PHYSICAL REVIEW B

CONDENSED MATTER

THIRD SERIES, VOLUME 56, NUMBER 17 1 NOVEMBER 1997-

BRIEF REPORTS

Brief Reports are accounts of completed research which, while meeting theRlsygital Review Bstandards of scientific quality, do
not warrant regular articles. A Brief Report may be no longer than four printed pages and must be accompanied by an abstract. The
same publication schedule as for regular articles is followed, and page proofs are sent to authors.

Wave-vector dependence in quasielastic neutron scattering

C. A. Condat
Department of Physics, University of Puerto Rico, MayamyuPuerto Rico 00681
(Received 2 June 1997

The wave-vector K) dependence of the quasielastQE) intensity generated by neutrons scattered by
particles moving under the action of one-dimensional potentials and weak stochastic forces is investigated in
detail. It is shown that, in the low-limit, the quasielastic intensity due to scatterers subject to symmetric
potentials is proportional tk*, while asymmetric potentials will generally give rise téaterm. Formulas to
evaluate the coefficient for an arbitrary term ik @xpansion of the cross section are derived. It is also shown
that the QE line consists of a superposition of Lorentzians generated by energy relaxation modes. A possible
application to the soft-potential model of glasses is indicdt86163-182807)03741-1

It has often proved useful to model slow excitations inpotentials grows ak*. The purpose of this paper is to ex-
such complex, disordered systems as proteins and glasses déyine in greater detail the correlation between the potential
considering localized motions under the action of effectivesymmetry and the wave-vector dependence of the QE scat-
one-dimensional potentials’ The effects of fast modes on tered intensity using the more general formalism of Ref. 6.
these excitations can be introduced through a stochastic tergye will also derive explicit formulas for the coefficients in a

in the equations of the motion. This stochasticity gives rise tqyave-vector expansion of the cross section. These formulas
a quasielasti¢QE) line in the neutron-scattering spectrdth.  permit a precise evaluation of the QE line shape when the
Since we usually do not know priori—but would like 0 gcatterer is simultaneously subject to potential and stochastic
ascertain—the nature of the forces that determine the scaf cag

terer motion, an analysis of the properties of the scattering A Fokker-Planck approach can be used to investigate the

cross section corresponding to physically meaningful modebE line generated by scattering from anharmonic single-

systems would be valuable. In particular, a detailed under:

standing of the relation between the properties of the moderpinimum oscillators subject to weak frictional forc%Using
9 brop 2 method due to Dykman and co-workérsye showed that

potentials and the energy and wave-vector dependence of th .
cross section would help us optimize the information pro-tﬁ}e QE component of t_he dynamic structure _fact_or can be
obtained from the solution of a generalized diffusion equa-

vided by the experiments. o )
We have recently examined the behavior of the dynamidion in €nergy space. Our analysis of théependence of the
fpgattering cross section will rest on the properties of this

structure factor generated by scatterers that move under t J M- -

influence of potential and weak stochastic forcesin Ref, ~ €nergy diffusion equation. , .

5 we showed that a scatterer subject to Hamiltonian motion !N the following we assume that the scattering potential
in one dimension cannot yield a QE lian exception is U(4) is harmonic near its bottom and thid(|g|— ) —,
provided by potentials containing flat sectipné/e also ar- Whereq is the generalized scatterer coordinate. We further
gued that, if stochastic forces are added, the total QE interRSsume that the scatterer has unit mass and take the Boltz-
sity can be obtained as the difference between the elasti®ann constant to be equal to unity.

intensity for the associated Hamiltonian system and the The dependence of the neutron-scattering cross section on
Debye-Waller factor. Using a cumulant expansion, it thenthe momentum transfetk and the energy transfei(} is
follows that the total QE intensity scattered by symmetricgiven by the dynamic structure factor

0163-1829/97/5@.7)/107034)/$10.00 56 10703 © 1997 The American Physical Society



10 704 BRIEF REPORTS 56

1 w —EIT )
S(k,Q)= p ReJO e'MF(k,t)dt, ) Po(E,0) = Pra(E)Z (e lAED) 9

o(

wheret is the time and=(k,t) is the intermediate scattering with Z being the partition function. On the other hand, the
function (ISF).>* By means of a change in variabRthe ISF  current densityj along the energy axis

can be expressed in terms of an integral involving the prob-
ability density P(E,®;t) of finding the scatterer at a given

location in the energy-phase spadg @) at timet Po(E,1). (10

dE

I(Ejt)= —F{A(E) i+B(E)

satisfies the boundary conditiop@,t) =j(,t)=0.
After applying the usual ansa®q(E,t)=e M'y(E) to
Eq. (5), we are left with the eigenvalue equation

SinceP(E,®;t) is periodic in®, it can be expanded in a

o 2m .
F(k,t)=fo dEf0 dd e IEPIP(E d;t). 2

Fourier series Ky(E)+ATl'y(E)=0. (11)
~ . Defining
P(E®,t)= >, Py(E)e™m. 3)
A . -1 w(B) g
G(E)=ex f dX A (X)B(X) |= —=-€e~"", (12
Using this equation, the ISF can be written as the sum 0 w(0)

F(k,t)=XF,,, where eaclfF , involves an energy and phase
integral containing a singlB,,. The Fourier componentd,,
undergo little mixing if the friction is weak, i.e., if . .
<w(E) for all E<T. Under these conditions, only thra J dEyl(E)G(E)KyZ(E)=f dE y,(E)G(E)Ky,(E),
=0 component of gives a substantial contribution to the 0 0

guasielastic region. This component can then be evaluated as 13
an energy integral

we can use the boundary conditions jdik,t) to verify that

i.e., the operatoG(E)K is self-adjoint. We can then work
o . with a set{y,} of real and orthogonal eigenfunctions of the
Fo(k,t)=27rJ dE Py(E,t)(eaEP), (4)  operatorK. Moreover, the corresponding eigenvalues are
0 real, nondegenerate, and non-negative. The lowest eigen-

Here the angular brackets indicate the average over an orbf@lue )\=07(l:0rresp0nds to the equilibrium solutionR(E)
at fixedE. We are choosing the energy origin at the location=[©(E)Z]” “exp(~E/T). The evolution from the initial dis-
of the potential minimum. It can be shown that the functiontribution Po(E,0) to the equilibrium distributioryo(E) pro-
P, is a solution of the following generalized energy diffusion C€€ds according to the energy relaxation process described
equation® by Eq. (5).
If A\#0 we can easily prove the following results:

dPo(E,t)
———=TKPy(E,t), (5) o
at f dEy,(E)=0 (14)
0
wherel is the friction coefficient and the operatiiris de-
fined as and
d d o o0
K=gg | AE) gg+B(E) | © | dEE) | dEnE @@=
dE dE 0 0
with (19

where we have abbreviatedq)=(q(E)) and {(q')
A(E)=2T(p*(E,®)) @ =(q(E")).
Implementing the initial condition, Eq9), we write an

and eigenfunction expansion fd?y(E,t),

T Jw(E
LT dw(E)

B(E)=2(p*(E,®)) o(E) GE

)

P0<E,t>=§ Cre My, (E), (16)

HereT is the temperaturgy(E,®P) is the generalized mo-
mentum, andw(E) is the oscillation frequency of the asso- w
ciated Hamiltonian system. Note a minor change in notation .
with respect to Ref. 6: The friction coefficient has been ex- = ! f dE y, (E)(e KaE®) (17)
plicitly extracted from the operatdf; in this way we will w(0)Z Jo
later obtainl'-independent eigenvalues. The initial condition
for the functionPy(E,t) is® The ISF can now be expressed as

ith
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—mj dE'y,(E’ )J dEy,(E
><<e—ikq(E”¢'>>(eikq<E'q’)>- (18

Next we expand the exponentials in powerskof It is
easy to see that the averages in Bd@) can be written as

<e7ikq’><eikq>:n§0 (Ao k2" +iA, 4 k2", (19

By substituting Eq.(19) into Eqg. (18), relabeling some

sums, and using Eq15) we can show that all the odd pow-

ers ofk cancel ifA#0.

Since the system is boun#égy(k,) has a nonvanishing
value, which is responsible—through the= 0 term—for the
existence of the elastic component

Sei(k, Q) =1(k) (), (20
with f(k)=2mw(0)Z|Cy|? being the Debye-Waller factor.

10 705

k2)j+m2

x>0

53

Al
* oz az Pim(h):

k= o7z

(24)

where
D m(N) = (1= 60 d2j(N)Iom(N) = Izj - 1(N)Joms 2 (N).

The leading term is now of ordée?,

>

(,U(O)Z A>0

2

s JiN). (25

k,Q M
So(ki ()= (AT)%+Q

A few further considerations are in order.

(1) For symmetric potentials there are cancellations that
conspire to eliminate thk? term; the loss of correlation that
generates the QE line is weaker than for unsymmetrical po-
tentials. We note that the cancellations are even more drastic
in the case of the spectral distributi®f(2) of the position-
position correlation function. In that case, Dykmahal.

If we restrict ourselves to the QE line, the rlght hand S|deshowed that the QE peak vanishes Comp|ete|y for s|ng|e-

of Eq. (19 can be rearranged to read

(@' 2)(g”™)

]+m(k)2 j+m) (Zj)!(zm)!

il

For symmetrigpotentials (g2 ") =0. Moreover, by using
Eq. (14) we can eliminate those terms containipg0 or

+<qr2j+l><q2m+1>
(2j+1)1(2m+1)!

minimum symmetric potentials.

(2) In the zero-friction limit ("—0) we can use the com-
pleteness relation fofy,} to prove that the QE component
collapses to an elastic line, whose intensity we &|(k).

The absence of friction implies that the correlations persist
for all times and that the system does not equilibrate.

(3) The introduction of stochasticityl(#0) makes the
problem ergodic and induces the transfer of intensity from
the elastic to the QE region. The difference between the elas-
tic intensity Sy (k) for the Hamiltonian system and the sur-

m=0. The quasielastic line can then be expressed as a swMiving intensity f(k) for the ergodic system gives the total
perposition of Lorentzians whose width is determined by thentensity of the QE line in the equilibrating system, as it was

friction constant

8
8

(k)= 2 (—1)iTmg2G+m
Slk w(0)Z & &
A
><)\>O ()\[‘)2—+()2‘]2n()\)~]2m(7\), (21)
with
1 (=
Jn()\)ZH fo dE y,(E){q"). 22

It is now clear that the leading contribution of a symmet-

ric potential to the QE line is proportional i,

>

Q)(O)Z A>0

4

AT
So(k. )= arzraz - (@

argued in Ref. 5. If we wait long enough, all memory of the
periodicity is lost even for the smallest nonzétoTherefore,
the total transferred intensit$, (k) — f (k) is independent of
I', a fact that can be easily verified.

(4) Energy relaxation and system equilibration become
faster with increasing stochasticity. Consequently, the width
of the Gaussians is an increasing functionl of

(5) The cross section depends on the temperature through
Z, \, andC, . In addition, the friction coefficient itself may
depend on the temperature.

(6) The sum of the elastic and QE contributions can be
expressed as

1 C,\?
Sei(k, Q)+ So(k, ) =f(k) 5(9)4—;; (C_o)
AT
X OZE 02 (26)

i.e., the Debye-Waller factor affects the elastic and QE com-

This confirms what was argued in Ref. 5, but here we als@onents. The QE line consists of a superposition of Lorent-
have a simple prescription for the evaluation of the QE linezians generated by energy relaxation modes. The widths of
shape. The simple harmonic oscillator re%ain be obtained these Lorentzians increase with increasing stochasticity, due

easily after substituting the suitable expressions Naand
Y-

In the case ohsymmetrigpotentials, the QE line can be oscillator V(q) =

evaluated as

to faster energy relaxation.
As an example we next analyze the asymmetrlc harmonic

2(w20)? (9<0) and V(q)=3(w10)? (q
>0). The oscillation frequency
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2010, of k for which a simple power law could be observed will
W= 27 depend on such parameters as potential curvature and scat-
. terer mass. In the soft potential model of glasses, this range
does not depend on the enexgy’) =E and the coordinatq  may be quite large, since between 20 and 100 atoms are
can be expressed as thought to participate in the soft modéln the case of vit-
_ 2.1/ . reous silica, it seems appropriate to tdle to be the mass
= —m2<d< .

A(E,@)=(2E/w1) Fcod®), if —m2<P<m/2 of the oxygen tetrahedroi.Estimates such as that presented
and in Ref. 6 for the harmonic oscillator indicate that the lowest-
order term could describe the scattering for valuek afs
large as several (A)!. In their study of vitreous boron

The eigenvalues and eigenfunctions are, respectivgly, trioxide, ¢ Iﬁe:me;ol and .co-workfers pbse;ved a linear fde-
=2m andy,(E/T) =T Y2exp(E/T)L,(E/T), wherem is a grease of the astL)cmtznsny as a function o te(;nfperatu_re or |
natural number andl . is a Laguerre polynomidf The in- ata spanning a broad temperature range and for various val-

(l)l+ (1)2'

q(E,®)=(2E/w3)*%cog @), if m2<d<3x/2.

tegrals in Eq(25) are easily evaluated and we obtain ues ofk. This suggests th.at the scattering.is due_to asymmet-
ric harmonic or approximately harmonic oscillators, for
So(k,0) Tk? ( 1 1 )2 * [(2m—3)!! r which we expect the intensity transferred to the QE line to
W)= T o increase linearly with temperature.
2w \wz @1/ M=y (2m)" In this work we have clarified the relation between poten-
2ml’ tial symmetry and the wave-vector dependence of the
Xm- (28)  neutron-scattering cross section, showing that asymmetric

potentials give rise to a stronger scattering signak®Ade-
Obviously, this contribution vanishes for the symmetric pendence of the QE line would be the signature of an asym-
oscillator and increases when we increase the asymmetryetry in the effective potential recorded by the scatterer. We
Note also that the intensity of the successive Gaussians daave also provided adequate expressions for the evaluation
creases very fast witm; generally we will not need to keep of the dynamic structure factor in terms of the eigenfunctions
many terms in the eigenvalue expansion. of a generalized energy diffusion equation. Our results
Itis not difficult to compute contributions to higher orders should make it a little easier to extract information about

in k explicitly. A term proportional td?" will be accompa-  effective potentials from the QE scattering data.
nied by a factor of the order dig®")~(T/M.»?)", where

M, is the effective scatterer mass. Hence, the leading term This research was supported by the National Science
for a symmetric harmonic oscillator would be proportional to Foundation through Grant No. HRD-9450342. | am grateful
T2, while for an asymmetric oscillator it should grow lin- to Professor J. &le for stressing the importance of clarify-
early with T. ing the relation betweek dependence and symmetry, and

For low and moderate values &f we expect a much for illuminating discussions. | acknowledge useful comments
stronger scattering from an asymmetric oscillator. The rangérom L. Avilés.
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