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Valence bond mapping of antiferromagnetic spin chains
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Boson mapping techniques are developed to describe valence bond correlations in quantum spin chains.
Applying the method to the alternating bond Hamiltonian for a generic spin chain, we derive an analytic
expression for the transition points which gives perfect agreement with existing density-matrix
renormalization-group and quantum Monte Carlo calculations.@S0163-1829~97!03542-X#
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Antiferromagnetic spin chains have been the subjec
intense interest in recent years, largely due to the conjec
by Haldane1 that chains built from integer spins should e
hibit a gap in their energy spectrum. The existence of t
gap, originally predicted on the basis of simple fiel
theoretic considerations, was subsequently confirm
experimentally.2

Much insight into the properties of antiferromagnetic sp
chains has been provided by simple models. The fie
theoretic nonlinear sigma model~NLSM!,1,3 for example,
provided the original motivation for Haldane’s conjectur
Equally illuminating insight into the diverse properties
spin chain systems has been provided by the introductio
the valence bonds solid~VBS! state.4

Detailed descriptions of these systems, however, have
pended on very complex numerical analyses, using ei
quantum Monte Carlo~QMC! simulations5 or density-matrix
renormalization-group~DMRG! methods.6 These ‘‘exact’’
treatments provide striking confirmation of the features c
jectured by Haldane.

Ideally, it would be nice to have a simpler method for
reliable quantitative treatment of quantum spin chains. V
lence bonds provide a physically motivated starting point
such a description. The VBS is the exact ground state
specific spin-chain Hamiltonians involving quadratic a
quartic terms, suggesting that wave functions constructe
terms of valence bonds might be good trial states more g
erally. Unfortunately, such wave functions are still too co
plex, for reasons to be discussed later, to be of general u
a variational analysis. In the present work, we propos
method that permits valence bonds to be used efficientl
variational calculations. The method makes use of bo
mapping techniques, whereby a mapping is carried out
space in which a valence bond is represented exactly b
boson.

We also report here an application of this method to stu
the phase transitions in spin chains governed by the alter
ing bond Hamiltonian.7 In this application, we consider a
especially simple variational ansatz for the different pha
of the system. Nevertheless, we find that our analysis re
duces perfectly the ‘‘exact’’ results for the critical poin
obtained in DMRG and QMC calculations.
560163-1829/97/56~17!/10770~4!/$10.00
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A trial wave function containing the same physics w
also considered recently in another variational analysis8 of
the alternating bond Hamiltonian. There, however, the ana
sis was carried out without resorting to a valence bond bo
mapping. We will discuss a bit further the relation betwe
these two variational treatments later, after presenting
detailed results.

A useful starting point for the introduction of valenc
bonds is through the Schwinger boson realization of the s
algebra.9 The basic idea is to introduce a set of boson c
ation and annihilation operatorsg i ,s

† andg i ,s , respectively.
These operators create and annihilate, respectively, a sp1

2

boson with spin projections51 1
2 ~denoted1! or s52 1

2

~denoted –! at sitei . A spin-S system would then involve 2S
Schwinger bosons on each site.

Typical spin-chain Hamiltonians involve spin-spin inte
actions between nearest neighbors. It is natural therefor
consider states built up in terms of bonds reflecting th
correlations. This is the basic idea behind the introduction
valence bonds. When dealing with an antiferromagnetic s
chain, the key correlations involve nearest neighbors in sp
singlet states, which can be represented by the singlet b

G i
†5

1

A2
~g i ,1

† g i 11,2
† 2g i ,2

† g i 11,1
† !. ~1!

In terms of these singlet bonds, the VBS ground state fo
spin-S chain (S an integer! is given by

uVBS&5 )
i 51,N

~G i
†!Su0&. ~2!

The stateuVBS& is the exact ground eigenstate of th
Hamiltonian

H5(
i

FSi•Si 111
1

3
~Si•Si 11!2G ~3!

involving quadratic and quartic spin operators. For a gene
Hamiltonian, however, it is not an eigenstate. Furthermo
when not an exact eigenstate, it is not an especially us
trial state. The reason is that the singlet bondsG i

† from which
10 770 © 1997 The American Physical Society
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56 10 771BRIEF REPORTS
it is built are not bosons, i.e., the corresponding operators
not satisfy boson commutation relations.

This is a familiar problem in many branches of physics
standard approach to problems of this type, involving do
nant pair correlations, is to implement aboson mapping.10

The general idea of a boson mapping is to replace
original problem involving pair degrees of freedom~in this
case, singlet bonds! and the true Hamiltonian of the syste
by an equivalentproblem involving real bosons and an a
propriate effective Hamiltonian for these bosons. All of t
exchange effects between the constituents is transferre
the effective Hamiltonian, in a mathematically rigorous w
guaranteed to preserve the physics of the original proble

In more detail, we wish toreplace the valence bonds
g i ,s1

† g i 11,s2

† by bosonsBi ,s1s2

† , which fulfill exact bosonlike

commutation relations:

@Bi ,s1s2
,Bj ,s3s4

† #5d i , jds1 ,s3
ds2 ,s4

. ~4!

There are many ways to implement such a replacemen
the generalized Holstein-Primakoff~GHP! approach,10 which
we follow here, the mapping is defined by imposing the
quirement that all quadratic operators in the original sp
are mapped in such a way as to preserve their commuta
relations. More specifically, the boson image of quadra
operators are assumed to be given byTaylor-series expan-
sions:

FB5F ~0!1F ~1!1F ~2!1•••. ~5!

The terms in these Taylor expansions are obtained via
condition that any commutation rule@A,B#5C between the
original set of quadratic operators must be preserved at e
order of the expansion:

@A~0!,B~0!#5C~0!,

@A~0!,B~1!#1@A~1!,B~0!#5C~1!,

•••. ~6!

We should note here that boson mappings have typic
been applied to systems of interacting fermions. Howev
there is no fundamental difficulty in applying them to sy
tems of interacting bosons,11 as in the problems under dis
cussion.

We have succeeded in building an appropriate bo
mapping of the Holstein-Primakoff type for valence bond
In the present discussion, we simply present the relev
mapping equations, leaving more detailed discussion of
formalism to a subsequent publication.

The full algebra of quadratic operators in the Schwing
boson space includes both particle-hole~p-h! operators of the
form g is

† g j s8 and particle-particle operators of the for
g is

† g j s8
† andg isg j s8.

For the purpose of treating the dynamics of spin-ch
Hamiltonians, we only need to know how to map the on-s
p-h operatorg i ,s

† g i ,s8 and the p-p operators involving bond
between neighboring sites,g i ,s

† g i 11,s8
† andg i ,sg i 11,s8. The

relevant images through first-order in the Taylor series
pansion are as follows.
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The boson image of the on-site particle-hole operator

~g i ,s1

† g i ,s2
!B5(

s3

$Bi ,s1s3

† Bi ,s2s3
1Bi 21,s3s1

† Bi 21,s3s2
%.

~7!

Note that the on-site p-h operator maps exactly onto a
operator in the ideal boson space, with no need for a se
expansion.

The p-p operators involving nearest neighbor bonds
require infinite series expansions. The lowest~zeroth! order
images are straightforwardly given by

~g i ,s1

† g i 11,s2

† !B
~0!5Bi ,s1s2

† ~8!

and

~g i ,s1
g i 11,s2

!B
~0!5Bi ,s1s2

. ~9!

The first-order images are more complex, as they prov
the first reflection of exchange effects of the~Schwinger bo-
son! constituents between neighbor bonds. The requi
first-order image that fulfills the second line of Eq.~6! is
given by

~g i ,s1

† g i 11,s2

† !B
~1!5

1

2 (
s3 ,s4

$Bi ,s1s3

† Bi ,s4s1

† Bi ,s4s3

1Bi ,s1s3

† Bi 11,s2s4

† Bi 11,s3s4

1Bi ,s3s2

† Bi 21,s4s1

† Bi 21,s4s3
%. ~10!

The corresponding image associated with annihilation o
bond between nearest neighbors is obtained from Eq.~10! by
Hermitian conjugation.

In fact, closing the algebra to first order requires inclusi
of the p-h operator between next-to-nearest neighbor (i with
i 12) sites. We will not discuss this any further here, as
does not impact on the analysis or results to follow.

There is one further complication that should be no
before considering the application of these methods. T
mapping equations given above can be applied in sev
different ways to a given spin-chain Hamiltonian. One po
sibility is to express the two-body interaction entering t
Hamiltonian in p-p form (g†g†gg) and to map using Eqs
~8!–~10!. Alternatively, the Hamiltonian could first be trans
formed into p-h form (g†gg†g) and then mapped with Eq
~7!. A third possibility, of course, is to map part of th
Hamiltonian in p-h form and part in p-p form. Were we to d
the resulting analysisexactly in the ideal boson space, a
such approaches would be equivalent. In variational tre
ments, on the other hand, it is essential to map the Ha
tonian in such a way as to maintain the key correlation
fects.

As a first~test! application of these methods, we consid
a spin-chain system governed by the alternating bo
Hamiltonian8

H~a!5(
i 51

N

@12~2 ! ia#Si•Si 11 . ~11!

This system has been studied extensively in the literat
For a given value of the spin, it exhibits a sequence of ph
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TABLE I. Location of the crossing points for the alternating bond spin chain. In addition to the resu
the present analysis, we present results from the nonlinear sigma model~NLSM!, from ‘‘exact’’ numerical
solution, and from the VBS variational analysis of Ref. 8. In the case of the exact analyses, on
nonnegative crossing points are shown. The ‘‘exact’’ results forS51 are from Ref. 12, those forS53/2 are
from Ref. 13, and those forS52 are from Ref. 14.

S Exact Present results NLSM Ref. 8

1 0.2560.01 61/4 61/2 61/3
3/2 0, 0.4260.02 0,62/5 0, 62/3 0, 67/13
2 0.05,a,0.3, 0.5,a,0.6 61/6, 61/2 6 1/4, 63/4 61/4, 62/3

5/2 0, 62/7 , 64/7 0, 62/5, 64/5
3 61/8, 63/8 , 65/8 61/6 , 61/2 , 65/6
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transitions, associated with successive partial dimerizatio
the system. The locations of the crossing points correspo
ing to the dimer phase transitions have been accurately
termined for low-spin systems using both quantum Mo
Carlo and density-matrix renormalization-group metho
This, coupled with the fact that the precise locations of
crossing points have not been reproduced by any mean
or variational treatment to date, makes it an ideal test
ground for our approach.

The variational treatment we will apply to this system
based on singlet bonds only. Thus, following our earlier
marks, we must map the Hamiltonian so as to most e
ciently reflect these bonds. The appropriate separation is

H~a!5H1~a!1H2~a!, ~12!

where

H1~a!5(
i 51

N

@12~2 ! ia#Si
zSi 11

z

5
1

4 (
i 51

N

@12~2 ! ia#(
s

sg i ,s
† g i ,s

3(
s8

s8g i 11,s8
† g i 11,s8, ~13!

and

H2~a!5
1

2 (
i 51

N

@12~2 ! ia#~Si
1Si 11

2 1Si
2Si 11

1 !

5
1

2 (
i 51

N

@12~2 ! ia#(
s

g i ,s
† g i 11,2s

† g i ,2sg i 11,s .

~14!

We map the termH1(a), corresponding toSi
zSi 11

z , in p-h
form and the term H2(a), corresponding to
Si

1Si 11
2 1Si

2Si 11
1 , in p-p form.

Applying the mapping in this way to the alternating bo
Hamiltonian ~11! and then projecting onto singlet boson
defined by

s i
†5

1

A2
@Bi ,12

† 2Bi ,21
† #, ~15!

we obtain
of
d-
e-
e
.
e
ld
g

-
-

,

HB~a!52
1

4 (
i 51

N

@12~2 ! ia#$3s i
†s i1s i

†@s i
†s i1s i 11

† s i 11

1s i 21
† s i 21#s i%. ~16!

The trial wave function we use in our variational descr
tion of the alternating bond spin-chain system is

uFno ,ne
&5 )

i ~odd!51

N s i
†nos i 11

†ne

Ano!ne!
u0&, ~17!

subject to the Schwinger constraint

no1ne52S. ~18!

This trial wave function reflects the various phases of
system. The Heisenberg phase corresponds tono5ne , with
all sites involved in an equal number of bonds with its ne
est neighbors on each side. The corresponding state is tr
lationally invariant and is the analogue of the VBS state
the ideal boson space. Increasingno or equivalentlyne cor-
responds to successive partial dimerization. The case
which eitherno50 or ne50 involve complete dimerization

Here we focus our analysis on the location of the critic
points associated with a transition from one phase to anot
Defining

Eno ,ne
~a!5^Fno ,ne

uHB~a!uFno ,ne
&, ~19!

the critical points are given by the condition

Eno ,ne
5Eno61,ne71 . ~20!

Straightforward analysis yields for the energy function

Eno ,ne
~a!52

N

4 F ~11a!H 3no

2
1

no~no21!

2
1noneJ

1~12a!H 3ne

2
1

ne~ne21!

2
1noneJ G , ~21!

and for the critical values ofa,

a5
2no1122S

2~S11!
, no50,1, . . . ,2S21. ~22!

In Table I, we present the results of this analysis for s
eral values of the spinS. We compare the results obtaine
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from our simple analytic formula~22! for the crossing points
with those from ‘‘exact’’ calculations,12–14 from the NLSM
~Refs. 1 and 3! and from the recent VBS variational trea
ment of Ref. 8. Our simple formula, obtained by using
first-order boson mapping treatment and a simple prod
trial state, yields perfect agreement with the ‘‘exact’’ resu
where available. This is to be contrasted with the NLS
results, which are in much worse agreement. And, inde
our results are even better than the results of Ref. 8, des
the similarity of the two variational approaches. Note that
have also included in the tablepredictionsfor the location of
the phase transition points at higher spins.

It is worth expanding a bit on the relation between o
variational treatment of the alternating bond Hamiltonian a
the treatment of Ref. 8. As noted earlier, the two approac
include much the same physical content in their trial wa
functions. In our view, our approach has several advanta
In our method, the various phases of the system are
scribed by states that are inherently orthogonal. In contr
the trial states used in Ref. 8 are only asymptotically
thogonal. Furthermore, our method is by no means limited
the use of the very simple trial wave functions of Eq.~17!.
The existence of a relatively simple boson Hamiltonian
output from the mapping makes it possible to extend
dynamical treatment to more complex wave functions. Th
we can readily improve on our description of the grou
state and also readily build excitations of the system,
P.
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within the same basic framework. It is by no means evid
how this can be done without implementation of the valen
bond boson mapping.

Indeed, there is clearly room for improvement in o
analysis of the alternating bond spin chain. From Eq.~21!,
we see that at the level of approximation we considered h
the energy per site of the pureS51 Heisenberg chain
(a50) is 25/4. The accepted value is21.401 . . . ,6 while

the VBS variational result8 lies between the two at24/3 .
We expect that the necessary improvement to our re
would be provided in part by the next-order contribution
the boson mapping and in part by fluctuation effects. Wha
important to reiterate, however, is that the method we h
outlined provides a systematic way to incorporate such
provements.

There are several areas in which we expect these met
to be useful in the future. Our immediate plan is to gener
ize the Hamiltonian~11! to include crystal fields and a uni
form magnetic field and to study the phase diagram, exc
tions, magnetization curves, etc.
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