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The wave-vector (k) dependence of the quasielastic~QE! intensity generated by neutrons scattered by
particles moving under the action of one-dimensional potentials and weak stochastic forces is investigated in
detail. It is shown that, in the low-k limit, the quasielastic intensity due to scatterers subject to symmetric
potentials is proportional tok4, while asymmetric potentials will generally give rise to ak2 term. Formulas to
evaluate the coefficient for an arbitrary term in ak expansion of the cross section are derived. It is also shown
that the QE line consists of a superposition of Lorentzians generated by energy relaxation modes. A possible
application to the soft-potential model of glasses is indicated.@S0163-1829~97!03741-7#
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It has often proved useful to model slow excitations
such complex, disordered systems as proteins and glass
considering localized motions under the action of effect
one-dimensional potentials.1,2 The effects of fast modes o
these excitations can be introduced through a stochastic
in the equations of the motion. This stochasticity gives rise
a quasielastic~QE! line in the neutron-scattering spectrum.3,4

Since we usually do not knowa priori—but would like to
ascertain—the nature of the forces that determine the s
terer motion, an analysis of the properties of the scatte
cross section corresponding to physically meaningful mo
systems would be valuable. In particular, a detailed und
standing of the relation between the properties of the mo
potentials and the energy and wave-vector dependence o
cross section would help us optimize the information p
vided by the experiments.

We have recently examined the behavior of the dyna
structure factor generated by scatterers that move unde
influence of potential and weak stochastic forces.5–7 In Ref.
5 we showed that a scatterer subject to Hamiltonian mo
in one dimension cannot yield a QE line~an exception is
provided by potentials containing flat sections!. We also ar-
gued that, if stochastic forces are added, the total QE in
sity can be obtained as the difference between the ela
intensity for the associated Hamiltonian system and
Debye-Waller factor. Using a cumulant expansion, it th
follows that the total QE intensity scattered by symmet
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potentials grows ask4. The purpose of this paper is to ex
amine in greater detail the correlation between the poten
symmetry and the wave-vector dependence of the QE s
tered intensity using the more general formalism of Ref.
We will also derive explicit formulas for the coefficients in
wave-vector expansion of the cross section. These form
permit a precise evaluation of the QE line shape when
scatterer is simultaneously subject to potential and stocha
forces.

A Fokker-Planck approach can be used to investigate
QE line generated by scattering from anharmonic sing
minimum oscillators subject to weak frictional forces.6 Using
a method due to Dykman and co-workers,8,9 we showed that
the QE component of the dynamic structure factor can
obtained from the solution of a generalized diffusion equ
tion in energy space. Our analysis of thek dependence of the
scattering cross section will rest on the properties of t
energy diffusion equation.

In the following we assume that the scattering poten
U(q) is harmonic near its bottom and thatU(uqu→`)→`,
whereq is the generalized scatterer coordinate. We furt
assume that the scatterer has unit mass and take the B
mann constant to be equal to unity.

The dependence of the neutron-scattering cross sectio
the momentum transfer\k and the energy transfer\V is
given by the dynamic structure factor
10 703 © 1997 The American Physical Society
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S~k,V!5
1

p
ReE

0

`

eiVtF~k,t !dt, ~1!

wheret is the time andF(k,t) is the intermediate scatterin
function~ISF!.3,4 By means of a change in variables,6 the ISF
can be expressed in terms of an integral involving the pr
ability densityP(E,F;t) of finding the scatterer at a give
location in the energy-phase space (E,F) at time t

F~k,t !5E
0

`

dEE
0

2p

dF eikq~E,F!P~E,F;t !. ~2!

SinceP(E,F;t) is periodic inF, it can be expanded in a
Fourier series

P~E,F,t !5 (
m52`

`

Pm~E,t !eimF. ~3!

Using this equation, the ISF can be written as the s
F(k,t)5SFm , where eachFm involves an energy and phas
integral containing a singlePm . The Fourier componentsPm
undergo little mixing if the friction is weak, i.e., ifG
!v(E) for all E<T. Under these conditions, only them
50 component ofF gives a substantial contribution to th
quasielastic region. This component can then be evaluate
an energy integral

F0~k,t !52pE
0

`

dE P0~E,t !^eikq~E,F!&. ~4!

Here the angular brackets indicate the average over an
at fixedE. We are choosing the energy origin at the locati
of the potential minimum. It can be shown that the functi
P0 is a solution of the following generalized energy diffusio
equation:6

]P0~E,t !

]t
5GKP0~E,t !, ~5!

whereG is the friction coefficient and the operatorK is de-
fined as

K5
d

dE FA~E!
d

dE
1B~E!G , ~6!

with

A~E!52T^p2~E,F!& ~7!

and

B~E!52^p2~E,F!&S 11
T

v~E!

]v~E!

]E D . ~8!

HereT is the temperature,p(E,F) is the generalized mo
mentum, andv(E) is the oscillation frequency of the ass
ciated Hamiltonian system. Note a minor change in notat
with respect to Ref. 6: The friction coefficient has been e
plicitly extracted from the operatorK; in this way we will
later obtainG-independent eigenvalues. The initial conditio
for the functionP0(E,t) is6
-

as

bit

n
-

P0~E,0!5
e2E/T

2pv~E!Z
^e2 iq~E,F!&, ~9!

with Z being the partition function. On the other hand, t
current densityj along the energy axis

j ~E,t !52GFA~E!
d

dE
1B~E!GP0~E,t !. ~10!

satisfies the boundary conditionsj (0,t)5 j (`,t)50.
After applying the usual ansatzP0(E,t)5e2lGty(E) to

Eq. ~5!, we are left with the eigenvalue equation

Ky~E!1lGy~E!50. ~11!

Defining

G~E!5expF E
0

E

dx A21~x!B~x!G5
v~E!

v~0!
eE/T, ~12!

we can use the boundary conditions onj (E,t) to verify that

E
0

`

dE y1~E!G~E!Ky2~E!5E
0

`

dE y2~E!G~E!Ky1~E!,

~13!

i.e., the operatorG(E)K is self-adjoint. We can then work
with a set$yl% of real and orthogonal eigenfunctions of th
operatorK. Moreover, the corresponding eigenvalues a
real, nondegenerate, and non-negative. The lowest ei
value l50 corresponds to the equilibrium solutiony0(E)
5@v(E)Z#21exp(2E/T). The evolution from the initial dis-
tribution P0(E,0) to the equilibrium distributiony0(E) pro-
ceeds according to the energy relaxation process descr
by Eq. ~5!.

If lÞ0 we can easily prove the following results:

E
0

`

dE yl~E!50 ~14!

and

E
0

`

dE8yl~E8!E
0

`

dE yl~E!~^qn&^q8m&2^qm&^q8n&!50,

~15!

where we have abbreviated̂ q&[^q(E)& and ^q8&
[^q(E8)&.

Implementing the initial condition, Eq.~9!, we write an
eigenfunction expansion forP0(E,t),

P0~E,t !5(
l

Cle2lGtyl~E!, ~16!

with

Cl5
1

v~0!Z E
0

`

dE yl~E!^e2 ikq~E,F!&. ~17!

The ISF can now be expressed as
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F0~k,t !5
2p

v~0!Z (
l

e2lGtE
0

`

dE8yl~E8!E
0

`

dE yl~E!

3^e2 ikq~E8,F8!&^eikq~E,F!&. ~18!

Next we expand the exponentials in powers ofkq. It is
easy to see that the averages in Eq.~18! can be written as

^e2 ikq8&^eikq&5 (
n50

`

~A2nk2n1 iA2n11k2n11!. ~19!

By substituting Eq.~19! into Eq. ~18!, relabeling some
sums, and using Eq.~15! we can show that all the odd pow
ers ofk cancel iflÞ0.

Since the system is bound,F0(k,`) has a nonvanishing
value, which is responsible—through thel50 term—for the
existence of the elastic component

Sel~k,V!5 f ~k!d~V!, ~20!

with f (k)52pv(0)ZuC0u2 being the Debye-Waller factor.
If we restrict ourselves to the QE line, the right-hand s

of Eq. ~19! can be rearranged to read

(
j 50

`

(
m50

`

~21! j 1m~k!2~ j 1m!F ^q82 j&^q2m&
~2 j !! ~2m!!

1^q82 j 11&^q2m11&
~2 j 11!! ~2m11!!

k2G .
For symmetricpotentials,̂ q2 j 11&50. Moreover, by using

Eq. ~14! we can eliminate those terms containingj 50 or
m50. The quasielastic line can then be expressed as a
perposition of Lorentzians whose width is determined by
friction constant

SQ~k,V!5
2

v~0!Z (
j 51

`

(
m51

`

~21! j 1mk2~ j 1m!

3 (
l.0

lG

~lG!21V2 J2n~l!J2m~l!, ~21!

with

Jn~l!5
1

n! E0

`

dE yl~E!^qn&. ~22!

It is now clear that the leading contribution of a symm
ric potential to the QE line is proportional tok4,

SQ~k,V!.
2k4

v~0!Z (
l.0

lG

~lG!21V2 J2
2~l!. ~23!

This confirms what was argued in Ref. 5, but here we a
have a simple prescription for the evaluation of the QE l
shape. The simple harmonic oscillator result6 can be obtained
easily after substituting the suitable expressions forl and
yl .

In the case ofasymmetricpotentials, the QE line can b
evaluated as
e

u-
e

-

o
e

SQ~k,V!5
2

v~0!Z (
m50

`

(
j 51

`

~2k2! j 1m(
l.0

3
lG

~lG!21V2 D j ,m~l!, ~24!

where

D j ,m~l!5~12dm,0!J2 j~l!J2m~l!2J2 j 21~l!J2m11~l!.

The leading term is now of orderk2,

SQ~k,V!.
2k2

v~0!Z (
l.0

lG

~lG!21V2 J1
2~l!. ~25!

A few further considerations are in order.
~1! For symmetric potentials there are cancellations t

conspire to eliminate thek2 term; the loss of correlation tha
generates the QE line is weaker than for unsymmetrical
tentials. We note that the cancellations are even more dra
in the case of the spectral distributionS(V) of the position-
position correlation function. In that case, Dykmanet al.
showed that the QE peak vanishes completely for sing
minimum symmetric potentials.8

~2! In the zero-friction limit (G→0) we can use the com
pleteness relation for$yl% to prove that the QE componen
collapses to an elastic line, whose intensity we callSH(k).
The absence of friction implies that the correlations per
for all times and that the system does not equilibrate.5

~3! The introduction of stochasticity (GÞ0) makes the
problem ergodic and induces the transfer of intensity fr
the elastic to the QE region. The difference between the e
tic intensity SH(k) for the Hamiltonian system and the su
viving intensity f (k) for the ergodic system gives the tot
intensity of the QE line in the equilibrating system, as it w
argued in Ref. 5. If we wait long enough, all memory of th
periodicity is lost even for the smallest nonzeroG. Therefore,
the total transferred intensity,SH(k)2 f (k) is independent of
G, a fact that can be easily verified.

~4! Energy relaxation and system equilibration beco
faster with increasing stochasticity. Consequently, the wi
of the Gaussians is an increasing function ofG.

~5! The cross section depends on the temperature thro
Z, l, andCl . In addition, the friction coefficient itself may
depend on the temperature.

~6! The sum of the elastic and QE contributions can
expressed as

Sel~k,V!1SQ~k,V!5 f ~k!Fd~V!1
1

p (
l

S Cl

C0
D 2

3
lG

~lG!21V2G , ~26!

i.e., the Debye-Waller factor affects the elastic and QE co
ponents. The QE line consists of a superposition of Lore
zians generated by energy relaxation modes. The width
these Lorentzians increase with increasing stochasticity,
to faster energy relaxation.

As an example we next analyze the asymmetric harmo
oscillator V(q)5 1

2 (v2q)2 (q,0) and V(q)5 1
2 (v1q)2 (q

.0). The oscillation frequency
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v5
2v1v2

v11v2
, ~27!

does not depend on the energy^p2&5E and the coordinateq
can be expressed as

q~E,F!5~2E/v1
2!1/2cos~F!, if 2p/2,F,p/2

and

q~E,F!5~2E/v2
2!1/2cos~F!, if p/2,F,3p/2.

The eigenvalues and eigenfunctions are, respectively,lm
52m andym(E/T)5T21/2exp(2E/T)Lm(E/T), wherem is a
natural number andLm is a Laguerre polynomial.10 The in-
tegrals in Eq.~25! are easily evaluated and we obtain

SQ~k,V!.
Tk2

2p2 S 1

v2
2

1

v1
D 2

(
m51

` F ~2m23!!!

~2m!!! G2

3
2mG

~2mG!21V2 . ~28!

Obviously, this contribution vanishes for the symmet
oscillator and increases when we increase the asymm
Note also that the intensity of the successive Gaussians
creases very fast withm; generally we will not need to kee
many terms in the eigenvalue expansion.

It is not difficult to compute contributions to higher orde
in k explicitly. A term proportional tok2n will be accompa-
nied by a factor of the order of̂q2n&;(T/Mev

2)n, where
Me is the effective scatterer mass. Hence, the leading t
for a symmetric harmonic oscillator would be proportional
T2, while for an asymmetric oscillator it should grow lin
early with T.

For low and moderate values ofk we expect a much
stronger scattering from an asymmetric oscillator. The ra
.

a-
ry.
e-

m

e

of k for which a simple power law could be observed w
depend on such parameters as potential curvature and
terer mass. In the soft potential model of glasses, this ra
may be quite large, since between 20 and 100 atoms
thought to participate in the soft mode.1 ~In the case of vit-
reous silica, it seems appropriate to takeMe to be the mass
of the oxygen tetrahedron.2! Estimates such as that present
in Ref. 6 for the harmonic oscillator indicate that the lowe
order term could describe the scattering for values ofk as
large as several (Å)21. In their study of vitreous boron
trioxide,11 Bermejo and co-workers observed a linear d
crease of theelasticintensity as a function of temperature fo
data spanning a broad temperature range and for various
ues ofk. This suggests that the scattering is due to asymm
ric harmonic or approximately harmonic oscillators, f
which we expect the intensity transferred to the QE line
increase linearly with temperature.

In this work we have clarified the relation between pote
tial symmetry and the wave-vector dependence of
neutron-scattering cross section, showing that asymme
potentials give rise to a stronger scattering signal. Ak2 de-
pendence of the QE line would be the signature of an as
metry in the effective potential recorded by the scatterer.
have also provided adequate expressions for the evalua
of the dynamic structure factor in terms of the eigenfunctio
of a generalized energy diffusion equation. Our resu
should make it a little easier to extract information abo
effective potentials from the QE scattering data.

This research was supported by the National Scie
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to Professor J. Ja¨ckle for stressing the importance of clarify
ing the relation betweenk dependence and symmetry, an
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from L. Avilés.
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