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The multifractal scaling exponents are calculated for the critical wave function of a two-dimensional Dirac
fermion in the presence of a random magnetic field. It is shown that the problem of calculating the multifractal
spectrum maps into the thermodynamics of a static particle in a random potential. The multifractal exponents
are simply given in terms of thermodynamic functions, such as free energy and entropy, which are argued to
be self-averaging in the thermodynamic limit. These thermodynamic functions are shown to coincide exactly
with those of a generalized random energy model, in agreement with previous results obtained using Gaussian
field theories in an ultrametric spad&0163-182807)05040-9

[. INTRODUCTION equation from the Chalker-Coddington model of percolating
edge states.

In recent years it has become clear that the wave functions Recently,exactresults for thefull multifractal spectrum
of noninteracting disordered systems at a continuous metahave been obtained for Dirac fermions interacting with a
insulator transition have multifractal scaling properties. Asrandom magnetic fielt These results were obtained by map-
opposed to a simple fractal, these statistical self-similar wav@ing the problem to a Gaussian field theory in an ultrametric
functions cannot be described by a single fractal dimensiorgpace(@ Cayley treg The calculation of multifractal scaling
but instead an infinite set of scaling exponents is neededroperties was then reduced to the computation of thermo-
Indeed, such families of scaling exponents have been otlynamic functions of a special generalized random energy
tained for the critical wave function at a localization- model (GREM), which are known .exactlli’/le The field
delocalization transition within several different frameworks, theory in the localization problem is defined in Euclidean
including perturbative renormalization-group treatments orsPace. Nevertheless, it was argued that as the exponents are a
replicated and supersymmetdmonlinear sigma models, as measure of a global property, the _dlfference between the ul-
well as numerical simulatiorfsAlthough these results seem trametric and the Euclidean metric would not alter the re-

to provide sufficient evidence for multifractality at the metal- sults. Moreowler, a phase transition that occurred in the ultra-
metric modet' also seems to be present in the original

insulator transition, none_of them allows one tq u.nderStan%uclidean problem, as evidenced by analytical arguments
the full spectrum of multifractal exponents. This is so be-arld by Monte Carlo simulatiorfs
ull :

cause nonperturbative techniques are needed to probe the full |, =< a1so been pointed out that there exists a deep con-
spectrum. _ _ _ nection between the multifractal spectrum for the critical
Given the present state of affairs of this problem it would\yaye function of a Dirac fermion in a random magnetic field
be highly desirable to have an exactly solvable system thadng the spectrum of primary fields in nonunitary conformal
eXhibitS a multifractal wave function. In recent yearS |t hanie|d theories with Vanishing Virasoro Conforma| Chd@é
been shown that the Dirac equation in random fields in twoopn the one hand, and Liouville field thedhon the other. It
spatial dimensiong2D) is actually an example of such a is then tempting to speculate that there must be a counterpart
system. Moreover, it has also become clear that the random the freezing transition characterizing GREM in these
Dirac Hamiltonian in 2D describes the universality class ofquantum field theories.
the metal-insulator transition at a half-filled Landau level of In the present paper we show that the exact results of Ref.
disorderednonrelativisticnoninteracting electrons in a very 8 on the multifractal spectrum and, in particular, the exis-
high magnetic field:® This surprising result has been re- tence of a phase transition, can be obtained completely
cently established by direct derivatfoof the random Dirac  within the framework of the Gaussian field theory in two-
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dimensional Euclidean space. The key idea of our approachector potentialA(x) will be specified below. In principle,

is the introduction of a quantit§2 (E) that counts the number other sorts of random fields, such as random mass and ran-
of points where the critical wave function has amplitide = dom chemical potential, are also allowed in a general
height Woce ¥2 in a disk of radiusL (suitably discretized situation?

as a lattice of spacin@). We show that this quantity is If only random vector potentials are allowdd=0 is an
directly related to the microcanonical density of states of theexact eigenenergy for all realizations of the disorder and the
GREM and which we will also call the density of states. Thecorresponding wave functions can be determined exattly.
advantage of the approach that we present in this work is thdhdeed, let¥, be a two-component spinor with energy= 0,

it is direct and it does not rely on the use of either replicas oi.e., HV;=0. Then by means of a combination of chiral and
supersymmetry. Our results are essentially rigorous, excegfauge transformations, parametrized by the fiel¢s) and

for a conjecture, which we believe to be true, about the selfy(x), respectively,

averaging property of the probability distribution of the en- ,

tropy InQ(E) in the thermodynamic limiN—o~. We also Wo(x)=e P07 XM g(x); (2.2

explain in detail why the Gaussian field theories in both Euy,g gjgenvalue equation reduces to the requirement that the
clidean and ultrametric spaces give exactly the same resul

. ) ) ) 0 component spinor(x) satisfies the nonrandom Dirac
This paper is organized as follows. In Sec. Il we introduce

" g . uation
the model and the quantities of main interest: the multn‘racta(leq
exponentsr(q) of the critical wave function, its Legendre io,d,m(x)=0. (2.3
transformf(«), and the density of stateQ(E). Here we o . .
draw an analogy between the computation of the inverse pafi€re; the chiral “angle”¢(x) and the gauge transformation
ticipation ratio of order of the wave function and the par- X(X) must be chosen to solve E@.5 below. ,
tition function for all spatial configurations of a static particle !N this work we will only be interested in the multifractal
in a random potentia(x) = — In[¥(x)|. Q(E) is the micro- properties of the amplitudes of the wave functions. These
canonical density of states of this equivalent problem. In Sed?foperties involve only the magnitude of the wave functions
Il we derive the thermodynamic properties of the equivalen"d are independent of their phases, and hence are gauge-
system. Here we calculate the average density of states af{iariant properties. However, it should be stressed that the
use it to show that the equivalent problem has a phase traii€composition of Eq(2.9) is only valid if the total magnetic
sition at a critical “energy” determined by the widthof the flux thr_eadlng the disk always v_amshesz an assumption t_hat
probability distribution of the random vector potentials. We W Will implement by an appropriate choice for the probabil-
show that the thermodynamic functions of the equivalenty distribution of the vector potentid(x).™ The remaining
problem are exactly those of the GREM. In particular, wedegrees of freedom carried by the spingix) then span a
show that, in terms of the critical wave function, the phasdWo-dimensional Hilbert space. Here we withoosethe
transition of the GREM represents the onset of the regim&PIinor 7(x)=(1,0) for convenience. It is worth noting that
where the probability distribution of the wave function is @1 choice of spinor breaks the chiral symmetry generated
undersampledn a given discretization of the plane. In Sec. PY 3. This procedure makes sense if we think of switching
IV we use these results to derive the exact form of the funcOn @n average uniform magnetic field and then taking it to
tions f(a) and 7(q). Our results agree completely with the 2&0- .Indeed, a magnetic flgld selects a state ywth unique
analysis given in Ref. 8. Section V is devoted to the concluchirality determined by the sign of the magnetic field. In the

sions. Technical details of our calculations are given in theeontext of the Chalker-Coddington model the choice of
appendices. spinor is thus the equivalent of the choice of the chirality of

the edge current for a system on an open geometry such as a
disk.
With the above considerations we write the=0 wave
We consider the problem of a massless Dirac fermiorfunction as
moving on a plane and interacting with a static random mag- — o0
netic field normal to the plarfe>1513617n this model, the H(x)=e : (2.4

wave functions are localized for all energies other than the, 4 drop the constant spinof(x)=(1,0) altogether. The

critical energy E=0, at which the wave function is ran46m vector potential and magnetic field are given by
multifractal™>~> This model thus describes a metal-insulator

1. MODEL

transition in two dimensions. A, (X)=€,,d,d(X)+d,x(X), (2.5
The Dirac Hamiltonian in random and statiector poten- Per
tials in two space dimensions is B(X)= — V2¢(X). (2.6)
H=0o,[ived,—A(X)]. (2.9 Notice that the gauge degrees of freedom enter through

and not¢, and any phase in the wave function can be elimi-
nated by a gauge transformation. Finally, we assume a
Baussian distribution of magnetic fiefdss follows:

For convenience we will set the Fermi velocity to unity
from now on. This operator acts on the space of normalizabl
(in a finite ared two-component spinor stateg ,(x), with
a=1,2. In Eq.(2.1) o denotes a two-component vector of P[(x)]xe~ V2 182XV $(0)? 2.7
two 2X2 Pauli matrices, which we take to ke and o,

respectively, withu=1,2 being the two orthogonal direc- whereg is the width of the probability distribution and plays
tions on the plane. The probability distribution of the randomthe role of a coupling constant in this problem. One verifies
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that, in the thermodynamic limit, the uniform magnetic field dr(q)

does indeed vanish for all realizations of the disorder. As a a= dq (212
technical point, it is understood that, among all fieltsx)

that differ from each other by a uniform value, only one f(a)=aq—7(q). (2.13

representative is counted in the disorder average ¢\iéor

example, of all possible uniform fields, only the field It is possible in general to map the quantities that describe a
d)(x)zo is Counted{ In this way, the amb|gu|ty in the many given multifractal wave function into thermOdynam|C

to one relation betwee(x) and A(x) in Eqg. (2.5 is re-
moved(see Appendix A

quantities?® q maps into an inverse temperatyer(q) into
a free energyfo(B), a into an internal energe, andf(a)

The multifractal nature of the wave function can beinto an entropys(e). In our case, however, the equivalence

probed through the moments of the probabilifigsobtained
from the normalized wave functioW(x). As we anticipated

is more evident due to the particular form of the wave func-
tion of Eqg. (2.4). We map our problem into the statistical

above, we shall use a lattice regularization with a micro-mechanics of a single particle in a lattice of spacangnd
scopic cutoff distanca (box size, and macroscopic system Size L with a random site potentiaV(x) =2¢(x), in the

sizeL. There are thuk?/a® sites. The moments @, are the
inverse participation ratio®(q,a/L):

> w(x)|%

X

a
fat]-3 g e
(z |w<x>|2)
S e2a6(0
=X—. (2.8

[}X: ew(x)]q

The multifractal exponents(q) for a given wave function
are then defined By??

1
n(@)=D(q)(q-1)= lim —— ln(Z pﬂ)
a/L—0 In(E) X

al-o (2
L

We will show later thatr(q) is self-averaging, i.e., that for

any realization of the disordet(q)={7(q)), where(---) de-

static limit (i.e., for the hopping matrix element equal to
zerg. For this model, the random canonical partition func-
tion for a particular realization of the disorder reads

z(B)=2, e AV, (2.14

where the role of the random energies is played by the values

that the disorder potentidl(x) =2¢(x) takes. For each dis-
order realization, the free energy of the system is

1
F(/B)E—Eln Z(B). (2.1

In this system, the number of thermodynamic degrees of

freedom is
L 2
Nzln(a) , (2.1
and the number of energy levels is
L 2
N_ |
e=| (2.17

This is similar to a system dfl spins withS= %, where one
has 2 states. Thus, the intensive free energy is defined as

F(B)

fo(ﬁ)ET- (2.18

notes the average over the distribution of random magnetiEzThe subscript 0 is introduced to avoid confusion with the

fields of Eq.(2.7).

An equivalent way of describing the multifractal proper-
ties of agivenwave function is through the scaling expo-

nentsa,, defined by®2°

(2.10

The number of lattice points at which the exponegttakes
values betweem’ anda’+da’ defines the functiong and
f:

a —f(a’)

L

da'p(a’) (211

As is well known?*?® the two sets of exponentgq) and

f(a) are related by a Legendre transformation:

spectrumf (a).]

In this problem it turns out that it is also useful to count
states directly, which naturally leads us to define a microca-
nonical partition functior(or density of statesfor each ran-
dom field configuration:

Q(E)Eg SWE—-V(X)]. (2.19
Here 6,(E) counts the number of states in a region of width
W around E. One can choose for it, e.g., either a
top hat (i.e., a product of step functiops sy(E)
=0(E—W/2)9(W/2—E), or a smooth function such as
5W(E)Eef E2/2W2_

(2.20

The microcanonical and canonical partition functions are
then related by Laplace transformation:
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dE s(e)
Z(ﬁ):f WQ(E)e—ﬁE. (2.21) fo(,8)=e—7. (2.30
Here, as is usual in statistical mechanidéhas to be taken
as small as possible but still larger than the average level Il. THERMODYNAMICS OF THE MODEL
spacingA. As we show later, in the present case this trans-
lates into the condition In this section, we are going to show that the probability

to find energy levels outside a particular window of energy

L [ —ec,e.] vanishes in the thermodynamic limit. This is the
g In a most important result of our work.
1I>Ws>A=4 >~ T2 (2.22 The key step in our argument is our estimate for the dis-

order average of the microcanonical partition function,
which relies crucially on the choice of a distribution for the
disorder with a variance depending logarithmically on spatial
separation.

The simplest way to study the thermodynamic properties
S(E)=In Q(E), (2.23  of the system is to obtain the disorder average of the micro-

o _ . canonical partition function:
and again it will be convenient to define the entropy and

energy per thermodynamic degree of freedom:

From the microcanonical partition function one can obtain
the total entropy:

—SN. e—EIN. (2.2 (E)= [ DVOOPIVIIS ulE-V(x]

Having established the thermodynamic dictionary, the _ B
normalization factor for the wave function and the inverse B DWX)P["’(X)]E OwlE—26(X)]
participation ratiosP(q,a/L) can be written in terms of the

partition function: exp{ —E212IW?+4G(x,x) ]}

=W 3.1
e b Ex: VW2 +4G(x,X) @3
W(x)= : (2.29
VZ(1) 4
2129 (L
Zexp{ —E“/|— Inl —
a\  z(q) L T \a
L/ Z(1) 2g (L
. . . —In| =
In turn, the functionr(q) can be simply expressed in terms T \a 3.2
of the free energy at the inverse temperatugssqg and :
p=1: Here, G(x,y) is the Green functid for the field theory
F(q)—F(1) defined by the action of Eq2.7), with a short distance cut-
(q)=—q Ilim —a=2q lim [fo(q)—fo(1)]. off length given bya. Its form in the short distance limit is
a/lL—0 s a/L—0
In(L) (2.27) g |x—y|*+a?
: G(x,y)z—ﬂ In(T . 3.3

Similarly, from the definition ofe, [see Eq.(2.10] and the

value of the wave functiofiEq. (2.29], we see that On the last line of Eq(3.2), we have neglected the widilY

V(%) as compared to terms of order IAg).
ay=2| ————fo(1) |. (2.28 Alternatively, in terms of intensive quantities, the disorder
L averaged number of states in an energy interval of width

In

a w=W/N arounde=E/N is
Thus, comparing the definitions 6f«) [Eqg. (2.11)] and the
entropy, one verifies that (L)
|n - L 2
a=2[e—f0(1)], <Q(e)>%W ex;{—Zln a m—l)}

f(a)=2s(e). (2.29 @2
i . =W —ex;{N(l—— } (3.9
By using the relation betweer(q) andf,(8), and between 29 4(g/2m)

f(a) ands(e) one recovers the well-known result that the

Legendre transformation in the language of multifractal ex-This means that in the thermodynamic limitN-{>~),
ponents Eq. (2.13] is equivalent to the thermodynamic re- ({(e)) goes to zero fofe|>2g/27 and diverges exponen-
lation: tially with the number of degrees of freedom for
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|e|<2yg/2w. This behavior for the average number of states It is now clear how to estimate the average level spacing

(Q(e)) indicates that some sort of transition should occur atd in Eq. (2.22. We simply multiply 2. by the ratio of the

the critical energye|=e, where numberN of thermodynamic degrees of freedom to the num-
bereN of energy levels:

/9
=2\/5—. 3.
€ 2 (3.5 In

L
2Ne, g a

To show that, indeed, this is a phase transition, we must A:e_N: 2 L2 (3.9
consider not the averagdl(e)), but the number of states a

Q) (e) for a given realizationIndeed, as shown in Appendix
B, Q(E) is a random variable with very strong fluctuations. Finally, we can bound from above the probability for the

Hence, we cannot reln priori on any single moment of : . A
P . L density of state$)(e) to be nonzero. For a given realization,
Q(E) to identify a phase transition. Rather, we must use, y (€) 9

L . ()(e) counts states in an energy interved= W/N arounde.
stronger probabilistic arguments to show taats indeedthe Therefore()(e) must be a positive integé?,in contrast with
critical energy of interestWe do so below by considering '

: the averagé((e)). In the same way as before, the probabil-
the two regimese|>e and|e|<e; separately. ity of having a nonzero microcanonical partition function is

bounded from above by a number that goes to zero in the
A lel=e. thermodynamic limit’

In this region the thermodynamic limit of the microca-
nonical partition function i<Q(e))—0. Alternatively, we P{Q(e)>0}=P{Q(e)=1}=(Q(e)). (3.10
may say that for a large enough system dizethe average T entropy is thereforaot defined for|e|>e, .
number of stateg(2(e))<1 in this region. If we naively try One can get some intuition for these results with one
to obtain the entropy as {f}(e)), we would find that it be- 014 undersamplingConsider(2(e) for an individual real-
comes negative fofe|>e;. This isnot correct; the entropy  jzation as the histogram of the number of states per energy
must be defined foeach and everyealization of the disor- nterval. One can think of)(e) as the product of two fac-
der. That means we must focus 8(e)=In ()(€) for sepa-  ors: one is a constant that counts the total number of states
rate realizations. B ~_inthe system, and the other is the probabilitprmalized to
We are going to show now that the probability of finding 1) for onestate to fall within a given energy interval. In the
any state at all with/e|> e, vanishes in the thermodynamic present case the first factor has the vailiend the second is
limit. To do that, we define the random varialfls.(€) that  Gaussian with a width that grows linearly witth. In other
counts the number of states with energig’s such that words, the number of data points we have'ls which is not
le’'|>e: enough to sample the tails of the Gaussian distribution. If the
) , number of data points wereV’, with y>1, by takingN
Q_(e)= f_ede’ Q(e’) n fmde’ Q(e) _ 3.6 large enough we could sample the whole distribution, and all
Cw w e w bins in the histogram would contain a positive humber of
points.
Due to the fact tha€)-. (e) is either positive or zero, we can
bound the probabilityP{Q-. (e)=1} of finding at least one

: 27 B. |e|<e.
state with|e’|>e by the average of)-.(e):

In this case we can define the entropy for a given realiza-
P{Q-(e)=1}<(Q_(e)). (3.7) tion S(e)=In Q(e) [recall Eg.(2.23]. We will now show
that the entropy, for all realizations of the disorder, has a
Equation(3.7) is very general since it applies to any randomcommon upper bound that scales linearly with system size.
microcanonical partition function. However, this inequality Furthermore, we will also show that the probability to find a
becomes very powerful when combined with our estimatgealization with entropyess or equathan In€(e)) is equal
Eq. (3.4) for (Q2(e)). Indeed, with the help of to onein the N—oo limit. The arguments go as follows.
According to our definition Eq(2.19, Q(e) counts the
2 (= number of energy levels in some energy window. That num-
(Q-(e)= " f de’(Q(e")) ber cannot be larger than the total number of energy levels
€ eN=L2/a?. Consequently, If)(e) is bounded from above by

1 e N. Incidentally, no such bound holds for #§g) for indi-
= e—N[<e/ec>2—1l[1_o —°) , vidual realizations of the disorder.
VmN(ele,) Ne Next, we introduce the probability to find the intensive

(3.9 entropys= (1/N) In Q(e) in a given interval §;,s,) by

and our upper bound E@3.7), we see thaP{Q.(e.)=1} [

vanishes in the thermodynamic limiM—o. We conclude F>N(~°’1$S$32)=fSl dun(s). (3.11
that,for a given realizationthe energy levels will fall within

the interval|e|<e. with probability 1 in the thermodynamic Here,duy(s) is the measure of the entropy firdegrees of
limit. freedom. We will make the following assumptions:
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(1) The probability measurduy(s) has a well-defined Thus, although we do not have a rigorous proof, we con-
thermodynamic limit: jecture that (IN)In Q(e) is a random variable with vanishing
variance in the thermodynamic limiN—», i.e., self-
, 2 _[* averaging, and which converges to {jm..(1/N)In{Q(e)).
’\|l||;ﬂw Ll dpn(s)= Ll dpe(S) (312 This conjecture is supported by the fact that, in addition to

our bound, it is in this regime that the field theory computa-
for all s;<s,. tions of the multifractal dimensionéwith replicas, super-
(2) There exist two positive constamdsandB such that  symmetry, and Liouville field theojyare reliable. In other
words, the entropy should be self-averaging in the thermo-

(Q(e)= JMdMN(S)eNS: \/ﬁeA'\”B (3.13 dynamic limit and it is given by

S(e)=In Q(e)=(In Q(e))=In(Q(e)) (3.18
for N sufficiently large.

eZ
Notice that we have proved the validity of the second ZN( 1- —2) (3.19
hypothesis and thad andB can both be read off from Eq. €
(3.4). In particular, for any realization of disorder. Hence, for this range of en-
5 . ergies|e| <e. we may commute the order of In akd-), i.e.,
e 3 2] ““ 2] H H H
A=1—— = lim N|n<9(e)>' (3.14 the “quenched” and “annealed” entropies coincitfe.
C N— o

. C. Temperature and free energy
We now chooses, >A. By assumptions, >0 and ) ) )
Up to this point we have proven that the thermodynamics

+oo N +oo N of this model is identical to that of the random energy mbddel
<Q(e))2f dun(s)e SZI dun(s)e™s for |e|=e, and argued that this is also so ffe|<e.. In
S+ S+ order to obtain the free energy as a function of temperature,
=eNs Py (s, <5). (3.15 Wwe follow Derrida® In the region that contains states

) (le|<e.), we obtain the temperature from
We have thus established the upper bound,

ds\"! ¢€?
Pn(ss<s)<NeA s:NB (3.16 T= (@) =- an (3.20

for all s, >A and for all sufficiently largeN. Since the ther- | this region the temperature will be in the rargé>e,/2,
modynamic limit is assumed to be well defined, we concludey,qy the free energy, computed from the relation

that df,/dT=—s, is given by

P..(A<s)=0. (3.17) 2

eC
In other words, the probability to find the entropy density fo(M==T~77- (321

(1/N)In Q(e)>(1/N)In{Q(e)) vanishes in the thermodynamic
limit N—oo,

If we could prove that the probability to find an intensive
entropy lower than (M)In{€)(e)) also vanishes in the ther-
modynamic limit, we would have shown that the entropy
density is indeed self-averagirtige., almost surely takes one
and only one valug and given by liny_,..(1/N)In{Q(e)).
However, without further knowledge of the probability dis-
tribution for the entropy, it is not possible to prove the exis-

In the limit whenT—T.= e./2, we obtaine——e., s—0

and fo— —e.. Below this temperature, the system cannot
lower its energy because there are no statesfor-e;. The
system remains frozen @&= —e;, with entropys=0 and
free energyfo(T)=—e.. In other words, fol T| lower than

the freezing temperatufk. , the energy, the entropy, and the
free energy remain at their accumulation points. In summary,

2
tence of a similar lower bound. In fact it is possible to con- — 1+ =] if |Bl=q.
struct a sequence of measures which obey E842 and dc
(3.13 but is not self-averaging in the thermodynamic limit. Bio(B)= 1] (3.22
We nevertheless expect the entropy density to be self- —2— if |B8l>qc,
averaging for two reasons. First and in addition to our upper Ge

bound, it is possible to estimate the ratio of tit moment  whereq.= \27/g.

of the partition functiorzZ(8) to its mean raised to the power  The behavior in the low temperature regime becomes
n. This is done in Appendix B. This estimate suggests thatlear if we consider thg8|— < limit. For any configuration
the field theory computations of the multifractal dimensionsand for a given value of/a, there is an absolute minimum
(with replicas, supersymmetry, and Liouville field thepry g ;. and an absolute maximuiB,,,, for the values of the
are reliablé in the regimee|<e.. Second, the entropy den- v/(x). For large enoughg| these extreme values will domi-

sity for any GREM is known to be self-averaging in the nate the partition function, and one obtains, in the case of
thermodynamic limit™*?and in view of the close connection positive sign fors,

between GREM and our problem we expect this to also be
true here. Z(B)~ e PEmin, (3.23
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This means that IV. CONSEQUENCES
FOR THE MULTIFRACTAL SPECTRUM
Emi .
lim fo(B)= lim Ir\l”'” =—e, (3.29 Now that we have the values of the thermodynamic func-

N—oo N—o

tions s(e) and fy(B), we can translate them into the lan-

guage of multifractality, using Eq$2.27) and(2.29 as our

because we know that for a large enough SySten?:iictionary.

Emin/N=—e&; with probability one. This implies thety() is The results are as follows: starting by the spectral weight

self-averaging and equal tee.= —2/qc, as shown above.  fynction f(«), we find that it is defined only in the interval
Notice, however, that in the low temperature regimey <q,<d, (corresponding to the entropy being defined

guenched and annealed values for the free energy are diffe([;-my in the interval—e.<e<e,), and has the value

ent: {In Z(B))#In(Z(B)). Indeed, combining Eqg2.21) and

(3.2 one obtains for alj3 the so-called lognormal spectrum (dy—a)(a—d_)
f(a)=8 > 4.1
BZ (d+_d,)
In(Z(B))=N 1+az : (329 However, the values ofi_ and d, will change with the
Cc

strength of the disorder.

which shows no obvious sign of the phase transition. Depending on the strength of the disorder, there are two
On the other hand, in the high-temperature regime, théegimes: in the weak disorder regime, which corresponds to

quenched and annealed free energiesZ(8)) and IZ(B))  9<2m, the quenched and annealed averages for the loga-

do coincide. This can be understood by computing(i6) rithm of the wave-function normalization facta(1) are

for one particular realization of the disordeee Eq(2.20)]:  coincident, while in the strong disorder regime, which corre-
sponds tag>24r, they are not equal anymore.

EmalN ) In the weak disorder regime, the extremal dimensidns
Z('B):NL N dee NiAemsel, (320 andd. are both positive:
2
If one accepts our conjecture that the entropy density is self- d+=2( 1+ A /i) (4.2
averaging in the thermodynamic limit, then the saddle-point - 2w’

approximation on the integrand in E®.26) probes the para-

bolic part of the entropy, and one obtains forZ{g) the andr(q) has the form

result of Eq.(3.29. In other words, not only is 1Z(8) self- q

averaging but in this case In ad-) commute. In the lan- 2(q—1)( 1- 7) if |al=<qc

guage of multifractality, this is the region in which the para- 7q)= Ge (4.3
bolic approximation is exact. Besides, since|@t=q. the sgr(a)|? it 1gl>

minimum of Be—s(e) falls at the edge of the populated 2q{ 1~ R it 1al>de.

region, there is a singularity in the derivative of4(g), and
one recovers the phase transition point. On the other hand, in the strong disorder regime, the
lower extremal dimension is zero:

D. Equivalence with random energy models d =0

We have calculated the thermodynamic functions of our
model and they are identical to those of a special generalized g
random energy modél. di=8v5 (4.9

It is interesting to see how this comes about. All the re-
sults we obtained really follow from our calculation of and7(q) has the form
(Q(E)) in Eg. (3.2). The analogous calculation for the gen- )
eralized random energy model of Derrida and Spokives —Zq( 1— ﬂ) if |gl<q
the same result, except that positionsin the lattice c ¢
are replaced by directed patfsin a Cayley tree, and the =3 4 (4.5
value G(x,x)=(g/27)In(L/a) is replaced byG(P,P)= —(q—|a]) if |q/>qc.
(g:/In K)Ind(P,P). Then, the two average partition func- e
tions must correspond if the parameters are chosen properlyotice that in this regime we find(q) =0 for g>q., mean-
Note that the requirement th&(?,P) depends logarithmi-  ing that for all integer moments the inverse participation ra-
cally on the ultrametric distana(,P) on the tree uniquely tio does not scale with system size. This is usually inter-

defines the GREM in the thermodynamic limit. preted as characteristic of a localized wave function.
One can take this analysis further by studying moments of
the microcanonical partition function. Although at first sight V. CONCLUSIONS

the expressions for the two models appear different, if one

changes variables into logarithms of the distances, one can We have calculated the multifractal scaling exponents of
actually see that the expressions for the GREM actually givéhe critical wave function for two-dimensional Dirac fermi-
the Riemann sums that correspond to the integrals in the casas in the presence of a random magnetic field. There is a
of our model. transition in the multifractal spectrum, which is interpreted
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as a_freezing_ .tran_sition_common to glassy systems. This (In Z(q))— —29¢+(In Z(q)). (A5)
freezing transition is a rigorous result of the present work )
and had been previously conjectured on the basis of a con-nis means that, althougfin Z(q))—q(in Z(1)) is well de-
parison with GREM: fined and, in principle, one can computéq), in a naive
We have proven that a previously proposed magbieg ~ calculation(In Z(q)) would be ill defined.
tween these multifractal properties and the thermodynamics T0 perform an actual calculation it is convenient to break
of a generalized random energy model describing directeéhis symmetry in a controlled way. The simplest approach is
po]ymers on a Cay|ey tré®lis indeed exact in the g|assy to add a mass terrm=1/L to the action. This penalizes
regime. Our proof generalizes entropy considerations ofonfigurations for whichp# 0. Another possibility is to im-
GREM (Ref. 9 to a two-dimensional Gaussian field theory. Pose Dirichlet boundary conditions @f(x). Although Green
Derrida has also shown that a direct computation of thdunctions forg(x) in each of these cases will be different, the
quenched free energy was possible on GREM. This sugges@lly value we need for our purposes is their short-distance
that the same could be done on the field theory. In fact, it cafimit, which is the same in all cases, namely,
be shown that the generalization of Derrida’s calculation for
GREM naturally leads to estimating the partition function in g [x—y|?+a?
Liouville field theory. We thus believe that there exists a Gxy)~—7— |n(—|_2— :
counterpart to the freezing transition of GREM in Liouville
field theory. It is an interesting question to probe this issue
further. APPENDIX B: MOMENTS OF Q(E) AND Z(f)
Another open issue is the fate of replica symmetry if the

. ; : ) In this appendix, we estimate moments of the density of
replica approach is used to calculate the multifractal Sca“n%tatesQ(E) and of the partition functiorZ(g) which, we
exponents. Indeed, it is known that the freezing transition in b '

GREM is associated to replica symmetry breakifg.It recall, are related by E@2.21). Such moments are needed to

would be interesting to see how this replica symmetry breaksjecIde if quenched and annealed averages are equal. We be-

ing manifests itself in a replicated version of our Gaussiarg™" with Q(E). Letn be an integer larger than one. By

(A6)

field theory. definition,
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d\ dn
APPENDIX A: SYMMETRY AND GREEN FUNCTIONS W—0 X1 *n m m
The probability distribution for the disorder, E.7), 1 X
allows for an exact symmetry under a constant real shift of xXexpg — > > Md(W28,+ 4G\,
the field configurationp(x): ki=1
n
P(X)— H(X) +¢, (A1) FIED N (B2)
k=1
P(x)—e $(x), (A2)

Here, G,, is a shorthand notation for the Green function in
which leaves botP[ ¢(x)] and ¥(x) unchanged. However, Edq. (A6) with arguments¢, andx, . We notice that the inte-

neitherzZ(q) nor Q(E) is invariant: grand on the right-hand side of E@®2) does not depend on
X1,... Xy for n=1 but does fom>1. For higher moments
QE)—-Q(E-2?), (A3) thann=1, the statistical correlations encoded ®y;# 0 for

k=1, imply that, in a finite system,Q"(E))#(Q(E))". In
Z(q)—e 29%Z7(q), (A4)  the thermodynamic limit, the difference betwe&i"(E))
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and (Q(E))" disappears if the statistical correlations are
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(1) There exists aequence of criticaB, given by

short range, as is the case in the original random energy
model (REM) of Derrida, where all energies are assumed to , 2m 35

be identically and independently distributed random
variables’ This is not so, however, i&,, encodes long range

ﬂn—n—g=71 (B5)

statistical correlations as is the case here. For any momeR€low which I{Z"(8))/N=In(Z())"/N in the thermodynamic

n=1, there will be a critical energy densigy(n)<e.(n—1)
such that the ratioQ"(E))/{Q(E))" diverges in the thermo-
dynamic limit for |e|>e.(n). In other words,Q(e) is
broadly distributed in the thermodynamic limit. Our claim is
that it is the limite.=lim,_,,e.(n) that controls the freezing
transition, and not the naive replica limit ljmg e.(n) =<°.

Instead of calculating the sequenegn) explicitly, we
calculate the ratio

_(Z(B))
Rn(B)= ZEn (B3)

We find that

2 2 —29B%
d’x;  d?x, 9B Im

Rn(ﬁ>~f 7z L

1<]

Xi_Xj
L

2(n—1)(1-ngB2/2m)

~ca(9B%) + (B4)

L

In the thermodynamic limit, the right-hand side is a finite
number forn<(2)/(gB?) (assumingn>1). In this case
Z"(B) fluctuates weakly. But fon>(2)/(g8?), R,(B) di-
verges, and thug"(8) fluctuates strongly. There are impor-
tant consequences that follow from E&4).

limit N—oo. Remarkably, thesamesequence of critical mo-
ments is shared by the random energy models studied in
Refs. 9-11.

(2) Caution is needed when using the replica trick

n

(In Z(B))=lim W (B6)
n—0 n

Indeed,(Z"(B)) is not an analytic function ofi due to sin-

gularities atB=2w/B%g, andn=1, and caution must be

used when using the replica trick to calculateZ(iB).

For GREM, 8. indicates a phase transition between the
regime B< 3. and the regime3> gB.. For all GREM, the
quenched and annealed free energy are equal<ifs..
However, quenched and annealed free energy are not equal if
B> B, and need not obey the same functional dependency
on B for different GREM in this regime of temperatures.
There are essentially two Gaussian GREM’'s whose
quenched free energy obey the same functional dependency
on B: the REM with uncorrelated energfeand the GREM
with logarithmic correlated energié$!! Both undergo a
sharp freezing transition characterized by a discontinuous
one step specific heéas opposed to continugusSince we
have proven that the same freezing transition characterizes
our multifractal scaling exponents, we conclude that they
must be self-averaging and given by an annealed average
below the critical momend...
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