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Electronic transport through one-dimensional magnetic superlattices
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We have investigated the quantum-mechanical transmission of an electron in narrow wires, in the presence
of a spatially periodic magnetic field. The calculated conductance displays regular dips due to the formation of
minigaps, and rapid oscillations due to electron transmission through the quasi-zero-dimensional states in the
cavity regions between magnetic barriers. The periodic nature of the structure leads to a profile of quantization
in conductance. The differences between é¢fectric superlattice andnagneticsuperlattice are highlighted.
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In view of recent developments in microfabrication tech-a quantum wire in a periodic magnetic field might bring
nology, the behavior of a two-dimensional electron gasuseful insights into CF theory.
(2DEG) under the influence of a nonhomogeneous magnetic A lateral superlattice defined by perioditectric poten-
field has become a rich subject for theorefialand tials in the plane of a 2DEG has attracted much attention
experimenta® investigation. Nonuniform magnetic fields recently’®~>It has been shown that in such a lateral super-
have been realized, for instance, by depositing lithographidattice, minigaps with zero density of states, and minibands,
patterned superconducting or ferromagnetic films on top of &nay form. These lateral superlattice effects may be studied
heterojunctio® or by applying a uniform magnetic field to a In the linear-response regime of small applied voltage by
nonplanar 2DEG. Weiss-type oscillations were observed in Varying the Fermi energlge or the channel width. The index
the magnetoresistance, which are closely related to simild’ @ uantized conductance plateau has a one-to-one corre-
oscillations induced by one-dimensiondD) electrostatic spondence to the number of positive-velocity states in the

potential modulation. On the theoretical side, the propertie nergy band eﬁtggcmre _for the correspond|_ng infinite modu-
of a 2DEG in periodic magnetic field$ and electronic ated channet.”~ In this paper we investigate electronic

transport under the influence of maanetic barriei ran- transport in a 1Dmagneticsuperlattice. It is found that the
P L 1314 _mag . ' . conductance shows periodic miniband and gap structures in
dom magnetic field$>!* and a linearly varying magnetic

iald®S h b i ) q h hat the the low plateaus, while aperiodic patterns caused by strong
fie ave been investigated. It was shown that the "magnierchannel scattering appear in higher conductance pla-

netic Weiss oscillation” is out of phase with the electric (g5,5 which is similar to the case of efectric superlattice.

Weiss oscillatiort. Electron tunneling through magnetic bar- In contrast to the usuadlectric potential case, however, the

riers is an inherently two-dimensioné2D) process, and the  form of the effective potential for magnetic barriers depends

magnetic  barriers  possess  wave-vector-dependern the wave vector of the incident electnThis unique

properties’® In a random-magnetic-field system, the localiza-feature should make the study of transmission through 1D

tion length is not a monotonically decreasing function of magneticsuperlattices very rewarding.

magnetic-field randomness, in contrast to a random-potential Our model is a quantum wire of widW, a finite section

system, in which it i# of which is modulated along the channel by a 1D sinusoidal
The purpose of this paper is to point out that the experiimagnetic field of perioc as depicted in Fig. 1. The spatial

mental study of a class of semiconductor nanostructures, th@agnetic modulation can be written as

1D magnetic superlattices, is now within reach, and to

present theoretical predictions of their transport properties. 0z, x| >L/2

The physics of lateralmagnetic superlattices in an un- B(x)=

bounded 2DEG is a topic of great current interest, and mag- B sir{K

netotransport through spatially periodic magnetic fields has m

recently yielded very interesting resutt® The lower dimen-

sionality and high degree of quantum coherence in the 1D B

magnetic superlattices are features that will make the study

é
of these systems rewarding. Another interesting point is that
the motion of ballistic electrons in a periodic magnetic field
X
0

z, |x|=<L/2 W
5 zZ, [X|= ,

:
X+ =

is also believed to be closely related to the motion of com-
posite fermions(CF) in a density modulated 2DEG in the

fractional quantum Hall regim¥®. In the CF theory*8 the \// U
effective magnetic field is a function of the local electron

density and should be calculated self-consistently, in contrast

to the case that we consider in this paper. Nevertheless, a
better understanding of the electronic transport properties of FIG. 1. The 1D sinusoidal magnetic field profile.
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FIG. 2. (@) Conductance as a function of Fermi ene&yyfor a " 1 1 J ] ) / | i
finite period magnetic superlattice with 16 unit celis=90 nm, 0 ' [ R B ' '
W=100 nm, andB,=1.5 T. (b) Transmission coefficients of in- B
dividual modes for the magnetic modulated quantum wire. -
whereK=27x/a, L=Na, andN=1,2, ... is thenumber of 3
unit cells. The magnetic field is taken to point along the VNP IV BN S L A BRI A S
direction, normal to the plane of the wire. The quantum wire 0 2 4 6 8 10 12 14 16
consists of a finite periodic magnetic superlattice and two
straight leads; i.e., we do not bother about the details of how V,(meV)

electrons are injected into the wire or emitted from it. For

simplicity we assume hard walls and zero potential inside the

wire. We consider the process where electrons enter through FIG. 3. (8 The conductance as a function of theagnetic

the left lead, scatter inside the magnetic superlattice regiormodulation amplitudeB,, for a quantum wire with 16 unit cells.

and then reflect back or transmit to the right lead. a=90 nm,W=100 nm, andEg=12 meV.(b) Transmission coef-
We ignore inelastic scattering throughout the device. Spirficients T; of individual modes for thenagneticsuperlattice. The

is accounted for by twofold degeneracy in the Landauefurves are offset for clarityc) The conductance as a function of

formul£4—26 and is ignored otherwise throughout the calcu-the electric modulation amplitudeV,, for a finite periodelectric

lations. In the effective-mass approximation, the Hamil-Superlattice. The other parameters are the sam@agd) Trans-
tonian describing such a system is mission coefficientd; of individual modes for theelectric super-

lattice. The solid, dotted, dashed, and long-dashed curves corre-

(P+eA)? spond toi=1, 2, 3, and 4, respectively.
= HVey), @ )
m
with ( 0, -+ 0), |x|>L/2
A= B L
[0, lyl<wi2 ( 0, —?mcos{K X+ E) , o), Ix|<L/2.
Ve(y)= w, |y|=wiz, 3 “

wherem* is the effective mass of an electron, for which we In our calculations a numerical algorithm based on the
take the valuen* =0.067n,, appropriate for the GaAs layer. finite element method was used. Essentially, we discretize
The vector potentialA of the magnetic modulation field the modulated region into a fine mesh on which the Schro
B(x) is chosen to be dinger equation is solved. In this study, we have discretized
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FIG. 5. Conductance as a function of the wire width for
B,=0.5 T,N=16, a=90 nm, andE,=3 meV.

direct correspondence to the number of unit cells. This result
B (T) shows that the effective potential of the magnetic barriers for
m electron motion in the wire is complicatéd he oscillations

FIG. 4. Conductance as a function of the magnetic modulatiorin higlher plateaus are more irregular because of the_strqng
amplitudeB,, for W=100 nm,N=16, andEr=4 meV. (3 and coupling between modes. The conductance, plotted in Fig.
(b) correspond t@=50 and 90 nm, respectively. 2(a), shows a profile of quantization in units 0é2h due to

the periodic nature of the structure. Unlike the usual quanti-

the modulated region using 16 371 nodal points which gav&ation of a quantum point contact, however, the conductance
good convergence for the numerical data in this paper. Théoes not increase monotonically but rather steps up and
wave functions in the leads were calculated separately. Théown between quantized levels. The conductance quantiza-
wave functions and their spatial derivatives are then matchetion is related to the band structure for the corresponding
at the boundaries between the leads and modulated regiotfinite systenf> However, none of the individual modal
after which the transmission and reflection coefficients mayransmission coefficients in Fig(l® shows quantization by
be extracted. The details of this numerical scheme can biself*° See, for example, the region near 9 meV. The quan-
found in Refs. 27 and 28. tization occurs as the various modes are mixed by the peri-

In Fig. 2(a) we show that the conductance displays regulaiodic barriers.
dips due to the formation of minigaps, and rapid oscillations Nonmonotonic conductance quantization for varying
due to electron transmission through the coupled quasi-zerénagnetic modulation amplitudB,, is shown in Fig. 8a).
dimensional states in the cavity regions between the magFhe conductance steps down by two units ef/h and up
netic barriers. Each group of conductance oscillationdy one unit, and then down to zeroBg is increased. Trans-
evolves into a continuous miniband in the limit of an infi- mission coefficients; of individual modes for the magnetic
nitely long superlattice. The basic features of the formatiorsuperlattice are shown in Fig(l8; the curves are vertically
of minibands and gaps are observable for a 1D magnetioffset for clarity. Although the total conductance, which is
superlattice with even a few periods. Some narrow mini-the sum of the modal transmissions, is essentially quantized,
bands and gaps, however, reveal themselves only for a rathtire individual transmissions, plotted in Figb3 have com-
long modulated wire. The formation of minibands and mini- plicated features as a function Bf;,.
gaps in a finite lateral surface superlattice has been reported For comparison, we calculated the conductance for an
using split-gate structures, in which the 1D lateral surfaceelectric superlattice with amplitud¥ ., and sinusoidal barri-
superlattice is realized by a periodic modulation of constric-ers. The parameters of the structure are the same as that in
tion width instead of the magnetic modulatith. Fig. 3(a). There is no mode mixing in such a constant width

In contrast to the electric modulated ca$&**the number 1D electric superlattice, in contrast to the magnetic one, in
of oscillations in the first conduction plateau has no simplewhich there is. The conductance for a &Rctricsuperlattice
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steps down monotonically as the traveling modes in the leadffecting electron transmission through the coupled quasi-
are blocked by the potential barriers with increasing electrizero-dimensional states in the cavity regions between the
modulation amplitudé/,,, as shown in Figs. (@) and 3d). barriers. It is interesting to note that the rapid oscillations are
No two-unit drop is seen for increasing electric modulationsuppressed foWw<80 nm in Fig. 5. This can be easily un-
amplitudeV, in Fig. 3(c). Clearly, the unique features of the derstood, because in this case, the magnetic length
wave-vector-dependent effective potential for the magneti¢,=36.3 nm atB,,=0.5 T is close to half the width of the
barriers are critical for the two-unit drop. In our calculations, wire \W. Therefore, the effects of the magnetic barriers are
the two-unit drop in conductance with increasing magnetig,q; significant, but effects of a periodic magnetic field
field is predominant but not universal; occasionally we findemerge as the width of the wire increases and becomes much

c?fsefivwnh ?rﬁ??'up'tthdr?np' I\hﬁ r(le)a?ﬁnrfofr :h'? 'Strtr;]a';nth‘?arger than g . The oscillations become more pronounced for
etiective potential of the magnetic barriers 1or electro 0'increasingW as shown in Fig. 5.

tion along the quantum wire depends on the mode of the . . i . .
In conclusion, we have investigated electronic transport in

incident electron in the leads. 1D i latti Itis sh that foat f
Figures 4a) and 4b) show the calculated conductance asth magniz Ic S‘ijf‘]f”if |cest.h IS Sf ?r\]/vn : at m?”ty_ el? urezo

a function ofB,, for a=50 and 90 nm, respectively. For the ese systems dirier from those of the electrostatically modu-
flated ones. We find that unlike the electric superlattice, the

shorter a, the conductance steps down by two units o N ‘ ) ;
2e?/h smoothly. For the longea, the conductance exhibits number of oscillations in the first conduction plateau has no

oscillations before the modes are magnetically depleted. Th@imple direct correspondence to the number of unit dells
peak values of the conductance oscillations in Figp) 4 The conductance of 1D magnetic superlattices does not de-
should be an integer multiple ofe3/h. Some of the peaks crease monotonically with increasimy, but rather steps up
fail to reach a quantized value due to the limited number ofnd down between quantized levels, sometimes going to
data points. The peaks are very narrow and therefore requiero. The effects of magnetic modulation on the conductance
more extensive computing. We find that the oscillations beare pronounced when the width of the quantum Wien-
come more prominent a& becomes longer. It is thus sug- creases at a fixe®,,. The unigue features of magnetic
gested that the formation of an effective loop of edge statemodulation and low dimensionality make the 1D magnetic
is essential for the conductance oscillations as discussed Byiperlattices different from the electric ones or the 2D mag-
Takagaki® and Yoshioka! One is then dealing with an netic ones, so we believe they should be of great interest.

Aharonov-Bohm-type interference. o
Finally, we show the results of our calculations for the e are grateful to NSERC Canada for continuing support

conductance as a function of the widdlt of the quantum under research Grant No. OGSAP-3198. Computations were

wire, in Fig. 5. Again we see conductance dips associate@€rformed on a CRAY computer at the IFM, Lifgiag Uni-
with the formation of minigaps, and rapid oscillations re- Versity, Sweden.
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