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Exact calculation of multifractal exponents of the critical wave function of Dirac fermions
in a random magnetic field
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The multifractal scaling exponents are calculated for the critical wave function of a two-dimensional Dirac
fermion in the presence of a random magnetic field. It is shown that the problem of calculating the multifractal
spectrum maps into the thermodynamics of a static particle in a random potential. The multifractal exponents
are simply given in terms of thermodynamic functions, such as free energy and entropy, which are argued to
be self-averaging in the thermodynamic limit. These thermodynamic functions are shown to coincide exactly
with those of a generalized random energy model, in agreement with previous results obtained using Gaussian
field theories in an ultrametric space.@S0163-1829~97!05040-6#
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I. INTRODUCTION

In recent years it has become clear that the wave funct
of noninteracting disordered systems at a continuous me
insulator transition have multifractal scaling properties.
opposed to a simple fractal, these statistical self-similar w
functions cannot be described by a single fractal dimens
but instead an infinite set of scaling exponents is need
Indeed, such families of scaling exponents have been
tained for the critical wave function at a localizatio
delocalization transition within several different framework
including perturbative renormalization-group treatments
replicated1 and supersymmetric2 nonlinear sigma models, a
well as numerical simulations.3 Although these results seem
to provide sufficient evidence for multifractality at the meta
insulator transition, none of them allows one to understa
the full spectrum of multifractal exponents. This is so b
cause nonperturbative techniques are needed to probe th
spectrum.

Given the present state of affairs of this problem it wou
be highly desirable to have an exactly solvable system
exhibits a multifractal wave function. In recent years it h
been shown that the Dirac equation in random fields in tw
spatial dimensions~2D! is actually an example of such
system. Moreover, it has also become clear that the ran
Dirac Hamiltonian in 2D describes the universality class
the metal-insulator transition at a half-filled Landau level
disorderednonrelativisticnoninteracting electrons in a ver
high magnetic field.4,5 This surprising result has been r
cently established by direct derivation6 of the random Dirac
560163-1829/97/56~16!/10668~10!/$10.00
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equation from the Chalker-Coddington model of percolat
edge states.7

Recently,exact results for thefull multifractal spectrum
have been obtained for Dirac fermions interacting with
random magnetic field.8 These results were obtained by ma
ping the problem to a Gaussian field theory in an ultrame
space~a Cayley tree!. The calculation of multifractal scaling
properties was then reduced to the computation of ther
dynamic functions of a special generalized random ene
model ~GREM!, which are known exactly.9–12 The field
theory in the localization problem is defined in Euclide
space. Nevertheless, it was argued that as the exponents
measure of a global property, the difference between the
trametric and the Euclidean metric would not alter the
sults. Moreover, a phase transition that occurred in the ul
metric model11 also seems to be present in the origin
Euclidean problem, as evidenced by analytical argume
and by Monte Carlo simulations.8

It has also been pointed out that there exists a deep
nection between the multifractal spectrum for the critic
wave function of a Dirac fermion in a random magnetic fie
and the spectrum of primary fields in nonunitary conform
field theories with vanishing Virasoro conformal charge13,14

on the one hand, and Liouville field theory15 on the other. It
is then tempting to speculate that there must be a counte
to the freezing transition characterizing GREM in the
quantum field theories.

In the present paper we show that the exact results of R
8 on the multifractal spectrum and, in particular, the ex
tence of a phase transition, can be obtained comple
within the framework of the Gaussian field theory in tw
10 668 © 1997 The American Physical Society
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56 10 669EXACT CALCULATION OF MULTIFRACTAL EXPONENTS . . .
dimensional Euclidean space. The key idea of our appro
is the introduction of a quantityV(E) that counts the numbe
of points where the critical wave function has amplitude~or
height! C}e2E/2 in a disk of radiusL ~suitably discretized
as a lattice of spacinga!. We show that this quantity is
directly related to the microcanonical density of states of
GREM and which we will also call the density of states. T
advantage of the approach that we present in this work is
it is direct and it does not rely on the use of either replicas
supersymmetry. Our results are essentially rigorous, ex
for a conjecture, which we believe to be true, about the s
averaging property of the probability distribution of the e
tropy lnV(E) in the thermodynamic limitN→`. We also
explain in detail why the Gaussian field theories in both E
clidean and ultrametric spaces give exactly the same res

This paper is organized as follows. In Sec. II we introdu
the model and the quantities of main interest: the multifrac
exponentst(q) of the critical wave function, its Legendr
transform f (a), and the density of statesV(E). Here we
draw an analogy between the computation of the inverse
ticipation ratio of orderq of the wave function and the par
tition function for all spatial configurations of a static partic
in a random potentialf(x)52 lnuC(x)u. V(E) is the micro-
canonical density of states of this equivalent problem. In S
III we derive the thermodynamic properties of the equival
system. Here we calculate the average density of states
use it to show that the equivalent problem has a phase t
sition at a critical ‘‘energy’’ determined by the widthg of the
probability distribution of the random vector potentials. W
show that the thermodynamic functions of the equival
problem are exactly those of the GREM. In particular,
show that, in terms of the critical wave function, the pha
transition of the GREM represents the onset of the reg
where the probability distribution of the wave function
undersampledin a given discretization of the plane. In Se
IV we use these results to derive the exact form of the fu
tions f (a) andt(q). Our results agree completely with th
analysis given in Ref. 8. Section V is devoted to the conc
sions. Technical details of our calculations are given in
appendices.

II. MODEL

We consider the problem of a massless Dirac ferm
moving on a plane and interacting with a static random m
netic field normal to the plane.4,5,16,13,6,17In this model, the
wave functions are localized for all energies other than
critical energy E50, at which the wave function is
multifractal.5,13 This model thus describes a metal-insula
transition in two dimensions.

The Dirac Hamiltonian in random and staticvector poten-
tials in two space dimensions is

H5sm@ ivF]m2Am~x!#. ~2.1!

For convenience we will set the Fermi velocityvF to unity
from now on. This operator acts on the space of normaliza
~in a finite area! two-component spinor statesCa(x), with
a51,2. In Eq.~2.1! s denotes a two-component vector
two 232 Pauli matrices, which we take to bes1 and s2,
respectively, withm51,2 being the two orthogonal direc
tions on the plane. The probability distribution of the rando
ch
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vector potentialA~x! will be specified below. In principle,
other sorts of random fields, such as random mass and
dom chemical potential, are also allowed in a gene
situation.4

If only random vector potentials are allowed,E50 is an
exact eigenenergy for all realizations of the disorder and
corresponding wave functions can be determined exact18

Indeed, letC0 be a two-component spinor with energyE50,
i.e., HC050. Then by means of a combination of chiral an
gauge transformations, parametrized by the fieldsf~x! and
x~x!, respectively,

C0~x!5e2f~x!s32 ix~x!h~x!; ~2.2!

the eigenvalue equation reduces to the requirement tha
two component spinorh ~x! satisfies the nonrandom Dira
equation

ism]mh~x!50. ~2.3!

Here, the chiral ‘‘angle’’f~x! and the gauge transformatio
x~x! must be chosen to solve Eq.~2.5! below.

In this work we will only be interested in the multifracta
properties of the amplitudes of the wave functions. The
properties involve only the magnitude of the wave functio
and are independent of their phases, and hence are ga
invariant properties. However, it should be stressed that
decomposition of Eq.~2.5! is only valid if the total magnetic
flux threading the disk always vanishes, an assumption
we will implement by an appropriate choice for the probab
ity distribution of the vector potentialA(x).19 The remaining
degrees of freedom carried by the spinorh ~x! then span a
two-dimensional Hilbert space. Here we willchoose the
spinor h(x)5(1,0) for convenience. It is worth noting tha
any choice of spinor breaks the chiral symmetry genera
by s3 . This procedure makes sense if we think of switchi
on an average uniform magnetic field and then taking it
zero. Indeed, a magnetic field selects a state with uni
chirality determined by the sign of the magnetic field. In t
context of the Chalker-Coddington model the choice
spinor is thus the equivalent of the choice of the chirality
the edge current for a system on an open geometry such
disk.

With the above considerations we write theE50 wave
function as

c~x!5e2f~x!, ~2.4!

and drop the constant spinorh(x)5(1,0) altogether. The
random vector potential and magnetic field are given by

An~x!5enr]rf~x!1]nx~x!, ~2.5!

B~x!52¹2f~x!. ~2.6!

Notice that the gauge degrees of freedom enter througx
and notf, and any phase in the wave function can be elim
nated by a gauge transformation. Finally, we assum
Gaussian distribution of magnetic fields20 as follows:

P@f~x!#}e21/2g *d2x„¹f~x!…2. ~2.7!

whereg is the width of the probability distribution and play
the role of a coupling constant in this problem. One verifi
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10 670 56CASTILLO, CHAMON, FRADKIN, GOLDBART, AND MUDRY
that, in the thermodynamic limit, the uniform magnetic fie
does indeed vanish for all realizations of the disorder. A
technical point, it is understood that, among all fieldsf(x)
that differ from each other by a uniform value, only on
representative is counted in the disorder average overf @for
example, of all possible uniform fields, only the fie
f(x)50 is counted#. In this way, the ambiguity in the man
to one relation betweenf~x! and A~x! in Eq. ~2.5! is re-
moved~see Appendix A!.

The multifractal nature of the wave function can
probed through the moments of the probabilitiespx obtained
from the normalized wave functionC~x!. As we anticipated
above, we shall use a lattice regularization with a mic
scopic cutoff distancea ~box size!, and macroscopic system
sizeL. There are thusL2/a2 sites. The moments ofpx are the
inverse participation ratiosP(q,a/L):

PS q,
a

L
D[(

x
px

q[(
x

uC~x!u2q[

(
x

uc~x!u2q

S (
x

uc~x!u2D q

5

(
x

e22qf~x!

H(
x

e22f~x!J q . ~2.8!

The multifractal exponentst(q) for a given wave function
are then defined by21,22

t~q![D~q!~q21![ lim
a/L→0

1

lnS a

L D lnS (
x

px
qD

5 lim
a/L→0

ln P~q,a/L !

lnS a

L D . ~2.9!

We will show later thatt(q) is self-averaging, i.e., that fo
any realization of the disordert(q)5^t(q)&, where^•••& de-
notes the average over the distribution of random magn
fields of Eq.~2.7!.

An equivalent way of describing the multifractal prope
ties of a given wave function is through the scaling exp
nentsax , defined by23–25

px;S a

L D ax

. ~2.10!

The number of lattice points at which the exponentax takes
values betweena8 anda81da8 defines the functionsr and
f :

da8r~a8!S a

L D 2 f ~a8!

. ~2.11!

As is well known,24,25 the two sets of exponentst(q) and
f (a) are related by a Legendre transformation:
a

-

ic

a5
dt~q!

dq
, ~2.12!

f ~a!5aq2t~q!. ~2.13!

It is possible in general to map the quantities that describ
given multifractal wave function into thermodynam
quantities:26 q maps into an inverse temperatureb, t(q) into
a free energyf 0(b), a into an internal energye, and f (a)
into an entropys(e). In our case, however, the equivalen
is more evident due to the particular form of the wave fun
tion of Eq. ~2.4!. We map our problem into the statistica
mechanics of a single particle in a lattice of spacinga and
size L with a random site potentialV(x)52f(x), in the
static limit ~i.e., for the hopping matrix element equal
zero!. For this model, the random canonical partition fun
tion for a particular realization of the disorder reads

Z~b![(
x

e2bV~x!, ~2.14!

where the role of the random energies is played by the va
that the disorder potentialV(x)52f(x) takes. For each dis
order realization, the free energy of the system is

F~b![2
1

b
ln Z~b!. ~2.15!

In this system, the number of thermodynamic degrees
freedom is

N5 lnS L

aD 2

, ~2.16!

and the number of energy levels is

eN5S L

aD 2

. ~2.17!

This is similar to a system ofN spins withS5 1
2 , where one

has 2N states. Thus, the intensive free energy is defined

f 0~b![
F~b!

N
. ~2.18!

@The subscript 0 is introduced to avoid confusion with t
spectrumf (a).#

In this problem it turns out that it is also useful to cou
states directly, which naturally leads us to define a micro
nonical partition function~or density of states! for each ran-
dom field configuration:

V~E![(
x

dW@E2V~x!#. ~2.19!

HeredW(E) counts the number of states in a region of wid
W around E. One can choose for it, e.g., either
top hat ~i.e., a product of step functions! dW(E)
5u(E2W/2)u(W/22E), or a smooth function such as

dW~E![e2 E2/2W2
. ~2.20!

The microcanonical and canonical partition functions a
then related by Laplace transformation:
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56 10 671EXACT CALCULATION OF MULTIFRACTAL EXPONENTS . . .
Z~b!5E dE

W
V~E!e2bE. ~2.21!

Here, as is usual in statistical mechanics,W has to be taken
as small as possible but still larger than the average le
spacingD. As we show later, in the present case this tra
lates into the condition

1@W@D54A g

2p

lnS L

aD 2

S L

aD 2 . ~2.22!

From the microcanonical partition function one can obt
the total entropy:

S~E![ ln V~E!, ~2.23!

and again it will be convenient to define the entropy a
energy per thermodynamic degree of freedom:

s[S/N, e[E/N. ~2.24!

Having established the thermodynamic dictionary,
normalization factor for the wave function and the inver
participation ratiosP(q,a/L) can be written in terms of the
partition function:

C~x!5
e2f~x!

AZ~1!
, ~2.25!

PS q,
a

L D5
Z~q!

Z~1!q . ~2.26!

In turn, the functiont(q) can be simply expressed in term
of the free energy at the inverse temperaturesb5q and
b51:

t~q!52q lim
a/L→0

F~q!2F~1!

lnS a

L D 52q lim
a/L→0

@ f 0~q!2 f 0~1!#.

~2.27!

Similarly, from the definition ofax @see Eq.~2.10!# and the
value of the wave function@Eq. ~2.25!#, we see that

ax52F V~x!

lnS L

aD 2 2 f 0~1!G . ~2.28!

Thus, comparing the definitions off (a) @Eq. ~2.11!# and the
entropy, one verifies that

a52@e2 f 0~1!#,

f ~a!52s~e!. ~2.29!

By using the relation betweent(q) and f 0(b), and between
f (a) and s(e) one recovers the well-known result that th
Legendre transformation in the language of multifractal
ponents@Eq. ~2.13!# is equivalent to the thermodynamic re
lation:
el
-

d

e

-

f 0~b!5e2
s~e!

b
. ~2.30!

III. THERMODYNAMICS OF THE MODEL

In this section, we are going to show that the probabil
to find energy levels outside a particular window of ener
@2ec ,ec# vanishes in the thermodynamic limit. This is th
most important result of our work.

The key step in our argument is our estimate for the d
order average of the microcanonical partition functio
which relies crucially on the choice of a distribution for th
disorder with a variance depending logarithmically on spa
separation.

The simplest way to study the thermodynamic propert
of the system is to obtain the disorder average of the mic
canonical partition function:

^V~E!&5E DV~x!P@V~x!#(
x

dW@E2V~x!#

5E Df~x!P@f~x!#(
x

dW@E22f~x!#

5W(
x

exp$2E2/2@W214G~x,x!#%

AW214G~x,x!
~3.1!

'WS L

aD 2 expH 2E2/F4g

p
lnS L

aD G J
A2g

p
lnS L

aD
.

~3.2!

Here, G(x,y) is the Green function20 for the field theory
defined by the action of Eq.~2.7!, with a short distance cut
off length given bya. Its form in the short distance limit is

G~x,y!52
g

4p
lnS ux2yu21a2

L2 D . ~3.3!

On the last line of Eq.~3.2!, we have neglected the widthW
as compared to terms of order ln(L/a).

Alternatively, in terms of intensive quantities, the disord
averaged number of states in an energy interval of wi
w5W/N arounde5E/N is

^V~e!&'wAlnS L

aD
g

expF22 lnS L

aD S e2

4~g/2p!
21D G

5wAN

2g
expFNS 12

e2

4~g/2p! D G . ~3.4!

This means that in the thermodynamic limit (N→`),
^V(e)& goes to zero forueu.2Ag/2p and diverges exponen
tially with the number of degrees of freedom fo
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ueu,2Ag/2p. This behavior for the average number of sta
^V(e)& indicates that some sort of transition should occur
the critical energyueu5ec where

ec[2A g

2p
. ~3.5!

To show that, indeed, this is a phase transition, we m
consider not the averagêV(e)&, but the number of state
V(e) for a given realization. Indeed, as shown in Appendi
B, V(E) is a random variable with very strong fluctuation
Hence, we cannot relya priori on any single moment o
V(E) to identify a phase transition. Rather, we must u
stronger probabilistic arguments to show thatec is indeedthe
critical energy of interest. We do so below by considerin
the two regimesueu.ec and ueu,ec separately.

A. zez>ec

In this region the thermodynamic limit of the microc
nonical partition function iŝ V(e)&→0. Alternatively, we
may say that for a large enough system sizeN, the average
number of stateŝV(e)&!1 in this region. If we naively try
to obtain the entropy as ln^V(e)&, we would find that it be-
comes negative forueu.ec . This is not correct; the entropy
must be defined foreach and everyrealization of the disor-
der. That means we must focus onS(e)5 ln V(e) for sepa-
rate realizations.

We are going to show now that the probability of findin
any state at all withueu.ec vanishes in the thermodynam
limit. To do that, we define the random variableV.(e) that
counts the number of states with energiese8 such that
ue8u.e:

V.~e![E
2`

2e

de8
V~e8!

w
1E

e

`

de8
V~e8!

w
. ~3.6!

Due to the fact thatV.(e) is either positive or zero, we ca
bound the probabilityP$V.(e)>1% of finding at least one
state withue8u.e by the average ofV.(e):27

P$V.~e!>1%<^V.~e!&. ~3.7!

Equation~3.7! is very general since it applies to any rando
microcanonical partition function. However, this inequal
becomes very powerful when combined with our estim
Eq. ~3.4! for ^V(e)&. Indeed, with the help of

^V.~e!&5
2

w E
e

`

de8^V~e8!&

5
1

ApN~e/ec!
e2N[ ~e/ec!221]F12OS ec

NeD G ,
~3.8!

and our upper bound Eq.~3.7!, we see thatP$V.(ec)>1%
vanishes in the thermodynamic limitN→`. We conclude
that,for a given realization, the energy levels will fall within
the intervalueu<ec with probability 1 in the thermodynamic
limit.
s
t

st

.

e

e

It is now clear how to estimate the average level spac
D in Eq. ~2.22!. We simply multiply 2ec by the ratio of the
numberN of thermodynamic degrees of freedom to the nu
ber eN of energy levels:

D5
2Nec

eN 54A g

2p

lnS L

aD 2

S L

aD 2 . ~3.9!

Finally, we can bound from above the probability for th
density of statesV(e) to be nonzero. For a given realizatio
V(e) counts states in an energy intervalw5W/N arounde.
ThereforeV(e) must be a positive integer,28 in contrast with
the averagêV(e)&. In the same way as before, the probab
ity of having a nonzero microcanonical partition function
bounded from above by a number that goes to zero in
thermodynamic limit:27

P$V~e!.0%5P$V~e!>1%<^V~e!&. ~3.10!

The entropy is thereforenot defined forueu.ec .
One can get some intuition for these results with o

word: undersampling. ConsiderV(e) for an individual real-
ization as the histogram of the number of states per ene
interval. One can think ofV(e) as the product of two fac-
tors: one is a constant that counts the total number of st
in the system, and the other is the probability~normalized to
1! for onestate to fall within a given energy interval. In th
present case the first factor has the valueeN and the second is
Gaussian with a width that grows linearly withN. In other
words, the number of data points we have iseN, which is not
enough to sample the tails of the Gaussian distribution. If
number of data points wereeNg

, with g.1, by taking N
large enough we could sample the whole distribution, and
bins in the histogram would contain a positive number
points.

B. zez<ec

In this case we can define the entropy for a given reali
tion S(e)5 ln V(e) @recall Eq. ~2.23!#. We will now show
that the entropy, for all realizations of the disorder, has
common upper bound that scales linearly with system s
Furthermore, we will also show that the probability to find
realization with entropyless or equalthan ln̂V(e)& is equal
to onein the N→` limit. The arguments go as follows.

According to our definition Eq.~2.19!, V(e) counts the
number of energy levels in some energy window. That nu
ber cannot be larger than the total number of energy lev
eN5L2/a2. Consequently, lnV(e) is bounded from above by
N. Incidentally, no such bound holds for lnZ(b) for indi-
vidual realizations of the disorder.

Next, we introduce the probability to find the intensiv
entropys5 (1/N) ln V(e) in a given interval (s1 ,s2) by

PN~s1<s<s2![E
s1

s2
dmN~s!. ~3.11!

Here,dmN(s) is the measure of the entropy forN degrees of
freedom. We will make the following assumptions:



nd
.

d

ity
ic

e
-
py
e

s-
is
n

it.
e
pe

r
ha
n
y
-
e

n
b

on-
g

to
ta-

o-

n-

ics
el

ure,
s

on

ot

e
ry,

es

-
of
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~1! The probability measuredmN(s) has a well-defined
thermodynamic limit:

lim
N→`

E
s1

s2
dmN~s!5E

s1

s2
dm`~s! ~3.12!

for all s1,s2 .
~2! There exist two positive constantsA andB such that

^V~e!&[E
2`

1`

dmN~s!eNs5ANeAN1B ~3.13!

for N sufficiently large.

Notice that we have proved the validity of the seco
hypothesis and thatA andB can both be read off from Eq
~3.4!. In particular,

A512
e2

ec
2 5 lim

N→`

1

N
ln^V~e!&. ~3.14!

We now chooses1.A. By assumption,s1.0 and

^V~e!&>E
s1

1`

dmN~s!eNs>E
s1

1`

dmN~s!eNs1

[eNs1PN~s1<s!. ~3.15!

We have thus established the upper bound,

PN~s1<s!<ANe~A2s1!N1B, ~3.16!

for all s1.A and for all sufficiently largeN. Since the ther-
modynamic limit is assumed to be well defined, we conclu
that

P`~A,s!50. ~3.17!

In other words, the probability to find the entropy dens
(1/N)ln V(e).(1/N)ln^V(e)& vanishes in the thermodynam
limit N→`.

If we could prove that the probability to find an intensiv
entropy lower than (1/N)ln^V(e)& also vanishes in the ther
modynamic limit, we would have shown that the entro
density is indeed self-averaging~i.e., almost surely takes on
and only one value!, and given by limN→`(1/N)ln^V(e)&.
However, without further knowledge of the probability di
tribution for the entropy, it is not possible to prove the ex
tence of a similar lower bound. In fact it is possible to co
struct a sequence of measures which obey Eqs.~3.12! and
~3.13! but is not self-averaging in the thermodynamic lim
We nevertheless expect the entropy density to be s
averaging for two reasons. First and in addition to our up
bound, it is possible to estimate the ratio of thenth moment
of the partition functionZ(b) to its mean raised to the powe
n. This is done in Appendix B. This estimate suggests t
the field theory computations of the multifractal dimensio
~with replicas, supersymmetry, and Liouville field theor!
are reliable8 in the regimeueu,ec . Second, the entropy den
sity for any GREM is known to be self-averaging in th
thermodynamic limit9–12 and in view of the close connectio
between GREM and our problem we expect this to also
true here.
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Thus, although we do not have a rigorous proof, we c
jecture that (1/N)ln V(e) is a random variable with vanishin
variance in the thermodynamic limitN→`, i.e., self-
averaging, and which converges to limN→`(1/N)ln^V(e)&.
This conjecture is supported by the fact that, in addition
our bound, it is in this regime that the field theory compu
tions of the multifractal dimensions~with replicas, super-
symmetry, and Liouville field theory! are reliable. In other
words, the entropy should be self-averaging in the therm
dynamic limit and it is given by

S~e!5 ln V~e!5^ ln V~e!&5 ln^V~e!& ~3.18!

5NS 12
e2

ec
2D ~3.19!

for any realization of disorder. Hence, for this range of e
ergiesueu,ec we may commute the order of ln and^•••&, i.e.,
the ‘‘quenched’’ and ‘‘annealed’’ entropies coincide.29

C. Temperature and free energy

Up to this point we have proven that the thermodynam
of this model is identical to that of the random energy mod9

for ueu>ec and argued that this is also so forueu,ec . In
order to obtain the free energy as a function of temperat
we follow Derrida.9 In the region that contains state
(ueu,ec), we obtain the temperature from

T5S ds

deD
21

52
ec

2

2e
. ~3.20!

In this region the temperature will be in the rangeuTu.ec/2,
and the free energy, computed from the relati
d f0 /dT52s, is given by

f 0~T!52T2
ec

2

4T
. ~3.21!

In the limit whenT→Tc[ ec/2, we obtaine→2ec , s→0
and f 0→2ec . Below this temperature, the system cann
lower its energy because there are no states fore,2ec . The
system remains frozen ate52ec , with entropys50 and
free energyf 0(T)52ec . In other words, foruTu lower than
the freezing temperatureTc , the energy, the entropy, and th
free energy remain at their accumulation points. In summa

b f 0~b!5H 2S 11
b2

qc
2 D if ubu<qc

22
ubu
qc

if ubu.qc ,

~3.22!

whereqc[A2p/g.
The behavior in the low temperature regime becom

clear if we consider theubu→` limit. For any configuration
and for a given value ofL/a, there is an absolute minimum
Emin and an absolute maximumEmax for the values of the
V(x). For large enoughubu these extreme values will domi
nate the partition function, and one obtains, in the case
positive sign forb,

Z~b!;e2bEmin. ~3.23!
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This means that

lim
N→`

f 0~b!5 lim
N→`

Emin

N
52ec , ~3.24!

because we know that for a large enough syst
Emin /N52ec with probability one. This implies thatf 0(b) is
self-averaging and equal to2ec522/qc , as shown above.

Notice, however, that in the low temperature regim
quenched and annealed values for the free energy are d
ent: ^ ln Z(b)&Þln^Z(b)&. Indeed, combining Eqs.~2.21! and
~3.2! one obtains for allb the so-called lognormal spectrum

ln^Z~b!&5NS 11
b2

qc
2 D , ~3.25!

which shows no obvious sign of the phase transition.
On the other hand, in the high-temperature regime,

quenched and annealed free energies^ ln Z(b)& and ln̂Z(b)&
do coincide. This can be understood by computing lnZ(b)
for one particular realization of the disorder@see Eq.~2.21!#:

Z~b!5NE
Emin/N

Emax/N

dee2N[be2s~e!] . ~3.26!

If one accepts our conjecture that the entropy density is s
averaging in the thermodynamic limit, then the saddle-po
approximation on the integrand in Eq.~3.26! probes the para
bolic part of the entropy, and one obtains for lnZ(b) the
result of Eq.~3.25!. In other words, not only is lnZ(b) self-
averaging but in this case ln and^•••& commute. In the lan-
guage of multifractality, this is the region in which the par
bolic approximation is exact. Besides, since atubu5qc the
minimum of be2s(e) falls at the edge of the populate
region, there is a singularity in the derivative of lnZ(b), and
one recovers the phase transition point.

D. Equivalence with random energy models

We have calculated the thermodynamic functions of
model and they are identical to those of a special general
random energy model.8

It is interesting to see how this comes about. All the
sults we obtained really follow from our calculation o
^V(E)& in Eq. ~3.1!. The analogous calculation for the ge
eralized random energy model of Derrida and Spohn11 gives
the same result, except that positionsx in the lattice
are replaced by directed pathsP in a Cayley tree, and the
value G(x,x)5( g/2p )ln(L/a) is replaced byG(P,P)5
( gt / ln K )ln d(P,P). Then, the two average partition func
tions must correspond if the parameters are chosen prop
Note that the requirement thatG(P,P) depends logarithmi-
cally on the ultrametric distanced(P,P) on the tree uniquely
defines the GREM in the thermodynamic limit.

One can take this analysis further by studying moment
the microcanonical partition function. Although at first sig
the expressions for the two models appear different, if o
changes variables into logarithms of the distances, one
actually see that the expressions for the GREM actually g
the Riemann sums that correspond to the integrals in the
of our model.
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IV. CONSEQUENCES
FOR THE MULTIFRACTAL SPECTRUM

Now that we have the values of the thermodynamic fu
tions s(e) and f 0(b), we can translate them into the lan
guage of multifractality, using Eqs.~2.27! and ~2.29! as our
dictionary.

The results are as follows: starting by the spectral wei
function f (a), we find that it is defined only in the interva
d2<a<d1 ~corresponding to the entropy being defin
only in the interval2ec<e<ec!, and has the value

f ~a!58
~d12a!~a2d2!

~d12d2!2 . ~4.1!

However, the values ofd2 and d1 will change with the
strength of the disorder.

Depending on the strength of the disorder, there are
regimes: in the weak disorder regime, which correspond
g,2p, the quenched and annealed averages for the lo
rithm of the wave-function normalization factorZ(1) are
coincident, while in the strong disorder regime, which cor
sponds tog.2p, they are not equal anymore.

In the weak disorder regime, the extremal dimensionsd2

andd1 are both positive:

d652S 16A g

2p D 2

, ~4.2!

andt(q) has the form

t~q!5H 2~q21!S 12
q

qc
2D if uqu<qc

2qS 12
sgn~q!

qc
D 2

if uqu.qc.

~4.3!

On the other hand, in the strong disorder regime,
lower extremal dimension is zero:

d250,

d158A g

2p
, ~4.4!

andt(q) has the form

t~q!5H 22qS 12
q

qc
D 2

if uqu<qc

4

qc
~q2uqu! if uqu.qc .

~4.5!

Notice that in this regime we findt(q)50 for q.qc , mean-
ing that for all integer moments the inverse participation
tio does not scale with system size. This is usually int
preted as characteristic of a localized wave function.

V. CONCLUSIONS

We have calculated the multifractal scaling exponents
the critical wave function for two-dimensional Dirac ferm
ons in the presence of a random magnetic field. There
transition in the multifractal spectrum, which is interpret
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as a freezing transition common to glassy systems. T
freezing transition is a rigorous result of the present w
and had been previously conjectured on the basis of a c
parison with GREM.8

We have proven that a previously proposed mapping8 be-
tween these multifractal properties and the thermodynam
of a generalized random energy model describing direc
polymers on a Cayley tree10,11 is indeed exact in the glass
regime. Our proof generalizes entropy considerations
GREM ~Ref. 9! to a two-dimensional Gaussian field theor

Derrida has also shown that a direct computation of
quenched free energy was possible on GREM. This sugg
that the same could be done on the field theory. In fact, it
be shown that the generalization of Derrida’s calculation
GREM naturally leads to estimating the partition function
Liouville field theory. We thus believe that there exists
counterpart to the freezing transition of GREM in Liouvil
field theory. It is an interesting question to probe this iss
further.

Another open issue is the fate of replica symmetry if t
replica approach is used to calculate the multifractal sca
exponents. Indeed, it is known that the freezing transition
GREM is associated to replica symmetry breaking.9,30 It
would be interesting to see how this replica symmetry bre
ing manifests itself in a replicated version of our Gauss
field theory.
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APPENDIX A: SYMMETRY AND GREEN FUNCTIONS

The probability distribution for the disorder, Eq.~2.7!,
allows for an exact symmetry under a constant real shif
the field configurationf(x):

f~x!→f~x!1z, ~A1!

c~x!→e2zc~x!, ~A2!

which leaves bothP@f(x)# andC~x! unchanged. However
neitherZ(q) nor V(E) is invariant:

V~E!→V~E22z!, ~A3!

Z~q!→e22qzZ~q!, ~A4!
is
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f

^ ln Z~q!&→22qz1^ ln Z~q!&. ~A5!

This means that, althougĥln Z(q)&2q^ln Z(1)& is well de-
fined and, in principle, one can computet(q), in a naive
calculation^ ln Z(q)& would be ill defined.

To perform an actual calculation it is convenient to bre
this symmetry in a controlled way. The simplest approach
to add a mass termm51/L to the action. This penalize
configurations for whichfÞ0. Another possibility is to im-
pose Dirichlet boundary conditions onf~x!. Although Green
functions forf~x! in each of these cases will be different, th
only value we need for our purposes is their short-dista
limit, which is the same in all cases, namely,

G~x,y!'2
g

4p
lnS ux2yu21a2

L2 D . ~A6!

APPENDIX B: MOMENTS OF V„E… AND Z„b…

In this appendix, we estimate moments of the density
statesV(E) and of the partition functionZ(b) which, we
recall, are related by Eq.~2.21!. Such moments are needed
decide if quenched and annealed averages are equal. W
gin with V(E). Let n be an integer larger than one. B
definition,

^Vn~E!&[ lim
W→0

E D@f~x!#P@f~x!#

3(
x1

••• (
xn

E dl1

2p
••• E dln

2p

3expF2
W2

2 (
k51

n

lk
21 iE

3 (
k51

n

lk22i (
k51

n

lkf~xk!G . ~B1!

We assume that all sums and integrals can be freely in
changed. Averaging over disorder is a Gaussian inte
yielding

^Vn~E!&5 lim
W→0

(
x1

••• (
xn

E dl1

2p
•••E dln

2p

3expF2
1

2 (
k,l 51

n

lk~W2dkl14Gkl!l l

1 iE (
k51

n

lkG . ~B2!

Here,Gkl is a shorthand notation for the Green function
Eq. ~A6! with argumentsxk andxl . We notice that the inte-
grand on the right-hand side of Eq.~B2! does not depend on
x1 ,...,xn for n51 but does forn.1. For higher moments
thann51, the statistical correlations encoded byGklÞ0 for
kÞ l , imply that, in a finite system,̂Vn(E)&Þ^V(E)&n. In
the thermodynamic limit, the difference between^Vn(E)&
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and ^V(E)&n disappears if the statistical correlations a
short range, as is the case in the original random ene
model ~REM! of Derrida, where all energies are assumed
be identically and independently distributed rando
variables.9 This is not so, however, ifGkl encodes long range
statistical correlations as is the case here. For any mom
n>1, there will be a critical energy densityec(n)<ec(n21)
such that the ratiôVn(E)&/^V(E)&n diverges in the thermo
dynamic limit for ueu.ec(n). In other words,V(e) is
broadly distributed in the thermodynamic limit. Our claim
that it is the limitec[ limn→1ec(n) that controls the freezing
transition, and not the naive replica limit limn→0 ec(n)5`.

Instead of calculating the sequenceec(n) explicitly, we
calculate the ratio

Rn~b![
^Zn~b!&

^Z~b!&n . ~B3!

We find that

Rn~b!;E d2x1

L2 •••
d2xn

L2 )
i , j

U xi2xj

L U22gb2/p

;cn~gb2!1S a

L D 2~n21!~12ngb2/2p!

. ~B4!

In the thermodynamic limit, the right-hand side is a fin
number forn<(2p)/(gb2) ~assumingn.1!. In this case
Zn(b) fluctuates weakly. But forn.(2p)/(gb2), Rn(b) di-
verges, and thusZn(b) fluctuates strongly. There are impo
tant consequences that follow from Eq.~B4!.
in,
gy
o

nt

~1! There exists asequence of criticalbn given by

bn
25

2p

ng
[

bc
2

n
, ~B5!

below which ln̂Zn(b)&/N5ln^Z(b)&n/N in the thermodynamic
limit N→`. Remarkably, thesamesequence of critical mo-
ments is shared by the random energy models studie
Refs. 9–11.

~2! Caution is needed when using the replica trick

^ ln Z~b!&5 lim
n→0

^Zn~b!&21

n
. ~B6!

Indeed,^Zn(b)& is not an analytic function ofn due to sin-
gularities atb52p/b2g, and n51, and caution must be
used when using the replica trick to calculate lnZ(b).

For GREM, bc indicates a phase transition between t
regime b<bc and the regimeb.bc . For all GREM, the
quenched and annealed free energy are equal ifb<bc .
However, quenched and annealed free energy are not eq
b.bc , and need not obey the same functional depende
on b for different GREM in this regime of temperature
There are essentially two Gaussian GREM’s who
quenched free energy obey the same functional depend
on b: the REM with uncorrelated energies9 and the GREM
with logarithmic correlated energies.10,11 Both undergo a
sharp freezing transition characterized by a discontinu
one step specific heat~as opposed to continuous!. Since we
have proven that the same freezing transition character
our multifractal scaling exponents, we conclude that th
must be self-averaging and given by an annealed ave
below the critical momentqc .
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