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Ultrafast energy relaxation in quantum dots through defect states: A lattice-relaxation approach
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We theoretically discuss the impact of defect-related rapid energy relaxation in quantum dots, by applying a
lattice relaxation approach based on a multimode description for the electron phonon interaction. Our calcu-
lation for the Huang-Rhys parameters is able to show explicitly the dependence of lattice relaxation on the
spatial extent of electron states. The calculated result indicates that a relaxation rate faster than picosecond can
be obtained in a wide energy range of tens of mg80163-18207)04140-4

In late years there has been extensive interest in the physriginally the deformation potential model for the electron
ics of semiconductor quantum dd®D’s), due to the impor- LA phonon coupling, and the Fntich model for the electron
tant advantages in device applications, such as the high&O phonon coupling, as well as adopting the parameters in
performance from lasef the strongly enhanced oscillator GaAs material, we employ the multimode LR approach to
strengths and the optical nonlinearitisetc. In particular, ~Set our study on certain fundamental level. To our knowl-
growing activities are in the search for energy relaxationedge, the study of detailed models in LR theory has always
mechanisms in quantum dots, where the discrete nature ®€€n a weak point. However, this kind of study is obviously
energy levels implies a strongly reduced energy relaxatiofimportant, since the detailed nature of the lattice wave func-
unless the level separation equals the LO phonon energy,on and localized electronic state is sensitively relevant to an
which is the so called phonon bottleneck effebtiowever, understanding for the intensity distribution. In the present
to date this bottleneck effect is very unlikely in work, we will take into account the full information of cou-
experiments% Some theoretical effects have been contrib-pling between electrons and phonons, as well as the localized
uted to understand the rapid energy relaxation in a quanturf@ture of the electron states. Accordingly, we are able to
dot, such as the Auger-like mechanién? that could allow show that, besides the electron phonon coupling strength, the
the relaxation on picosecond time scales in the presence oflgcalization extent of electronic state is crucial to cause
dense electron-hole plasma, and the combined-L@® two strong lattice relaxation, which allows a large energy relax-
phonon mechanisth which could open a rapid but narrow ation by MPE. By numerical calculation, we find that, even

relaxation window of several meV around the energy sepafor small quantum dot with radius about 5 nm, the LR be-
ration of Zw o+hw . On the other hand, in recent tween two bound QD states is very weak, but strong LR

experimentgrls the rapid relaxation has also occurred in exists between the QD states and a defect state in the nearby
quantum dot with energy-level separation as large as severBprrier region. Our results support favorably the phenomeno-
LO phonon energiesy and at low electron-hole pair densit)bogicaj description of Sercel and co-workers in Ref. 17. In
(less than one per dofThese findings suggest strongly that aour opinion, the present study is basically interesting and
mu|tiph0n0n emissiomMPE) mechanism is responsib|e for valuable, since it adds qualitative insight to the lattice relax-
the rapid energy relaxation in quantum dots. ation effects in semiconductors.

Recently, Sercel and co-workers presented a phenomeno- In the following, we first present a theoretical formalism
logical description for a possible defect-related extrinsic refor the transition rate between QD and defect states, where
laxation mechanisri, in terms of a single configuration co- the electron LO-phonon coupling is treated exactly, while the
ordinate to describe the lattice, and a phenomenologicalectron LA-phonon interaction is treated in a strong-
Huang-Rhys factor to describe the relaxation strength. Théoupling limit. By numerical calculation, we will show the
basic idea is that in quantum dot the defect states may existrong LR between the QD and defect states as a function of
W|de|y in the nearby barrier region during practica| materia|the localization extent of the defect state, and point out that
growth processes, thus an electron makes a transition froffie direct LR between two QD states is too weak to cause
the higher quantum dot states or the extended states over tNPE. After that, the relaxation rate between the QD and
barrier to the defect, sequentially the defect relaxes by MPEdefect states will be presented and discussed in detail.
and the electron makes a second transition to a lower energy We start from the standard electron phonon interaction
level of the quantum dot. In this way, the defect provides aHamiltonian
rapid channel for the relaxation of states in quantum dot.

This picture is very similar as most situations in bulk H=He+H_ +He., ()
semiconductor$® where an electron in the conduction band .

is captured first into a bound impurity state, then the bound"’her_e He_ and Hy are the _un_couplt_ad elec_tron and lattice
electron recombines with a hole in the valence band. Hamiltonians, and._ is their linear interaction

In this work, we apply the lattice relaxatiqh.R) theory
develo_ped by Huang and others in _195?T§,1to di§cuss fur- _ Ho = Z quimeq. @)
ther this defect-related MPE relaxation mechanism. By using q
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Here and in the following, we treat the coupling of electron
to LO and LA phonons in a unified form. For electron F(p)=—in(E—E)+2
LA-phonon interaction,V§=D2qwq/ch, where Q is M
the system volumeD the deformation potentialp the

density, andc the sound velocity. For the Hntich electron X
LO-phonon interactionV;=4mrafi/l2mo o2k 0o/ Qg?), _ N _
with the dimensionless coupling constanta  WhereAgq is equal toAq—Ajyq, describing the shift of
=(e12hw,0) \2Mw ok (e, — ley), wherefiw g is the thg lattice normal oscnlatpr origin before and after the tran-
LO-phonon energye., and ¢, are the high-frequency and sition. As mentioned previously, We_have_treated_t_he electron
static dielectric constants. Note that in EB), Qq is a com- LA-phonon and LO-phonon couplings in a unified form.
plex coordinate describing the normal mode of lattice vibra-Equation(6) contains the contribution of both electron LA-
tion. To apply the standard LR theory straightforwardly, wePhonon and LO-phonon interactions. We decompose these
separate its real and imaginary partsQis=Q;q+iQ,q. In WO parts as

the form of Q,q (A=1,2), the interaction Hamiltonian can

be rewritten as F(u)=Fa()+So

Wq
E) Af2i>\q

Bhag o
coth——(cosuiwg— 1) +i sinufwg

> . ®)

)
coth'Bzﬂ(costhLo— 1)

: )

Het=2 Vafa(@:1)Qu= 2 UiaQua: 3 +isinufioyo
with So=3{4(w 0/2h)Af), Where the prime means a

with f;(q-r)=sin@@-r) and fy(q-r)=cosq-r). Corre- summation only over LO-phonon modeB,,(x) has the
spondingly, the lattice HamiltonianH = 1/22q[QZ; Qq same form of Eq(6), except that the summation is restricted
+2Q% Qq] becomedH; =33, [QF,+ wiQ%,]. only over LA-phonon modes, which we denote B{,. For

For the coupled electron lattice system, in the Born-the LO-phonon modes with single frequency, we can treat
Oppenheimer approximation the state can be decomposed #gem exactly by applying the well-known formuket cosd
Wi(r,{Qxg}) = ¢i(r {Qxg}) ®i({Qyq}), Wherey; and®; are =3,l(2)€P’, wherel ,(z) is the imaginary argument Bessel
the electron and lattice wave functions, respectively. In thdunction. For the LA-phonon modes, in the strong-coupling
electron wave functionQ,, only plays a role of parameter. limit, the functionF A(x) can be expanded approximately
The lattice wave functio; is a direct product of states of up to the second order qgf. Consequently, the integral of
harmonic oscillators whose oscillating equilibrium origins Ed. (5) can be carried out as
are influenced by the electronic state. According to Fermi's

olden rule, the decay rate of the initial stalte is given b Hyi|? —
g y e g y W= %Ep e_S|_o(2N0+ l)I p[ZSLO NO(NO+ 1)]
W= 2—7TAV-Z [(FIH'[1)]26] Ef—Ei— X, hwg(nfg—nlg) pi2 12
5 Vil e g P ha Tl No+1 2w
X —
@ N ;
0 Sr(fioia)T
whereni)\q and n;q are the initial and final phonon number, 2
and the average over the initial phonon states and summation X ex _(Er—Ei—phoo—Show,) , @)
over the final phonon states are explicitly shown in Ej. 2 7 2
Sr((hwia)T

E: (E;) is the initial (final) electronic-state energy, includ-
ing the renormalization due to lattice relaxation, i.E;, WhereNo=(e?"“0—1)""is the Bose occupation function
= E?—Exqwglmjz)\ , wehre E? is the bare-electronic-state 0f LO phonons. Here we defined two LA-phonon relaxation
energy, andA j,q={¥j|U,q(q-T)| %)/ 2. Note that, in this quantities: Shoa=3],0i/2A%,, and Sr(fiow)7
work, we are in fact considering the transition between the= E’x’q(wq/%)A%xq(ﬁwg) coth(Bhiwy/2). The LO-phonon
QD state and the defect state in the vicinity of barrier. As arelaxation quantitie$h w, o and sT(ﬁwLoﬁ can be defined
tight-binding treatment”H in Eq. (4) is the defect potential ~ gimjlarly. These LR quantities, e.gShw, can be interpreted
if the initial (final) state is the QDdefec} state, andH" is  physically as the difference of lattice elastic energies of dif-
the QD potential vice versa. In the Condon approximationferent lattice configurations owing to the different electron
the electronic matrix in Eq(4), Hf=(yH'[¢;), can be states, which corresponds to a most probable MPE process
regarded as lattice coordinate independent. Following th@ith the electron energy difference exactly equal to the LR
standard procedure of LR to carry out the avere@enma-  energy. If the electron energy difference does not equal the
tion) over initial (final) phonon state¥) > we have LR energy, quantum transition can also happen due to the
flexible MPE, but with a smaller transition rate with respect
IHL|2 (= to the most probable case. It is worthwhile to point out that
W= —" f du et (5) Eq. (8) describes the arbitrary multi-LO and LA phonons
i) involved in nonradiative transition. For eaphLO phonon
process, the peak weight is proportional to the Bessel func-
with tionl,, while the multi-LA phonons manifest themselves by
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- FIG. 2. Transition rate from the defect to the QD ground state as
FIG. 1. LR quantities between the defect state and the @D 1, qnction of their energy difference at zero temperature. The zero

state(solid line) and 2 state(dotted ling, where the average LA~ 54 gne | O-phonon processes are shown by the solid and dashed
and LO-phonon number and the corresponding phonon energy ;rves.

emitted in the relaxation process are shown as a function of spatial

extent of the defect state.

mated by an integral af with an upper cutoffy,= =/b, and
the linear LA-phonon dispersiomg=qc is assumed. In

shifting thep LO phonon peak b 4 and expanding it Figs 1a)-1(d), we show the average relaxed LA-phonon
numberS 5, LO-phonon numbelS, 5, and corresponding

to a width \/zsr(ﬁwLA)% At zero temperaturéST(ﬁw,_A)-Zr
relaxation energieSfiw, 5 and Sfiw o as a function of the

= Shw 4)?, and in the high-temperature IimST(ﬁw,_Aﬁ atio _
= 2ksTShw_». Note that the temperature dependence in Eq!ocahzatlon _extent of the (_jefect state_, where the s(diok-
(8) is more complicated than the usual second-order pertuf®d curve is for the lattice relaxation between the QD
bation calculation for a L&LA process'® where the tem- 18 (2s) state and the defect state. Here, we notice that the
perature dependence is simply proportional to the Bose fund-A-phonon relaxation energy of 20—30 meV is smaller than
tion. the phenomenological Huang-Rhys parameter 100 meV used
To calculate the relaxation quantities in E8), the de- by Sercel and co-workers in Ref. 17, while the relaxation
tailed nature of electronic states and their coupling to thd-O-phonon numbeiS o~0.3 is considerably smaller than
lattice are required. In effective-mass approximatiBMA),  the typical valueS o~5 in the polar ionic crystal where the
we model the quantum dot by a finite deep spherical potenelectron LO-phonon couplinge>1) is much stronger than
tial well with radiusa and potential depth),. The solution  the present value=0.07 from the GaAs material. However,
of this simple quantum mechanical problem is well known.in the following we will show that this LR strength is strong
The order of states from the low-energy level to the highefenough to result in a rapid energy relaxation to overcome the
one is 15,1p,1d,2s,1f,..., wheres, p, d, andf denote the phonon bottleneck in a wide energy range of tens of meV.
angL_JIar momentum. For the de_fect state in the nearb_y barrier, To our knowledge, a quantitative criterion is too widely
as in Ref. 17, we model it by a wave functio;  apsent in the LR approach to justify the necessary localiza-
= \2/la,e""'*/R, resulted from as trap potential, wher®®  tion extent of a bound state to cause strong lattice relaxation.
=[r—Rg|, Rg is the position of the defect that is assumedin bulk semiconductors, the reason that the impurity state
2.5 lattice constant away from the QD interface in our cal-can cause strong LR may be understood by its bound-state
culation. For GaAs the lattice constahtis 5.65 A. The nature. Accordingly, one may expect strong LR between the
energy level of the defect state is Bf=Uy—%2%/2m*a?, QD bound states. Unfortunately, in the present electron-
with the effective masm* =0.067m,. In our numerical cal- phonon coupling strength, our calculation failed to show
culation, other parameters related to GaAs material are chastrong LR between the QD states, mainly because the na-
sen as: for the quantum dot, the conduction-band offsetometer scalée.g., 10 nm of the QD state is not so local-
U,=600 meV, the dot radiua=5 nm; for the deformation ized, compared to the defect state.
potential model of the electron LA-phonon interaction, the To make a conservative estimation for the time scale of
deformation potentiaD =7.8 eV, densityp=5.32 g/cni, and  relaxation, we present here the transition rate from the defect
the sound velocityc=5.22<10° cm/sec; for the Frialich  state to the QD ground state, which is slower than the tran-
electron LO-phonon interaction, the dimensionless couplingition rate from higher QD states or extended states over the
constante=0.07, the LO-phonon energyw, =36 meV. barrier to the defect state, due to the smaller overlap of wave
In Fig. 1 we present our calculated LR guantities betweeriunctions. Figure 2 shows the transition rate from the defect
the QD and defect states, to demonstrate that the LR dependtate to the QD ground state as a function of their energy
obviously on the localization extent of the defect state, wheralifference at zero temperature, where the defect energy level
the LR quantities decrease with increasing the extension. Inhanges by varying the wave-function extensign and the
our calculation, the summation of phonon modes is approxielectronic state-dependent renormalization energy has been
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taken into accounfsee the explanation of Ed4)]. The — 1 T T T T 1
p=0 and 1 LO-phonon-related processes are shown by [
the solid and dashed curves, respectively. We see that
for each LO-phonon process there is a rather wide peak
due to the multiple LA-phonon emission. The width of

each peak is approximatel;/zs(thA)Z, having the order
of tens of meV. The strong relaxation rate in this wide en-

ergy range indicates a rather rapid relaxation process faster
than picosecond, which means that no bottleneck effect ex-
ists if one takes into account the role of defect state during
the QD state relaxing. In Fig. 2 the position of each peak is
determined by the LO-phonon emission and the average I
LA-phonon relaxation energ$h w 5, Which gives rise to a 0 R T T B
separation of about w o between them. The relative height 0 20 40 60 80
of each peak is determined by tipeLO-phonon emission AE (meV)

strength distribution, which was presented in detail in Ref.
22. At zero temperature, it satisfies the Poisson distributio
with the highest peak approximately 8to. In our case,
S 0~ 0.3, thus the zero LO-phonon peak is the highest one.
Here we do not show the higher-order LO-phonon processe
because of the relatively weak electron LO-phonon couplingg
in GaAs material.

One may have noticed an unsatisfactory feature in ou
zero-temperature result: for the LO-phonon process, the
transition rate is nonzero wheXE<p# w . This unphysi-
cal problem is caused by the strong-coupling approximatio
in Eq. (8), when treating the LA-phonon relaxation. In Eq.
(5), this kind of unphysical factor does not exist. At zero

-
[«

8]

Transition Rate (ps™')

n FIG. 3. Transition rate from the defect to the QD ground state as
a function of their energy difference at=300 K.

n a multimode LR approach. Our calculation is able to
ow the influence of localization extent of electronic state
n LR. The numerical result showed that the bound state of
guantum dot with radius about 5 nm does not give rise to
strong LR, but strong LR exists between the QD state and a
nearby defect state in the barrier region, which results in
IJ]arge energy relaxation by MPE. We calculated the relax-
ation rate from the defect state to the QD ground state, which
shows a wide energy window of tens of meV, permitting a
. Lo .+ . rapid nonradiative transition faster than picosecond. Conse-
temperature, the strong-coupling approximation is valid mquently, from a QD excited state to the ground state, a rapid

the energy range défw » around the peak, which is fortu- relaxation rate exists in the presence of a nearby defect state

nately wide enough for the phonon bottleneck problem. AtWith energy between their energy levels, since the capture

high temperatures.’ 'th|s apprommaﬂon bepome; better, Wherl%te from the QD excited state to the defect is expected to be
the nonzero transition rate WE<p%w g is mainly due to

: ) _.__even faster than the transition rate from the defect state to the
the LA-phonon absorption. In Fig. 3 we show the transition

e f the defect to the OD d state at ¢ QD ground state. In practice, this extrinsic energy relaxation
rate from the defect to the QD ground state a room tempergy e chanism may be utilized positively to overcome the pho-
ture T=300 K. We see that each LO-phonon emission

, non bottleneck problem, thus to enhance the luminescence

peak is further expanded as a result of the temperature Eﬁe%fficiency of quantum dot structures.

since the high-temperature LR quantBy(thAﬁ is larger

than the zero-temperature value. The height of each specific

LO-phonon peak is reduced by the increased multiple LO- ACKNOWLEDGMENTS
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