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Valence bond mapping of antiferromagnetic spin chains
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Boson mapping techniques are developed to describe valence bond correlations in quantum spin chains.
Applying the method to the alternating bond Hamiltonian for a generic spin chain, we derive an analytic
expression for the transition points which gives perfect agreement with existing density-matrix
renormalization-group and quantum Monte Carlo calculatipB8163-182@7)03542-X]

Antiferromagnetic spin chains have been the subject of A trial wave function containing the same physics was
intense interest in recent years, largely due to the conjecturalso considered recently in another variational andlysfs
by Haldané that chains built from integer spins should ex- the alternating bond Hamiltonian. There, however, the analy-
hibit a gap in their energy spectrum. The existence of thissis was carried out without resorting to a valence bond boson
gap, originally predicted on the basis of simple field- mapping. We will discuss a bit further the relation between
theoretic considerations, was subsequently confirme#€se two variational treatments later, after presenting the
experimentally? detailed results.

Much insight into the properties of antiferromagnetic spin. A USeful starting point for the introduction of valence
chains has been provided by simple models. The fielgbonds is through the Schwinger boson realization of the spin
theoretic nonlinear sigma modéNLSM), -2 for example algebra® The basic idea is to introduce a set of boson cre-

. oy . . T .
provided the original motivation for Haldane’s conjecture. &ion and annihilation operatorg , andy; ., respectively.
Equally illuminating insight into the diverse properties of 11€S€ Operators create and annihilate, respectively, a;spin-

) : A 2
spin chain systems has been provided by the introduction Ocl)sont V(‘;'th Sip'_rt‘ pr%ectyomsr— +t2 (denotlt(ajdtﬁ) or o | 522
the valence bonds soliVBS) state’ enoted + at sitei. A spin-S system wou en involve

. - Schwinger bosons on each site.
Detailed descriptions of these systems, however, have de- . . ) Lo . . o
Typical spin-chain Hamiltonians involve spin-spin inter-

pended on very complex ”‘%mer'c?" analyses,. using .e'theéctions between nearest neighbors. It is natural therefore to
quantum.Mo.nte CarléQMC) simulations or densﬂx—matrl,)f consider states built up in terms of bonds reflecting these
renormalization-group DMRG) r_netho_dsﬁ. These “exact”  .,relations. This is the basic idea behind the introduction of
treatments provide striking confirmation of the features cony,g1ence bonds. When dealing with an antiferromagnetic spin

jectured by Haldane. chain, the key correlations involve nearest neighbors in spin-

Ideally, it would be nice to have a simpler method for asjnglet states, which can be represented by the singlet bond
reliable quantitative treatment of quantum spin chains. Va-

lence bonds provide a physically motivated starting point for 1
such a description. The VBS is the exact ground state of M=— v =y v, (N
specific spin-chain Hamiltonians involving quadratic and V2

guartic terms, suggesting that wave functions constructed iﬂ1 terms of these singlet bonds, the VBS ground state for a
terms of valence bonds might be good trial states more ge”s'pin-s chain S an integey is givén by

erally. Unfortunately, such wave functions are still too com-
plex, for reasons to be discussed later, to be of general use in
a variational analysis. In the present work, we propose a |VBS)=.H (FiT)S|0>. @)
method that permits valence bonds to be used efficiently in I=1N
variational calculations. The method makes use of boson ) i
mapping techniques, whereby a mapping is carried out to a 1he state|VBS) is the exact ground eigenstate of the
space in which a valence bond is represented exactly by Hamiltonian
boson. 1

We also report here an application of this method to study _ 2
the phase transitions in spin chains governed by the alternat- H= 2. S-St 3(S-Se) ©
ing bond Hamiltoniar. In this application, we consider an
especially simple variational ansatz for the different phase#volving quadratic and quartic spin operators. For a general
of the system. Nevertheless, we find that our analysis reprdsamiltonian, however, it is not an eigenstate. Furthermore,
duces perfectly the “exact” results for the critical points when not an exact eigenstate, it is not an especially useful
obtained in DMRG and QMC calculations. trial state. The reason is that the singlet boFifisrom which
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it is built are not bosons, i.e., the corresponding operators do The boson image of the on-site particle-hole operator is
not satisfy boson commutation relations.
This is a familiar problem in many branches of physics. A + _ t t
standard approach to problems of this type, involving domi- (7""17""2)5_% {Bilrs0Bi0ors T Bi-1.00 i 1730}
nant pair correlations, is to implemenibason mapping® 7
The general idea of a boson mapping is to replace th
original problem involving pair degrees of freeddim this
case, singlet bongland the true Hamiltonian of the system
by an equivalentproblem involving real bosons and an ap-
propriate effective Hamiltonian for these bosons. All of the
exchange effects between the constituents is transferred
the effective Hamiltonian, in a mathematically rigorous way

Note that the on-site p-h operator maps exactly onto a p-h
operator in the ideal boson space, with no need for a series
expansion.
The p-p operators involving nearest neighbor bonds do
equire infinite series expansions. The lowéstroth order
ages are straightforwardly given by

guaranteed to preserve the physics of the original problem. oot 0)_ gt )
. . (yl,u 7I+l,o’ )B 1,0,0
In more detail, we wish taeplace the valence bonds 1 2 172
Yl o, Vi1, Y DOSONB! ,  which fulfill exact bosonlike and
commutation relations:
(Vo Yi+10,)8 =Bi ooy ©)
[Bi,rrl(rle]T,(ra,(r‘l] = 5i,j 501,(7'3502,(7'4' (4)

The first-order images are more complex, as they provide
We first reflection of exchange effects of tt&chwinger bo-
son constituents between neighbor bonds. The required
first-order image that fulfills the second line of E®) is
given by

There are many ways to implement such a replacement. |
the generalized Holstein-PrimakdfsHP) approach® which
we follow here, the mapping is defined by imposing the re
qguirement that all quadratic operators in the original spac
are mapped in such a way as to preserve their commutation

1
relations. More specifically, the boson image of quadratic (’yi‘r*a'l’yLrlvUz)(Bl):E > {B;‘:0103BI0—40’18L0’403
operators are assumed to be givenTaylor-series expan- 03,04
sions: T N
+ Bi ,(rl(rsBi + 1,02(r4Bi +1030,
Fe=FO+FU4+F@ ... 5
° ( ) +BiT,0'3UZBiJr—1,040'lBi*1,0'4a'3}- (10)

The terms in these Taylor expansions are obtained via th
condition that any commutation rufé\,B]=C between the
original set of quadratic operators must be preserved at ea
order of the expansion:

Sla‘he corresponding image associated with annihilation of a

ﬁpnd between nearest neighbors is obtained from Eij.by
ermitian conjugation.

In fact, closing the algebra to first order requires inclusion

[A© BO]=CO) of the p-h operator between next-to-nearest neighbarith
i +2) sites. We will not discuss this any further here, as it
[A(O)’B(l)]+[A(l),B(O)]:C(l)’ does not impact on the analysis or results to follow.

There is one further complication that should be noted
6) before considering the application of these methods. The
mapping equations given above can be applied in several

We should note here that boson mappings have typicallffifferent ways to a given spin-chain Hamiltonian. One pos-
been applied to systems of interacting fermions. HoweversiPllity is to express the t¥voT-body interaction entering the
there is no fundamental difficulty in applying them to sys- Hamiltonian in p-p form ¢"y'y7) and to map using Egs.
tems of interacting bosor$,as in the problems under dis- (8)—(10). Alternatively, the Hamiltonian could first be trans-
cussion. formed into p-h form ¢'yy'y) and then mapped with Eq.

We have succeeded in building an appropriate bosof”): A third possibility, of course, is to map part of the
mapping of the Holstein-Primakoff type for valence bonds.Hamiltonian in p-h form and part in p-p form. Were we to do
In the present discussion, we simply present the relevarif’® resulting analysiexactlyin the ideal boson space, all
mapping equations, leaving more detailed discussion of th&Uch approaches would be equivalent. In variational treat-
formalism to a subsequent publication. ments, on the other hand, it is essential to map the Hamil-

The full algebra of quadratic operators in the Schwingerfonian in such a way as to maintain the key correlation ef-

boson space includes both particle-h@eh) operators of the  fects. o ,
form y_’r y..» and particle-particle operators of the form As_aflrst_(tesb application of these methods, we _con5|der
A a spin-chain system governed by the alternating bond
YieVjor @A Yig Yo

. . . . Hamiltoniar?
For the purpose of treating the dynamics of spin-chain ron!

Hamiltonians, we only need to know how to map the on-site N

p-h operatory{(,yi,(,/ and the p-p operators involving bonds H(a)zz [1-(—)alS-S;. (11
between neighboring sites{(,y;rﬂg, and y; ;Vi+1,- The =1

relevant images through first-order in the Taylor series exThis system has been studied extensively in the literature.
pansion are as follows. For a given value of the spin, it exhibits a sequence of phase
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TABLE I. Location of the crossing points for the alternating bond spin chain. In addition to the results of
the present analysis, we present results from the nonlinear sigma (Nd&M), from “exact” numerical
solution, and from the VBS variational analysis of Ref. 8. In the case of the exact analyses, only the
nonnegative crossing points are shown. The “exact” resultsSfed are from Ref. 12, those f@=3/2 are
from Ref. 13, and those fd8=2 are from Ref. 14.

S Exact Present results NLSM Ref. 8
1 0.25-0.01 +1/4 *1/2 +1/3
3/2 0, 0.42:0.02 0,=2/5 0,*2/3 0,*+7/13
2 0.05< @< 0.3, 0.5x @< 0.6 +1/6, +1/2 + 1/4, =3/4 +1/4, +2/3
5/2 0,*2/7,=*4/7 0, *+2/5, +4/5

3 +1/8,+3/8,+5/8 *1/6,*+1/2,+5/6

transitions, associated with successive partial dimerization of 1 N _

the system. The locations of the crossing points corresponddg(a)=— ZE [1-(—)a{3c]oi+ol[o] o+ ol 10141
ing to the dimer phase transitions have been accurately de- =1

termined for low-spin systems using both quantum Monte tol o Jo} (16)
Carlo and density-matrix renormalization-group methods. -

This, coupled with the fact that the precise locations of the The trial wave function we use in our variational descrip-

crossing points have not been reproduced by any mean fielghn of the alternating bond spin-chain system is
or variational treatment to date, makes it an ideal testing

ground for our approach. N ;TN Tne
The variational treatment we will apply to this system is |®p )= I—'+1|0>, (17
based on singlet bonds only. Thus, following our earlier re- o7 i(odd=1 yne!ng!
marks, we must map the Hamiltonian SO as to most _eﬁ"subject to the Schwinger constraint
ciently reflect these bonds. The appropriate separation is
Ny+ng.=2S. 18
H(a)=Hy(a@)+Hy(a), (12) °o e (18
where This trial wave function reflects the various phases of the

system. The Heisenberg phase corresponds, ton,, with
all sites involved in an equal number of bonds with its near-
Hi(a)= > [1-(—) a]S'S est neighbors on each side. The corresponding state is trans-
=1 lationally invariant and is the analogue of the VBS state in
N the ideal boson space. Increasimgor equivalentlyn, cor-
> 1-(—)al> oyfrgyi " responds to successive partial dimerization. The cases in
i=1 o s which eithern,=0 orn,=0 involve complete dimerization.
Here we focus our analysis on the location of the critical

N

XD o ViT+1 Yitlers (13)  points associated with a transition from one phase to another.
o 7 ' Defining

and 5n0,ne(a'):<¢)n0,ne|HB(a')|q)no,ne>- (19

N

1 i - - the critical points are given by the condition
Ha(@) =53 [1-(~)'al(§' S5, + 5§ P e
N gno NI Enot 1ngF1- (20
1 i Tt
= 521 [1-(—) a]; YieYi+1,-0Yi,~aYi+10" Straightforward analysis yields for the energy functional,
14 N 3n Ny(n,—1
(14 Eng @)= 7 (1+a) 7°+—°( ; )+n0ne]
We map the ternH,(«), corresponding t&’S’, ;, in p-h o
form and the. term H,(a), corresponding to 3N, Ng(ng—1)
S'S.,+S S, in p-p form. t(l-a)j 5+ ————+none( |, (21)
Applying the mapping in this way to the alternating bond
Hamiltonian (11) and then projecting onto singlet bosons, and for the critical values o,
defined by
2n,+1-2S o1 a1 22
1 a=28—+1, n,=0,1,...,0o0— 1.
ol=—oi8]. 8] ] 15 (51

V2 In Table I, we present the results of this analysis for sev-
we obtain eral values of the spis. We compare the results obtained
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from our simple analytic formul&22) for the crossing points within the same basic framework. It is by no means evident
with those from “exact” calculationd?~**from the NLSM  how this can be done without implementation of the valence
(Refs. 1 and Band from the recent VBS variational treat- bond boson mapping.

ment of Ref. 8. Our simple formula, obtained by using a Indeed, there is clearly room for improvement in our
first-order boson mapping treatment and a simple producinalysis of the alternating bond spin chain. From &1),

trial state, yields perfect agreement with the “exact” results\ye see that at the level of approximation we considered here
where available. This is to be contrasted with the NLSMine energy per site of the pur=1 Heisenberg chain
results, which are in much worse agreement. And, indeed(,azo) is —5/4. The accepted value is1.40L . . . 5 while

our results are even better than the results of Ref. 8, despi L .
the similarity of the two variational approaches. Note that WeEﬁe VBS variational resifltlies between the two at-4/3 .

have also included in the tabgedictionsfor the location of ~ W& €Xpect that the necessary improvement to our result
the phase transition points at higher spins. would be prowd_ed in pa_rt by the next-orqler contribution 01_‘
It is worth expanding a bit on the relation between ourf[he boson mapping and in part b)_/ fluctuation effects. What is
variational treatment of the alternating bond Hamiltonian andMportant to reiterate, however, is that the method we have
the treatment of Ref. 8. As noted earlier, the two approachegutlined provides a systematic way to incorporate such im-
include much the same physical content in their trial waveProvements.
functions. In our view, our approach has several advantages. There are several areas in which we expect these methods
In our method, the various phases of the system are ddo be useful in the future. Our immediate plan is to general-
scribed by states that are inherently orthogonal. In contrasize the Hamiltonian(11) to include crystal fields and a uni-
the trial states used in Ref. 8 are only asymptotically or-form magnetic field and to study the phase diagram, excita-
thogonal. Furthermore, our method is by no means limited taions, magnetization curves, etc.

the use of the very simple trial wave functions of Efj7). _ : .
The existence of a relatively simple boson Hamiltonian as | S Work was supported in part by the DIGICY$pain

output from the mapping makes it possible to extend theinder Contract No. PB95/0123 and by the National Science

dynamical treatment to more complex wave functions. Thuslfoundation under Grant No. PHY-9600445. Fruitful discus-

we can readily improve on our description of the grouno|sions with Siu Tat Chui and German Sierra are gratefully
state and also readily build excitations of the system, alRcknowledged.
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