ~11!

E~T2!52«41«512«6 . ~12!

Fitting to Eqs. ~7!–~12!, we determine the paramete
listed in Table III. With this set, the energies listed in Tab
II are reproduced to within 1 meV.~The parameters must b
given to tenths of a meV to avoid roundoff errors for co
figurations with large numbers of defects which would lim
the predictive power of the model.! This model is effectively
a second-neighbor model, but of a different type than c
sidered earlier. If second neighbors werenot correlated, then
«522«450 since the shift of the second neighbors would
independent of each other. From the values of the parame
given in Table II, it is clear that this relationship does n
hold.

The real test of this model, though, is its ability to pred
the energies of other configurations. As a first test, we c
sidered a hcp/fcc~111! interface in a 12 atom cell:

interface ȦBABABAḂĊȦḂĊ.

Using the model, the predicted energy for this structure

E~ interface!52«412«714«8577 meV, ~13!

TABLE III. The local bond orientation scheme for atomj with
nearest-neighbor atomsj 61. H and F are atoms that are local
hcp-like or fcc-like, respectively. The parameters«3 to «8 have
been fitted to the results in Table II.

j 21 j j 11 Energy

H H H «350.0 meV
H H F «451.0 meV
F H F «556.6 meV
H F H «659.0 meV
H F F «759.8 meV
F F F «8514.3 meV
a
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in good agreement with the first-principles calculated res
~using 213 specialk points! of 78 meV.

For all the test calculations we have considered, the e
gies predicted by the model agreed with the LDA results
within 2 meV. For example, the predicted energy for a ra
domly chosen structure denoted byȦBȦĊḂȦĊBCḂȦC, is
E52«412«51«614«713«85106 meV, while the calcu-
lated self-consistent result is 104 meV. These results dem
strate that this bond orientation model describes the ener
ics of arbitrary stacking faults quite well.

The relative values of« i , i 53, . . . ,8 suggest the addi-
tional relationships among the parameters

«55«82«6 , ~14!

«75«41«6 . ~15!

Furthermore, within this model, any stacking sequence w
have only certain combinations of energy parameters.
example, going from an hcp region to a fault region w
always add in contributions of either«41«6 or «41«7. By
considering all distinct configurations possible, it is easy
show that the only two~nonzero! independent combination
of parameters necessary to describe a given packing
quence are

«8514.6 meV, ~16!

E@ I 1#52«41«6511.0 meV, ~17!

where we have used the calculated values for these ene
without further fitting. With these parameters, the origina
calculated stacking fault energies are again reproduce
about 1 meV, while the agreement with the more comp
cated systems is 1–3 meV.~This simplified model predicts
E@ I 2#52E@ I 1#, although the calculated values differ b
about 1 meV. Since energy differences of this order
within the overall accuracy limits, this is not a severe lim
tation of the model.! This simplified model suggests that th
energetics of the stacking faults in Mg can be understo
almost entirely by the energetics of the hcp-fcc energy d
ference and the intrinsicI 1 stacking fault energy.

B. Discussion

The stacking fault with the lowest energy is the simpleI 1
fault. Using the models developed above, we find that i
latedI 1 faults will always be favored compared to other co
figurations having the same number of faulted planes. T
movement of stacking faults in a real material will proce
along, for example, edge dislocations, and will be limited
the diffusion barriers between different stackings. Assum
we have dislocations that can facilitate the shifting of plan
we can make several observations. If a singleA plane is
shifted~within an hcp•••AB••• region! to a C plane, aT2
fault is formed. Since this fault is significantly higher in e
ergy than the separatedI 1 faults, theT2 fault should decay
into two I 1 faults. Conversely, if twoI 1 faults exist, there is
a barrier to annihilation associated with theT2 fault. Simi-
larly, extrinsicE stacking faults should decay intoI 1 and I 2
faults.

These energy considerations alone do not determine
distribution and concentration of stacking faults. To crude
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TABLE IV. The distinct configurations forn<3 fcc-like planes in a crystal section containingN layers
and M atoms per layer; the number of equivalent configurationsD(C); and the energies of the stackin
sequenceE(C) in terms of the parametersE(I 1) and«8. The values for generaln for a pure fcc region and
for separated defects are also given.

n Configuration D(C) E(C)/M

0 ••• H••• 1 0
1 ••• F••• N E(I 1)
2 ••• FF••• N–1 2E(I 1)

••• FHF••• N–2 E(I 1)1«8

••• F••• F•••

1
2(N–2! (N–3! 2E(I 1)

3 ••• FFF••• N–2 2E(I 1)1«8

••• FFHF••• 2(N–3! 2E(I 1)1«8

••• FHFHF••• N–4 E(I 1)12«8

••• FF••• F••• (N–3! (N–4! 3E(I 1)
••• FHF••• F••• (N–4! (N–5! 2E(I 1)1«8

••• F••• F••• F•••

1
6(N–4! (N–5! (N–6! 3E(I 1)

n ••• FF–F–FF••• N–(n–1! 2E(I 1)1(n22)«8

••• F••• F••• F••• SN22~n21!
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include the temperature dependence, we consider the
modynamics of a one-dimensional model of stacking fau
in which we include the energetics and the configuratio
entropy associated with different stackings. The thermo
namical quantities as a function of temperatureT
(b51/kBT) can be determined from the partition function

Z5(
C

e2bE~C!, ~18!

whereE(C) is the energy of a given configurationC. The
probability of a configuration to occur is then simply give
by

r~C!5
1

Z
e2bE~C!. ~19!

Consider a section of a crystal withN layers andM atoms
per layer, where each plane may be represented by eith
or an F representing its local environment. For the mode
the energetics developed above, fcc-like atoms separate
two or more hcp-like atoms are effectively independe
Making use of these assumptions, all allowed configurati
and their energies can be calculated; the energies and nu
of equivalent configurations forn<3 fcc-like planes are
given in Table IV. The effect of more defects per configu
tion could be included by extending the results to highern in
a straightforward manner.~The general case results for sep
rated faults and for a pure fcc region are also given in Ta
IV.! Conversely, an estimate of the contribution from
configurations with more defects can be made by noting
the energy of any configuration withn fcc-like sites is
greater thanM3nE(I 1) and there are (n

N) such states with
this energy. This contribution to the partition function f
n.3 can then be summed analytically and provides an up
bound to the actual contribution. As long as this estimate
significantly smaller than the contributions to the partiti
function from n<3, the errors made by approximating th
energy of these configurations bynE(I 1) are neglible.
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In Fig. 3, the concentrations of total fcc-like planes, a
the concentration of fcc-like planes that are in clusters,
shown for two different numbers of atoms per pla
(M5100, 150! as a function of temperature. For the valu
of M shown, the contributions to the partition function fro
n.3 were found to be small; the results with and without t
n.3 contributions are indistinguishable in the figure. Sim
larly, the results for different values ofN ~1000–105) are
also indistinguishable, suggesting that these results are
dicative of the thermodynamical limit. The first observatio
is that the concentration of fcc-like planes is small at roo

FIG. 3. Concentration of total fcc-like planes and of fcc-lik
planes in stacking fault clusters~for 100 and 150 atoms per layer! as
a function of temperature. Contributions to the partition function
n.3 are included.
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temperature, but depends strongly on the value ofM . This
strong variation occurs because the energy of a configura
E(C) is directly proportional to the number of faulted atom
(M3n) in the system, which in turn has an exponential
fect on the contribution to the partition function. More e
plicitly, we can obtain an approximate upper bound to t
concentration,c, of fcc-like planes as a function ofM by
again noting thatE(C)<M3nE(I 1) for all n; the upper
bound is simply

c~M !5@ebME~ I 1!11#21. ~20!

At room temperature, this equation predicts an upper bo
to the concentration of fcc-like planes of 1026 for M530
verus the~unphysical! value of 102100 for M5500, demon-
strating the rapid change withM . Thus, the expected latera
dimensions of the fault regions in a real crystal are rat
small.

Including the configurational entropy associated w
atomic disorder in the plane will favor smallerM , but then
the energy costs of the defects will favor largerM values.
For values ofM much smaller than;100, the energetics
may not be well described by the parametrization in terms
E(I 1) and «8, nor will the configuration entropy be ad
equately described by the simple one-dimensional appro

As already expected from energy considerations alo
there is no significant tendency for the fcc-like planes
cluster; the concentration of fcc-like atoms in stacking fa
complexes is several orders of magnitude less than in s
rated faults~see Fig. 3!. This behavior can be understoo
from the results in Table IV: the number of configuratio
for separated fcc planes is of the order ofN times larger than
any of the clusters. Thus, entropy considerations will fav
separatedI 1 faults.
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V. CONCLUSIONS

We have studied the low-energy planar stacking fault d
fects in hcp Mg using first-principles local density approx
mation calculations. The convergence tests of finite size
fects, Brillouin zone integrations, and atomic and volum
relaxations suggest that the values are converged to with
meV. The absolute magnitude of the stacking fault energ
are small, on the order ofkBT at room temperature. While
these numbers are significantly smaller than those infer
from experiment, we suggest that the modeling used to
duce the experimental numbers may need to be reexami

The I 1 and I 2 intrinsic faults are found to be the mos
stable and to have a lower energy cost per atom than id
fcc Mg. Based on the first-principles results, we construc
local bond orientation model of the stacking fault energet
that can accurately predict the self-consistently calcula
energies. This model, with little loss in accuracy, can
reduced to two independent parameters, namely the en
of the I 1 stacking fault and the fcc-hcp energy differenc
While this model is useful in discussing the thermal equili
rium properties of stacking faults, the actual dynamics a
concentration of stacking fault motion will require the dete
mination of far more complicated defect structures, whi
include dislocations and site disorder in the planes.
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