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Electronic transport through one-dimensional magnetic superlattices
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Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada L8S 4M1

~Received 24 February 1997!

We have investigated the quantum-mechanical transmission of an electron in narrow wires, in the presence
of a spatially periodic magnetic field. The calculated conductance displays regular dips due to the formation of
minigaps, and rapid oscillations due to electron transmission through the quasi-zero-dimensional states in the
cavity regions between magnetic barriers. The periodic nature of the structure leads to a profile of quantization
in conductance. The differences between theelectric superlattice andmagneticsuperlattice are highlighted.
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In view of recent developments in microfabrication tec
nology, the behavior of a two-dimensional electron g
~2DEG! under the influence of a nonhomogeneous magn
field has become a rich subject for theoretical1,2 and
experimental3–5 investigation. Nonuniform magnetic field
have been realized, for instance, by depositing lithograp
patterned superconducting or ferromagnetic films on top
heterojunction3,4 or by applying a uniform magnetic field to
nonplanar 2DEG.6 Weiss-type oscillations were observed
the magnetoresistance, which are closely related to sim
oscillations induced by one-dimensional~1D! electrostatic
potential modulation. On the theoretical side, the proper
of a 2DEG in periodic magnetic fields,7,8 and electronic
transport under the influence of magnetic barriers,9–12 ran-
dom magnetic fields,13,14 and a linearly varying magneti
field15 have been investigated. It was shown that the ‘‘ma
netic Weiss oscillation’’ is out of phase with the electr
Weiss oscillation.1 Electron tunneling through magnetic ba
riers is an inherently two-dimensional~2D! process, and the
magnetic barriers possess wave-vector-depen
properties.12 In a random-magnetic-field system, the localiz
tion length is not a monotonically decreasing function
magnetic-field randomness, in contrast to a random-pote
system, in which it is.14

The purpose of this paper is to point out that the exp
mental study of a class of semiconductor nanostructures
1D magnetic superlattices, is now within reach, and
present theoretical predictions of their transport propert
The physics of lateralmagnetic superlattices in an un
bounded 2DEG is a topic of great current interest, and m
netotransport through spatially periodic magnetic fields
recently yielded very interesting results.1–5The lower dimen-
sionality and high degree of quantum coherence in the
magnetic superlattices are features that will make the st
of these systems rewarding. Another interesting point is
the motion of ballistic electrons in a periodic magnetic fie
is also believed to be closely related to the motion of co
posite fermions~CF! in a density modulated 2DEG in th
fractional quantum Hall regime.16 In the CF theory,17,18 the
effective magnetic field is a function of the local electr
density and should be calculated self-consistently, in cont
to the case that we consider in this paper. Nevertheles
better understanding of the electronic transport propertie
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a quantum wire in a periodic magnetic field might brin
useful insights into CF theory.

A lateral superlattice defined by periodicelectric poten-
tials in the plane of a 2DEG has attracted much attent
recently.19–22 It has been shown that in such a lateral sup
lattice, minigaps with zero density of states, and miniban
may form. These lateral superlattice effects may be stud
in the linear-response regime of small applied voltage
varying the Fermi energyEF or the channel width. The index
of a quantized conductance plateau has a one-to-one c
spondence to the number of positive-velocity states in
energy band structure for the corresponding infinite mo
lated channel.21,23 In this paper we investigate electron
transport in a 1Dmagneticsuperlattice. It is found that the
conductance shows periodic miniband and gap structure
the low plateaus, while aperiodic patterns caused by str
interchannel scattering appear in higher conductance
teaus, which is similar to the case of anelectricsuperlattice.
In contrast to the usualelectric potential case, however, th
form of the effective potential for magnetic barriers depen
on the wave vector of the incident electron.12 This unique
feature should make the study of transmission through
magneticsuperlattices very rewarding.

Our model is a quantum wire of widthW, a finite section
of which is modulated along the channel by a 1D sinusoi
magnetic field of perioda as depicted in Fig. 1. The spatia
magnetic modulation can be written as

B~x!5H 0ẑ, uxu.L/2

BmsinFKS x1
L

2D G ẑ, uxu<L/2,
~1!

FIG. 1. The 1D sinusoidal magnetic field profile.
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whereK52p/a, L5Na, andN51,2, . . . is thenumber of
unit cells. The magnetic field is taken to point along thez
direction, normal to the plane of the wire. The quantum w
consists of a finite periodic magnetic superlattice and t
straight leads; i.e., we do not bother about the details of h
electrons are injected into the wire or emitted from it. F
simplicity we assume hard walls and zero potential inside
wire. We consider the process where electrons enter thro
the left lead, scatter inside the magnetic superlattice reg
and then reflect back or transmit to the right lead.

We ignore inelastic scattering throughout the device. S
is accounted for by twofold degeneracy in the Landa
formula24–26 and is ignored otherwise throughout the calc
lations. In the effective-mass approximation, the Ham
tonian describing such a system is

H5
~P1eA!2

2m*
1Vc~y!, ~2!

with

Vc~y!5H 0, uyu,W/2

`, uyu>W/2,
~3!

wherem* is the effective mass of an electron, for which w
take the valuem*50.067m0, appropriate for the GaAs laye
The vector potentialA of the magnetic modulation field
B(x) is chosen to be

FIG. 2. ~a! Conductance as a function of Fermi energyEF for a
finite period magnetic superlattice with 16 unit cells.a590 nm,
W5100 nm, andBm51.5 T. ~b! Transmission coefficients of in
dividual modes for the magnetic modulated quantum wire.
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A5H S 0, 2
Bm

K
, 0D , uxu.L/2

S 0, 2
Bm

K
cosFKS x1

L

2D G , 0D , uxu<L/2.

~4!

In our calculations a numerical algorithm based on
finite element method was used. Essentially, we discre
the modulated region into a fine mesh on which the Sch¨-
dinger equation is solved. In this study, we have discreti

FIG. 3. ~a! The conductance as a function of themagnetic
modulation amplitudeBm for a quantum wire with 16 unit cells
a590 nm,W5100 nm, andEF512 meV.~b! Transmission coef-
ficientsTi of individual modes for themagneticsuperlattice. The
curves are offset for clarity.~c! The conductance as a function o
the electric modulation amplitudeVm for a finite periodelectric
superlattice. The other parameters are the same as~a!. ~d! Trans-
mission coefficientsTi of individual modes for theelectric super-
lattice. The solid, dotted, dashed, and long-dashed curves c
spond toi51, 2, 3, and 4, respectively.
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the modulated region using 16 371 nodal points which g
good convergence for the numerical data in this paper.
wave functions in the leads were calculated separately.
wave functions and their spatial derivatives are then matc
at the boundaries between the leads and modulated re
after which the transmission and reflection coefficients m
be extracted. The details of this numerical scheme can
found in Refs. 27 and 28.

In Fig. 2~a! we show that the conductance displays regu
dips due to the formation of minigaps, and rapid oscillatio
due to electron transmission through the coupled quasi-z
dimensional states in the cavity regions between the m
netic barriers. Each group of conductance oscillatio
evolves into a continuous miniband in the limit of an in
nitely long superlattice. The basic features of the format
of minibands and gaps are observable for a 1D magn
superlattice with even a few periods. Some narrow m
bands and gaps, however, reveal themselves only for a ra
long modulated wire. The formation of minibands and mi
gaps in a finite lateral surface superlattice has been repo
using split-gate structures, in which the 1D lateral surfa
superlattice is realized by a periodic modulation of const
tion width instead of the magnetic modulation.29

In contrast to the electric modulated case,19–21the number
of oscillations in the first conduction plateau has no sim

FIG. 4. Conductance as a function of the magnetic modula
amplitudeBm for W5100 nm,N516, andEF54 meV. ~a! and
~b! correspond toa550 and 90 nm, respectively.
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direct correspondence to the number of unit cells. This re
shows that the effective potential of the magnetic barriers
electron motion in the wire is complicated.7 The oscillations
in higher plateaus are more irregular because of the str
coupling between modes. The conductance, plotted in
2~a!, shows a profile of quantization in units of 2e2/h due to
the periodic nature of the structure. Unlike the usual qua
zation of a quantum point contact, however, the conducta
does not increase monotonically but rather steps up
down between quantized levels. The conductance quan
tion is related to the band structure for the correspond
infinite system.23 However, none of the individual moda
transmission coefficients in Fig. 2~b! shows quantization by
itself.30 See, for example, the region near 9 meV. The qu
tization occurs as the various modes are mixed by the p
odic barriers.

Nonmonotonic conductance quantization for varyi
magnetic modulation amplitudeBm is shown in Fig. 3~a!.
The conductance steps down by two units of 2e2/h and up
by one unit, and then down to zero asBm is increased. Trans
mission coefficientsTi of individual modes for the magneti
superlattice are shown in Fig. 3~b!; the curves are vertically
offset for clarity. Although the total conductance, which
the sum of the modal transmissions, is essentially quanti
the individual transmissions, plotted in Fig. 3~b!, have com-
plicated features as a function ofBm .

For comparison, we calculated the conductance for
electric superlattice with amplitudeVm and sinusoidal barri-
ers. The parameters of the structure are the same as th
Fig. 3~a!. There is no mode mixing in such a constant wid
1D electric superlattice, in contrast to the magnetic one,
which there is. The conductance for a 1Delectricsuperlattice

n

FIG. 5. Conductance as a function of the wire widthW for
Bm50.5 T,N516, a590 nm, andEF53 meV.
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1048 56BRIEF REPORTS
steps down monotonically as the traveling modes in the le
are blocked by the potential barriers with increasing elec
modulation amplitudeVm , as shown in Figs. 3~c! and 3~d!.
No two-unit drop is seen for increasing electric modulati
amplitudeVm in Fig. 3~c!. Clearly, the unique features of th
wave-vector-dependent effective potential for the magn
barriers are critical for the two-unit drop. In our calculation
the two-unit drop in conductance with increasing magne
field is predominant but not universal; occasionally we fi
cases with a one-unit drop. The reason for this is that
effective potential of the magnetic barriers for electron m
tion along the quantum wire depends on the mode of
incident electron in the leads.7

Figures 4~a! and 4~b! show the calculated conductance
a function ofBm for a550 and 90 nm, respectively. For th
shorter a, the conductance steps down by two units
2e2/h smoothly. For the longera, the conductance exhibit
oscillations before the modes are magnetically depleted.
peak values of the conductance oscillations in Fig. 4~b!
should be an integer multiple of 2e2/h. Some of the peaks
fail to reach a quantized value due to the limited number
data points. The peaks are very narrow and therefore req
more extensive computing. We find that the oscillations
come more prominent asa becomes longer. It is thus sug
gested that the formation of an effective loop of edge sta
is essential for the conductance oscillations as discusse
Takagaki10 and Yoshioka.31 One is then dealing with an
Aharonov-Bohm-type interference.

Finally, we show the results of our calculations for t
conductance as a function of the widthW of the quantum
wire, in Fig. 5. Again we see conductance dips associa
with the formation of minigaps, and rapid oscillations r
B

, T
,

et
ds
c

ic
,
c

e
-
e

f

he

f
ire
-

s
by

d

flecting electron transmission through the coupled qua
zero-dimensional states in the cavity regions between
barriers. It is interesting to note that the rapid oscillations
suppressed forW,80 nm in Fig. 5. This can be easily un
derstood, because in this case, the magnetic len
l B536.3 nm atBm50.5 T is close to half the width of the
wire W. Therefore, the effects of the magnetic barriers
not significant, but effects of a periodic magnetic fie
emerge as the width of the wire increases and becomes m
larger thanl B . The oscillations become more pronounced
increasingW as shown in Fig. 5.

In conclusion, we have investigated electronic transpor
1D magnetic superlattices. It is shown that many feature
these systems differ from those of the electrostatically mo
lated ones. We find that unlike the electric superlattice,
number of oscillations in the first conduction plateau has
simple direct correspondence to the number of unit cellsN.
The conductance of 1D magnetic superlattices does not
crease monotonically with increasingBm but rather steps up
and down between quantized levels, sometimes going
zero. The effects of magnetic modulation on the conducta
are pronounced when the width of the quantum wireW in-
creases at a fixedBm . The unique features of magnet
modulation and low dimensionality make the 1D magne
superlattices different from the electric ones or the 2D m
netic ones, so we believe they should be of great interes
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