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Nonorthogonal tight-binding Hamiltonians for defects and interfaces in silicon
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A computationally efficient and physically accurate method is desirable for simulation of solid-state phe-
nomena that must be modeled by large atomic systems. To this end we present a nonorthogonal tight-binding
model Hamiltonian based on the extendecckil approach. Tests of existing parametrizations of this type of
model Hamiltonian on geometries including some low-energy crystal structures, point defects, and surfaces
reveal important shortcomings. We develop an improved parametrization and test it extensively on a wide
range of crystalline defects and surfaces, and an amorphous sample. Our model is well suited to capture the
energetics of crystalline, defective crystalline, and amorphous sil[@0163-182807)04039-3

[. INTRODUCTION binding approximation holds the promise of giving a reason-
able description of atomic interactions, while being fast
Atomistic simulation of solids is becoming increasingly enough for molecular-dynamics simulations of relatively
useful in understanding complex processes which involve thiarge systems. Although the parameters of the tight-binding
dynamics of a large number of atoms, such as bulk and suiHamiltonian must be derived empirically, this approach
face diffusion and motion of defects and interfaces. Phenomkeeps some of the fundamental physics through a quantum-
ena such as nucleation and propagation of dislocations, maonechanical description of the electronic degrees of freedom,
tion of grain boundaries, and the evolution of the while the minimal basis and the sparse Hamiltonian make it
amorphous-crystalline interface are examples of systems thatuch faster than DFT/LDA.
require models comprising at least a few hundreds of atoms Recently, several groups have studied orthogonaind
for realistic description. In the case of covalent solids, thenonorthogond!’ formulations of the tight-binding approxi-
presence of directed and localized bonds produces defentation for the description of covalent solids like silicon and
structures that can be significantly different from the equilib-carbon. One such formulation assumes that the Hamiltonian
rium bulk structure. These cannot be captured easily by pheand overlap matrices are proportional to each other through
nomenological descriptions, based for instance on continuurthe prescription given by extended ¢kel theory. The most
models, which makes atomistic simulations all the more rel+ecent implementation of this formulation for silicon is due
evant and important. A prime example of a covalent solid isto Menon and SubbaswarfiyThese authors determined the
silicon, often referred to as the prototypical semiconductorempirical parameters in the Hamiltonian by reproducing the
which has been studied intensively because of its fundamerenergetics of silicon clusters. Another recent example of a
tal and technological importance. nonorthogonal tight-binding Hamiltonian is the work of
There are two conflicting demands on realistic simula-Frauenheinet al, who calculate the matrix elements by ex-
tions of the types of phenomena mentioned above. The firgilicitty computing the appropriate integrals within DFT/
is the need for accuracy, without which the results of simuLDA, using contracted atomic orbitals.
lations are not meaningful. The second is the need for large In this work we present a nonorthogonal tight-binding
system sizes that provide adequate descriptions of the postamiltonian for silicon, suitable for the simulation of crys-
sible variations in the structuréb initio density-functional talline and amorphous systems. This model is a modification
theory(DFT) calculations using the local density approxima- of the Menon-Subbaswamy approach. We keep the func-
tion (LDA) have been shown to be very accurate for semitional form which has few11) adjustable parameters, and fit
conductor systems such as silicon. However, these calculdhe total energies of several structuresato initio results.
tions use large bases and include a self-consistent treatmefibhe structures are chosen to be representative of the geom-
of the electrons, which makes them computationally expenetries found in the crystalline and amorphous systems we are
sive. Effective interatomic potentials that do not explicitly interested in simulating.
involve the electronic degrees of freedom allow for very fast The rest of the paper is organized as follows: In Sec. Il we
computation and make simulations of very large systéshis describe the functional forms and parameters of the tight-
order millions of atomppossible. Despite the fact that inter- binding Hamiltonian. In Sec. Ill we compare the results of
atomic potentials for silicon have been studied extensiVely,tests of the various modelshose of Menon-Subbaswamy
their accuracy remains an open question. These potentiaisid Frauenheimat al. as well as the one introduced hgte
miss the fundamental quantum-mechanical nature of th®FT/LDA calculations for crystalline defects and surfaces.
electrons which controls the interatomic bonding, and theiln the final section we describe the similarities and differ-
validity far from their fitting regime is uncertain. The tight- ences among the Hamiltonians and discuss some observa-

0163-1829/97/5@.6)/104889)/$10.00 56 10488 © 1997 The American Physical Society



56 NONORTHOGONAL TIGHT-BINDING HAMILTONIANS ... 10489
tions on the relationship between the band structure and 2V,
point defect formation energies, and state our conclusions. S £

=" 3
a K(r)(ex+e\r) ®

K(r) is the Hickel nonorthogonality coefficient, which in

Il. MODELS this work, as in MS-TB, varies with the distance between the
A. Extended Huckel theory two atoms as
The foundation of our model is the tight-binding Hamil- K(r)=Kg+ Co(r — dymin)2. )

tonian in the two-center approximation, expressed in a non-
Orthogona| basis, as described by Menon and Subbas@vamiﬂ the MS-TB model the parameters that govern the variation
with the modifications noted beldwin the following discus- ~ With distance and the position of the minimu@y anddy;n,

sion we will denote the tight-binding Hamiltonian from the are fixed to be equal ta andd,, respectively. Since there is
work of Menon and Subbaswamy as MS-TB, including theno physical rationale for this assumption, we @&t anddy,
choice of parameter values. The tight-binding Hamiltonianvary independentlye, is the energy eigenvalue of an orbital
which we present in this paper, similar in form to MS-TB but of type X (s or p). The parameters,,., andV,,, and

with different parameter values, we will denote as NO-TBgeometrical factors determine the elements of the matrices
(for nonorthogonal tight binding The basis consists of ose ~ S; and V;;, as discussed in HarrisdnThe corresponding
and threep orbitals centered on each atom. Orbitals on ther€lation for the Hamiltonian matrix elemenits; (expressed
same atom are assumed to be orthogonal to one another He-the nonorthogonal bagias a function of the hypothetical
cause of their symmetry, but orbitals on different atoms arerthogonal matrix elementg;; is

not necessarily orthogonal. The conventional assumption of

orthogonal orbitals on neighboring atoms can be shown to be H.=[1+ i —SS )V~ ] (5)
equivalent to a pairwiséclassical repulsion for a particular 4 Kj ij) Y

crystal structure, but the repulsive potential is not necessarilgfh e function

the same for different crystal structure$he computational

demands of nonorthogonal and orthogonal tight binding dif- r—243 N—3S. (r

fer only in the additional storage needed for the overlap ma- S,(r)= Ssso(1) Ss4p0( ) ppo") (6)

trix, and the additional cost of finding the solution and evalu-
ating the forces for the generalized eigenvalue problemescribes the overlap between tap® hybrids, with an im-
rather than the simple eigenvalue problem. For both thelicit distance dependence through ®g ./, terms. Correct-
memory use and computational cost the differences are onling an erroneous term in the MS-TB expression, we use Har-
a factor of two, not significant as far as practical computatison’s original derivation forS, which does not include a
tions are concerned. However, this modest increase in the term?
computational expense is offset by the important physics and The eigenvalues of the generalized eigensystem
flexibility added to the model by the nonorthogonal form of
the Hamiltonian. H = €,Sin (7)

We begin with matrix elements of a hypothetical orthogo-

. A o are the single particle states. These contribute to the total
nal tight-binding Hamiltonian,

energy through a band-structure term. The other contribution
to the total energy is a classical pair repulsion given by
_ —a(r—dg)

Vi u(N) =V € oC(r), (1) Vrep(r):)(oe—4a(f—do)_ ®)
After fitting the model parameters, we find that this last term,
as in the MS-TB model, is extremely small. In orthogonal

dtight—binding schemes théscreened Coulomb repulsion of
the cores and the nonorthogonality of the reandp orbit-
als both contribute to the effective classical repulsion. Ap-
parently, this repulsion is greatly reduced in our model be-

whereV,,, is the matrix element for orbitals of typeand
N (sorp), u is the type of overlap configuratiorr(or ),
and dqy is the bond length at the experimentally observe
equilibrium volume. The functional dependence \&f,/,
with distance, given in Eq(1), is the simple exponential
used in MS-TB multiplied by the smooth cutoff function

c(r) cause we explicitly include the nonorthogonality of the
' orbitals. The total energy is given by
1 r-R —
cn=3 1+COS(W(T°)”’ 2) Etot_ogn En+<izj> Vredrij) €)
Cc

and the corresponding force on ators
for the purposes of molecular-dynamics simulatioRs.is

the radius of the onset of the cutoff aié is the width over Eo_S M. IS sy Nred Tij)

which the cutoff function smoothly changes from 1 to O. "ogeen \ lar, Marg| " ; (?F”- '
Extended Hukel theory takes the dependence between the (10)
parameters characterizing the elements of the overlap matrix

Sw, and the elements of an orthogonal Hamiltorign ., The three parameters which are not subject to fitting are

to be dp=2.35 A,R,=4.027 A, andw,=1.0 A. The first is sim-
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ply a scaling factor, chosen for convenience to be the nearest TABLE |. Parameters in the NO-TB and MS-TB Hamiltonians:
neighbor distance at equilibrium in the diamond structurethe former were generated by fitting to thé initio total energy
The latter two are chosen so that the active region of thélataset described in the text and €, are the on-site energies for
cutoff function C(r) does not overlap with any neighbor the s andp orbitals, respectivelyv,,,, are the magnitudes of the
shells in the diamond structure, and so that the rangg(pf ~ Matrix elementy/,, ,(r) atr=do, anda is the decay length in the
is the same as the range of the matrix elements in the modgkPonential distance dependence of the matrix elerieets Eq.
proposed by Frauenheiet al. (see the next subsectipiThe D)1 dmi_n is the position of the minimum of the parabqla in the
remaining parameters that enter in the definition of thisSXPression foK(r) [see Eq(4)]. K, andC, are the magnitude of
model Hamiltonian are determined by fitting to a dataset Of<(r) atr =dp and the curvature of the parabola as a function, of

ab initio total energy calculations as discussed in Sec. Ill, respectlv_ely.)(o is the magnitude of the classical repulsion function
x(r) atr=d, [see Eq(8)].

B. Density-functional tight binding NO-TB MS-TB

The Hamiltonian proposed by Frauenheim and co-
workers is also a tight-binding Hamiltonian in the two-center
approximation, with a nonorthogonalp® basis’ All of the v 182 537
matrix elements are computed by explicit evaluation of thevss” ((23 '1 -66 -2 '52
appropriate integrals, such a§;=(¢i|¢;) and Hj VSP" 3'09 3'32
=(¢i|H|¢;). The |¢;) are eigenfunctions from DFT/LDA ‘PP~ V) ' '

€ (eV) -13.10 -13.55
e (eV) -5.85 -6.52

calculations of a single atom in a confining potential. TheVeer (8V) -0.58 -1.07
classical repulsion term is obtained by fitting the cohesive .

energy curves of the silicon dimer and bulk silicon in the® A~ 1.726 16
diamond lattice structure to DFT/LDA calculations. In the 9min (A) 2.255 2.36
following discussion we will denote this Hamiltonian as Ko 1.420 17
DF-TB (density-functional tight binding While this is an  Co 1.965 16
appealing formulation, it may be somewhat restrictive. It isxo (eV) 0.00822 0.05

not clear that the matrix elements, calculated using con=
tracted DFT/LDA wave functions of isolated atoms, canbe =~ _ _

used in any environment without any fitting. As will be dis- diffusion.~ Concerted exchange is a theoretically proposed
cussed in the following section, the performance of thismechanism for diffusion without involving vacancies or

Hamiltonian in some of the geometries we tested is not satnterstitials’® The saddle-point configuration of the
isfactory. concerted-exchange path includes two broken bonds relative
We attempted to improve on this formulation by keepingto the ideal crystal, leading to a sut_)stantial activation energy
certain features of the model and introducing some fitting4-> V). The usual defect mechanisms, where the activated
parameters to increase its transferability. Since one of thétates correspond to bond breaking in highly distorted envi-
most uncertain aspects of tight-binding Hamiltonians is theonments, have considerably lower activation energies for
distance dependence of the matrix elements, we found it us&igration(a low as a few tenths of an ¢Vand represent a
ful to adopt this particular feature from the DF-TB model but different aspect of atomic processes in Si. All the above
allow the magnitude of the matrix elements to vary. How-Structures are chosen to describe the type of geometries ex-
ever, our attempts at fitting a tight-binding model with this Pected to be encountered in simulations of crystalline and
distance dependence to a total energy dataset failed to giveadnorphous silicon. The atoms in these structures are prima-
significant improvement. For this reason we do not provide”'y fourfold coordinated, with some distortion of the bond
here a new parametrization of the DF-TB model, aIthougfﬁ”Q'e and length, as well as some threefold and fivefold co-
we compare its predictions to those of the other two modePrdinated atoms. The formation energies and energy barriers

Hamiltonians studied. which govern the kinetics of solid-state processes, dominated
by bond breaking and healing both in distort@dg., point
Il FITTING AND TESTS defects and in undistorted environmengs.g., the concerted

exchangg should be reasonably close to the range of ener-
To determine the values of the parameters for the NO-TRjies discussed here.

Hamiltonian we fit some results of the model to @m initio The parameters which result from this fitting are listed in
dataset, which includes information about bulk structuresTable |. We emphasize that, as will be discussed below, the
and point defects. For bulk properties of silicon, we includefit to the dataset is not perfect. The very complex functional
the total energy as a function of volume for the diamond andorms of the models result in a difficult optimization prob-
B-Sn structuregthe two lowest energy, experimentally ob- lem, in which parameters need to be found that minimize
served structures of silicorand the experimental indirect deviation from the the energies of the structures included in
band gap of the diamond structure. The energetics of poirthe dataset. We use a simulated annealing procedure to ac-
defects included in the dataset are the formation energies eomplish this task. However, due to the complexity of the
the vacancy and two kinds of self-interstitials, and the energyproblem, this can only be viewed as getting close to a rea-
barrier for the concerted-exchange mechanism fosonable set of parameters, while a perfect match to targeted
diffusion!® Interstitials and vacancies are the dominant pointvalues is rather difficult, if at all possible.
defects seen in crystalline silicon, and their formation and We also performed additional tests of the model Hamilto-
migration energies control solid-state processes such as butkans, by considering a range of structures beyond the ones
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TABLE II. Bulk properties of various crystal lattices. The DFT/

§ A o N\ L T AR \\ NO-TE 1 LDA cohesive energy numbers are shifted uniformly so that the

3 :‘; [T T 1 value for the diamond structure matches the experimental result.

I — i Structure DFT/LDA  NO-TB  MS-TB  DF-TB

£ 50 Feers —-— 1 sets —-—

§ s2p SCoo ‘ . L qp e .

L msTe f N R Binding energy(eV/atom)

% 44l ‘«\\\:(’;f" g diamond -4.70 -4.71 -5.19 -4.97

5 46r e B-Sn -4.47 -4.57 -4.27 -4.48

5 8T oA —— 1 BCT5 -4.45 -4.62 -4.64 -4.62

g sor sk == 1 sc -4.35 -4.58 -4.50 -4.58

5 s2p % . . . s . . E

14 17 20 23 14 17 20 23
Volume/atom (A%) Volume/atom (A%) Equilibrium volume(A 3/ atom
diamond 19.67 19.67 19.98 19.87

FIG. 1. Cohesive energy curves for the diamond structureg-Sn 14.63 15.16 15.70 18.67
(DIA), B-Sn, body-centered-tetragonal8CT5), and simple-cubic  BCT5 16.77 16.67 17.17 20.98
(SO lattices from four different calculationdFT/LDA, NO-TB,  g¢ 15.44 15.02 15.63 18.99

MS-TB, and DF-TB.
Bulk modulus(GPa

included in the fitting dataset. These comprise more 10Wiamond 98.0 104.8 153.5 115.1
energy bulk lattices, as well as relaxed structures for each g, 1291 138.1 164.7 1905
point defect and the relaxed structure of the concertedl—3 111.4 1346 163.3 265.5
exchange saddle point. The surface energies for several re- 117'3 147'5 182.0 244'7

constructions of th€100) and(111) surfaces were also ex-
amined as part of the testing. The comparison to surfaces
ﬁ{::}”sdgfea ;en r(];zltlt\éi teeltsén?{choévo:ﬁg?rki)éi t:r? sz?faegeza;:(!tgw_hich are listed in Table Ill. The MS-TB and NO-TB mod-

o " ge " dis differ substantially, the latter predicting softer elastic con-
nificantly different from those in the fitting dataset. In the stants closer to the DFT/LDA calculatiol&with errors of
following, results from the fitting and testing calculations !

: ' 12—-33 %. The results of the DF-TB are more accurate than
with DFT/LDA, DF-TB, MS-TB, and NO-TB are compared. onor MS.TB or NO-TB for the bulk elastic constants.

Since the emphasis here is on reproducing total energies

A. Bulk lattices accurately, we have not placed much attention in fitting the
The results for the total energy as a function of volumeband structure. Nevertheless we have made an effort to en-
for various low-energy silicon structures are plotted in Fig. 1.5Ure that key features of the band structure, like the valence

The diamond structure, with its fourfold coordination andPandwidth and the band gap are reasonably accurate. A com-
sp® bonding, is the ground state. Th&Sn structure is a P&rison of these features for the three Hamiltonians consid-

low-energy sixfold coordinated structure observed experi€red here is given in Table IV.
mentally under high pressuté®® It has also been exten-

sively studied using DFT/LDA*-1®The accuracy of NO-TB B. Point defects
in reproducing the energetics of these structures is important

in lishing its reliability. As i rent from the graph - . :
establishing its reliability. As is apparent from the grap "pared silicon crystal and are responsible for important pro-

NO-TB agrees very well with DFT/LDA calculations for the e !
diamond andB-Sn structures of silicon. The agreement i cesses such as diffusion. Accordingly, an accurate reproduc-

substantially better than the other two models, as expectetbon of their energetics is important for simulations of solid-

since these two structures were included in the fitting dataséyate systems. 'I_'he formation ene_rg|d§,, for three_
epresentative point defects as obtained from the various

of the present model. Our model does, however, overestf" oo .
mate the binding energy for the other structures examined, qdel Harr]mlft]omans. colnzldger ﬁn?. fromdDFT/LDA c?lcu—d
body-centered-tetragonal structure with fivefold coordinatio ations, which were included in the fitting dataset, are liste

proposed by Boyeet al® (BCT5) and simple cubidSO). _ _ _
These are both low-energy structures for silicon with rela- TABLE Il. Elastic const_ants of the d_lamon_d Iattlf:e structure.
tively low coordination numberés for BCT5 and 6 for S CZ.4 is the value of the glastlc constant without including the relax-
Higher coordination bulk phases of silicésuch as bec, fcc, 2tion of the atomic basis.

hcp, etc) are usually not relevant experimentally because of
their high energy.

Point defects are commonly seen even in the best pre-

DFT/LDA & NO-TB MS-TB DF-TB

The Hamiltonian we present here also gives a more acCl;,, (GP3 166 145 218 185
rate bulk modulus than earlier tight-binding models, as car,, (GPa 63.3 84.5 121 80.1
be seen in the tabulated results obtained from fitting thecz4 (GPa 135 162 135
Birch-Murnaghan equation of stafeto the energy-versus- c. (GPa 79.3 53.4 81.6 89.5

volume curvegTable Il). An additional sensitive test is pro-
vided by other elastic constants for the diamond structure’From Ref. 19.
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TABLE IV. Band structure features for diamond structure silicon. The DFT/LDA results include a 0.6-eV
scissor-operator shift of the conduction levéRefs. 20 and 211

DFT/LDA NO-TB MS-TB DF-TB
Valence band width 11.92 11.75 13.83 10.69
Band gap al’ 3.15 1.68 3.07 3.20
Minimum band gap 1.14 151 2.72 3.20
Minimum band and gap location 3K L L r

in Table V. We considered the self-interstitial in the tetrahe-two to three as compared with DFT/LDA. These large errors
dral and hexagonal configurations, and the vacancy. All ofndicate potential problems in simulating bulk systems with
the defect calculations were performed in a 216 atom cubibonding geometries similar to these defects, including crys-
diamond structure supercell with one atom added to, or retalline silicon where these defects are often seen, and amor-
moved from, the ideal configuration. Due to the large volumephous silicon where overcoordinated atoms are present. This
of the unit cell, k-point sampling was restricted to tHe  exemplifies the problems associated with using semiempir-
point only. ical models such as tight-binding Hamiltonians in environ-
For the interstitial defects, while the lowest-energy con-ments where they have not been fit or adequately tested. The
figuration is believed to be a split interstitial, the configura-NO-TB model Hamiltonian includes these defects in the fit-
tions we considered have the advantage of being conceptting dataset, and consequently is much more accurate than
ally simple and easy to define and visualize. They may alseither the MS-TB or DF-TB models.
be important stationary points in the path of a diffusing in- The vacancy is a different type of low-energy point defect
terstitial atom (local minima, i.e., metastable, or local seen in crystalline silicon. Undercoordinated atqmsdan-
maxima, i.e., saddle point&® The objective here is to deter- gling bond$*, similar to those surrounding the missing atom
mine the accuracy with which the model Hamiltonians rep-in the crystal vacancy, are also observed in amorphous
resent the energetics of a given plausible atomic configurasample$® As in the case of the interstitials, the MS-TB
tion. The tetrahedral interstitial is a high-symmetry, low- Hamiltonian overestimates the formation energy of the va-
energy configuration. It has four nearest neighbors to whicltancy as compared with our DFT/LDA calculations. The
it attempts to formsp® bonds. The four neighbors of the DF-TB Hamiltonian, on the other hand, gives more realistic
tetrahedral interstitial are fivefold coordinated, having asvalues for the vacancy formation energy. This indicates that
neighbors four crystal atoms and the interstitial. Although itthere are qualitatively different properties to under- and over-
is more difficult to define an interstitial position in an amor- coordinated point defects, and both need to be checked to
phous system, overcoordinated atofos floating bond’) ensure the reliability of a particular model. The parameters of
analogous to the neighbors of an interstitial can oéeand  the NO-TB Hamiltonian improve the vacancy formation en-
a realistic representation of this geometry is important forergy as compared to the MS-TB model, reducing the error to
simulating the amorphous system. The hexagonal interstitidess than 1 eV.
is also a high-symmetry, low-energy configuration, although As a further test of the accuracy of these Hamiltonians,
at least in the unrelaxed geometry it is higher in energy thaach was used to relax the three point defects with a
the tetrahedral interstitial. It is positioned in the center of aconjugate-gradient energy minimization algorithm. Except as
hexagonal ring in the diamond structure. This position is halinoted below, we do not apply any constraints to fix the sym-
way between two adjacent tetrahedral interstitial positionsmetry of the system while it relaxes, and any symmetry
and can be viewed as the saddle point for diffusion of interbreaking in the relaxation process is spontaneous. The results
stitial atoms between tetrahedral positions. Since the kineticsf this relaxation are listed in Table V. As expected, the
of activated processesuch as diffusion of interstitidlsis ~ formation energy of the relaxed defects is substantially lower
controlled by the energy of the transition states, accuratéhan the ideal defects. The vacancy and hexagonal interstitial
calculation of such potential saddle-points structures is imwere stable in all the Hamiltonians studied, and were relaxed
portant. The saddle-point configurations of the vacancy anavithout constraints. The tetrahedral interstitial was stable in
the concerted exchanged were also considered in fully rethe MS-TB and NO-TB models, but in the DF-TB model it
laxed geometries. relaxes into a split interstitial. To force the interstitial atom to
Both the MS-TB and DF-TB Hamiltonians overestimate remain in the tetrahedral site, the outer shell of atoms in the
the formation energies of the self-interstitials by factors ofperiodic unit cell was fixed during the relaxation. The con-

eal

TABLE V. Formation energies for ideal point defe@£® and relaxation energigsE = E[#@®d gideal

_ DFT/LDA 2 NO-TB MS-TB DF-TB
E|fdea| A Ef E|fdea| A Ef E|fdea| A Ef E|fdea| A Ef
Tetrahedral interstitial 3.7-4.8 0.1-0.2 4.5 0.5 9.6 1.2 11.7 3.8
Hexagonal interstitial 43 -5.0 06-11 6.3 1.3 9.7 1.2 12.9 5.2
Vacancy 3.3-43 0.4-0.6 4.4 1.2 6.0 0.4 3.9 0.6

8References 22, 26, and 27.
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straint applied to this defect to keep it in the tetrahedral po- TABLE VI. Surface energies for the §100 and (111) sur-
sition accounts for the differences in the relaxed formatiorfaces.y is the surface energy in eV per XI1) cell; Ay is the
energy between our calculation using the DF-TB Hamil-relaxation energy relative to ideal K1) vy; 6 is the tilt angle of
tonian and the results reported by Frauenheinal” Com-  dimers;d is the bond length of the dimer.

pared with all of the tight-binding Hamiltonians, previously
published DFT/LDA calculatiorf§?®?’ generally show DFT/LDA 2 NO-TB MS-TB DF-TB
smaller relaxation energies for the structures considered. The

difference is especially large for the tetrahedral interstitial in Si(100

all of the model Hamiltonians, and in the case of the DF-TB!deal (1x1) Y 25 15 24 19
model also for the hexagonal interstitial. The exception is théielaxed (1< 1) Ay -0.03 -0.03  -0.01 -0.01
vacancy, where both the MS-TB and DF-TB models predicBuckled dimer (21) Ay -0.83 -053  -0.83 -0.62
a relatively accurate relaxation ener@lthough the MS-TB 0 15° 14° 12° 15°
model greatly overestimates both the unrelaxed and relaxed d @A) 2.23 241 238 261
formation energigs Si(111)

The NO-TB model predicts almost identical formation en-|geal (1x 1) y 1.56 1.19 1.67 1.24
ergies for the relaxed vacancy and tetrahedral interstitialzelaxed (1 1) Ay -0.020 -0.003 -0.007
while the hexagonal interstitial is about 1.5 eV higher. The(ox 2) T, Ay -0.30 026 -017 -0.07
path connecting two tetrahedral interstitial positions through o) 1, Ay 0.25 026 -017 -0.15

a hexagonal interstitial position would correspond to a 1.5
eV barrier. The other two model Hamiltonians predict almostReferences 28 and 29.
identical formation energies for the two relaxed interstitials,
indicating only a small energy barrier to diffusion of tetrahe-with two nonadjacent edges contracting by equal amounts,
dral interstitials through the hexagonal configuration. Thesgvhile the other four edges contract by a smaller amount. Of
two models predict the vacancy to be 2.5 — 4.0 eV lower inthe three tight-binding models, only our Hamiltonian is in
energy. However, because the MS-TB and DF-TB modelsigreement with the DFT/LDA results of Kelly and sand
overestimate the formation energies of the ideal defects, thegeong and Lewié’ which also predict a relaxation with te-
also overestimate the formation energies of the relaxed daragonal symmetry.
fects. In fact, the results from both of these model Hamilto-  Finally, we have calculated the activation energies for dif-
nians put the formation energies of interstitialsrelaxed  fusion of the various defects. The activation energy for dif-
configurations higher than DFT/LDA formation energies of fusion of the vacancy is 3.5 e{8.2 eV of formation energy
defects inideal configurations. and 0.3 eV of migration energyythat of the interstitial is 5.0
The geometries and symmetries of the relaxed defects awgy (4.0 eV of formation energy at the tetrahedral site, and
still a subject of active investigation. Accordingly, we pro- 1.0 eV of migration energy through the hexagonal)sited
vide here some details of the relaxed defect configurationghat of the concerted exchange is 3.7 eV, including full re-
produced by the various models considered. For the hexaggaxation at the saddle poirithe unrelaxed saddle-point con-
nal interstitial the three Hamiltonians we studied predict arfiguration with energy 5.4 eV was included in the fitting
outward relaxation of the hexagonal ring and no symmetryataset
breaking. This result is qualitatively in agreement with DFT/
LDA calculations?® The tetrahedral interstitial is more com-
plicated. The MS-TB Hamiltonian predicts that some of the
nearest neighbors relax outward and some relax inward, pro- To examine the behavior of our model Hamiltonian in an
ducing an almost complete breaking of the symmetry of theenvironment substantially different from the regime where it
ideal structure. The DF-TB Hamiltonian predicts outward re-was fit, we calculated the surface energies of various low-
laxation of the neighbors to a low-symmetry structure. Thisenergy reconstructions of tH&00) and (111) surfaces, the
low symmetry is perhaps caused by the tendency of the intwo lowest-energy surfaces of silicon. Most experimental
terstitial to relax from the tetrahedral position into a split and theoretical studies of surface phenomena in silicon, in-
configuration, a transition which is hindered here by the ap<luding technologically relevant work such as deposition and
plied constraint for the reasons described above. In thgrowth, are done on one of these two surfaces.
NO-TB model the four neighbors of the tetrahedral intersti- (100) SurfaceFor the(100) surface we calculate the sur-
tial relax outward. The interstitial moves towards one pair offace energyy of the ideal surface. For each relaxed or re-
neighboring atoms, and away from the other pair. The neigheonstructed configuration, we compute the surface energy
bors accommodate the distortion by completely breakinglifferenceA vy relative to the ideal surface. We first relax the
their tetrahedral symmetry. The DFT/LDA work of Kelly surface while imposing a (1) periodicity, which prohibits
and Caf® predicts a relaxed tetrahedral configuration with allany reconstruction. We then allow the formation of symmet-
of the symmetry of the ideal geometry, but the direction ofric dimers which eliminates one of the two dangling bonds
the relaxation was not specified. per surface atom. When the dimerized surface is allowed to
All four Hamiltonians predict overall inward relaxation break the symmetry, a tilted dimer ¥21) reconstruction is
around the vacancy in qualitative agreement with recenspontaneously formed. The surface energies are listed in
DFT/LDA calculations’®2" although they each predict a Table VI.
very different symmetry. The MS-TB and DF-TB Hamilto-  All of the Hamiltonians produce qualitatively correct re-
nians predict low-symmetry structures, while the NO-TB sults, with a stable tilted dimer ¢21) reconstruction as seen
Hamiltonian predicts a structure with tetragonal symmetryjn DFT/LDA calculationg® (shown in Fig. 2. The tilting of

C. Surface properties
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FIG. 3. (112 surface: (2 2) T, adatom reconstruction. Surface
atoms are shown shaded, with lighter shading for those atoms that
form the top layer of the ideal surface, and darker shading for the
adatoms.

FIG. 2. (100 surface: (2¢1) buckled dimer reconstruction.
Surface atoms are shown shaded.

the dimer is caused by a Jahn-Teller distortion which raises
the energy of one of the dangling bonds and lowers the erHz (metastablepositions. The ideal surface is composed of
ergy of the other, inducing both of the unpaired electrons t@ hexagonal lattice of atoms each with one dangling bond
go into the lower-energy dangling bond. This is a fundamenyperpendicular to the surface. THg adatom reconstruction
tally quantum-mechanical phenomenon which all the tightplaces one adatom in each X2) cell in the center of a
binding Hamiltonians considered here correctly reproducetriangle of surface atoms, directly above an atom of the sec-
Surprisingly, some classical potentials can reproduce thisnd surface layefshown in Fig. 3. The T, adatom saturates
feature! Results from the three Hamiltonians considered ardghree dangling bonds on the surface with a distortion of the
in qualitatively good agreement with each other and in agreeideal bond angles, but introduces one more dangling bond. It
ment with DFT/LDA results. The MS-TB and DF-TB mod- can also lower its energy by forming an effective bond to the
els, which predicted higher point defect formation energiesatom directly beneath it in the second surface layer. In the
also predict higher surface energies than the NO-TB modeH ; configuration, the adatom resides at the center of a hexa-
The accuracy of the geometrical structure of the reconstrucgon composed of first and second layer atoms. Fiheada-
tion varies from model to model. All of the tight-binding toms also saturate three dangling bonds and create a new
models err in predicting a dimer bond that is longer than theone, but they do not have a second layer atom to bond to.
equilibrium bond length, unlike DFT/LDA calculations As before, we begin by calculating the ideal surface en-
which predict a dimer bond that is shorter than the equilib-ergy y and the energy gaia y by relaxing the surface, either
rium bond length. This bond length is determined by thewith a (1X1) periodicity imposed, or with reconstructions
balance between the large forces caused by the severe dimrresponding to higher periodicifin this case the two ada-
tortion of the bonds to the bulk and creation of the new bondtom (2 2) reconstructionfs The results are listed in Table
It is therefore sensitive to small changes in the energetics ofI.
the bond bending and formation processes. The amount of Here the three model Hamiltonians give significantly dif-
tilt of the asymmetric dimer is reproduced satisfactorily byferent results. The MS-TB Hamiltonian performs reasonably
all model Hamiltonians. well at reproducing the energy of the ideal surface, but it
(111) SurfaceThe (111) surface is the cleavage plane of underestimates by a factor of two the reconstruction energies
silicon, and the (& 7) reconstruction which minimizes its Ay of the T, andH3 adatom reconstructions, and does not
energy produces the lowest-enerdnence most stablesur-  show an energy difference between the two. The DF-TB
face of silicon. This reconstruction has been observed experHamiltonian underestimates the surface energy, and greatly
mentally and studied theoreticaftf=>? It includes features underestimates the relaxation energies of the adatom recon-
such as dimer bridges, adatoms on the surface and a stackisgguctions. The NO-TB Hamiltonian also underestimates the
fault underneath half of the (¢7) cell. The stacking fault surface energy, but it is better than either of the previous
energy is very low and does not change the structure of théght-binding models at reproducing the relaxation energies
surface much, i.e., the faulted and unfaulted halves of thef the adatom reconstructions. In fact, none of the tight-
(7X7) unit cell have identical local features. The most dif- binding Hamiltonians predict the correct energy ordering of
ficult of those features to reproduce with an empirical modethe reconstructions, although in all cases the adatom recon-
is the adatom geometry, which introduces significant strairstructions are stable, which is already a significant improve-
to the substraté’ In both the faulted and unfaulted halves of ment over classical potential modél€ontinuing the trend
the (7X7) unit cell, adatoms are arranged locally in ain point defect formation energies and tfi0) surface en-
(2% 2) configuration. For simplicity, we study the adatom ergy, the MS-TB and DF-TB models predict higher energies
geometry in a (X 2) periodicity, and in thél, (stablg and  for the (111 surface than the NO-TB model.
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IV. DISCUSSION and both greatly overestimate the formation energies of the
tpoint defects we have considered. A related observation is
that these models also predict higher surface energies than
the NO-TB model.

The defect formation energies are still overestimated by
the model we have introduced, despite the fact that we in-
clude these energies in the fitting dataset. To get more accu-
rate defect formation energies, the constraint on the band gap
theory to keep the number of parameters to a minimumCan be re[axed, but the gap then becomes much smal!er than
Most of its parameters are taken directly from Harrison’sthe experimental value. We have chos_en a compromise be-

9 ) . tween accurate defect formation energies and a qualitatively
work.” Only three parameters are left to be fit to experimen-
tal data. The DF-TB model uses direct calculations of thecorrect band structure. I P o
matrix elements from DFT/LDA single-atom contracted The task of producing tight-binding Hamiltonians for sili-

con is a challenging one. Previously presented models have

wave functions. Only the classical repulsion term is fit O hot been fit to geometries that are similar to those of defects

experimental data. Despite the differences in the functlonailn crystalline silicon and to amorphous silicon, and their ap-

forms of these two Hamiltonians, they share some faVor""blgliicability to these systems cannot be taken for granted. Our

and unfavorable features. Both reproduce the energetics odel Hamiltonian gives good agreement with DFT/LDA

the bulk d|amonq s'tructure fairly well, and both provide 8 calculations for total energies of geometries relevant to ex-
reasonable description of the low-energy surface reconstrui-

tions we have considered. However, neither reproduces we )anded silicon structures. It predicts accurately bulk proper-
the cohesive energy curves of the other low-energy bullb
structures of silicon. Both of these model Hamiltonians over-

g\slggzi?mi]ti Iﬁremb?r?dn Zne:)%lfr?eogi;rﬁ?rtl ddgreucéfdrsnd bot xperimentally relevaintgeometries such as point defects
gap : and surfaces. It is hoped that this Hamiltonian can contribute

.lt appears from our obseryatlons t_hat the band gap and ﬂ}% advances in accurate simulations of large scale systems
point defect formation energies are linked. In the fitting pro-

cess we attempted to reduce the predicted formation energiggd complex processes in crystalline and amorphous silicon.
of the point defects, while maintaining an accurate band gap.
We found that whenever the defect formation energies de-
crease, so does the band gap. The behavior of the MS-TB This work was supported by Harvard's Materials Re-
and DF-TB models is consistent with this observation. Bothsearch Science and Engineering Center, which is funded by

have substantially larger band gaps than the NO-TB modeNSF through Grant No. DMR-99-00396.

The two Hamiltonians that we compare to our curren
work, those of Menon and Subbaswéahand Frauenheinet
al.,” are both nonorthogonal tight-binding Hamiltonians with
a minimal sp® basis in the two-center approximation. The
functional forms of their matrix elements are derived in very
different ways. The MS-TB model uses a very simple func-
tional form and the assumptions of an extendedcksl

es such as the energetics of experimentally relevant crystal
hases and the elastic constants of the diamond crystal struc-
ure. It also reproduces the energetics of distoftaat still
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