
PHYSICAL REVIEW B 15 OCTOBER 1997-IIVOLUME 56, NUMBER 16
Ultrafast energy relaxation in quantum dots through defect states: A lattice-relaxation approach

Xin-Qi Li and Yasuhiko Arakawa
Institute of Industrial Science, University of Tokyo, 7-22-1 Roppongi, Minato-ku, Tokyo 106, Japan

~Received 3 June 1997!

We theoretically discuss the impact of defect-related rapid energy relaxation in quantum dots, by applying a
lattice relaxation approach based on a multimode description for the electron phonon interaction. Our calcu-
lation for the Huang-Rhys parameters is able to show explicitly the dependence of lattice relaxation on the
spatial extent of electron states. The calculated result indicates that a relaxation rate faster than picosecond can
be obtained in a wide energy range of tens of meV.@S0163-1829~97!04140-4#
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In late years there has been extensive interest in the p
ics of semiconductor quantum dots~QD’s!, due to the impor-
tant advantages in device applications, such as the hi
performance from lasers,1,2 the strongly enhanced oscillato
strengths,3 and the optical nonlinearities,4 etc. In particular,
growing activities are in the search for energy relaxat
mechanisms in quantum dots, where the discrete natur
energy levels implies a strongly reduced energy relaxa
unless the level separation equals the LO phonon ene
which is the so called phonon bottleneck effect.5,6 However,
to date this bottleneck effect is very unlikely i
experiments.7–13 Some theoretical effects have been contr
uted to understand the rapid energy relaxation in a quan
dot, such as the Auger-like mechanism14,15 that could allow
the relaxation on picosecond time scales in the presence
dense electron-hole plasma, and the combined LO1LA two
phonon mechanism16 which could open a rapid but narrow
relaxation window of several meV around the energy se
ration of \vLO6\vLA . On the other hand, in recen
experiments,7–13 the rapid relaxation has also occurred
quantum dot with energy-level separation as large as sev
LO phonon energies, and at low electron-hole pair den
~less than one per dot!. These findings suggest strongly tha
multiphonon emission~MPE! mechanism is responsible fo
the rapid energy relaxation in quantum dots.

Recently, Sercel and co-workers presented a phenom
logical description for a possible defect-related extrinsic
laxation mechanism,17 in terms of a single configuration co
ordinate to describe the lattice, and a phenomenolog
Huang-Rhys factor to describe the relaxation strength.
basic idea is that in quantum dot the defect states may e
widely in the nearby barrier region during practical mater
growth processes, thus an electron makes a transition f
the higher quantum dot states or the extended states ove
barrier to the defect, sequentially the defect relaxes by M
and the electron makes a second transition to a lower en
level of the quantum dot. In this way, the defect provide
rapid channel for the relaxation of states in quantum d
This picture is very similar as most situations in bu
semiconductors,18 where an electron in the conduction ba
is captured first into a bound impurity state, then the bou
electron recombines with a hole in the valence band.

In this work, we apply the lattice relaxation~LR! theory
developed by Huang and others in 1950s,19–21to discuss fur-
ther this defect-related MPE relaxation mechanism. By us
560163-1829/97/56~16!/10423~5!/$10.00
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originally the deformation potential model for the electro
LA phonon coupling, and the Fro¨hlich model for the electron
LO phonon coupling, as well as adopting the parameter
GaAs material, we employ the multimode LR approach
set our study on certain fundamental level. To our know
edge, the study of detailed models in LR theory has alw
been a weak point. However, this kind of study is obviou
important, since the detailed nature of the lattice wave fu
tion and localized electronic state is sensitively relevant to
understanding for the intensity distribution. In the prese
work, we will take into account the full information of cou
pling between electrons and phonons, as well as the local
nature of the electron states. Accordingly, we are able
show that, besides the electron phonon coupling strength
localization extent of electronic state is crucial to cau
strong lattice relaxation, which allows a large energy rela
ation by MPE. By numerical calculation, we find that, ev
for small quantum dot with radius about 5 nm, the LR b
tween two bound QD states is very weak, but strong
exists between the QD states and a defect state in the ne
barrier region. Our results support favorably the phenome
logical description of Sercel and co-workers in Ref. 17.
our opinion, the present study is basically interesting a
valuable, since it adds qualitative insight to the lattice rela
ation effects in semiconductors.

In the following, we first present a theoretical formalis
for the transition rate between QD and defect states, wh
the electron LO-phonon coupling is treated exactly, while
electron LA-phonon interaction is treated in a stron
coupling limit. By numerical calculation, we will show th
strong LR between the QD and defect states as a functio
the localization extent of the defect state, and point out t
the direct LR between two QD states is too weak to ca
MPE. After that, the relaxation rate between the QD a
defect states will be presented and discussed in detail.

We start from the standard electron phonon interact
Hamiltonian

H5He1HL1HeL , ~1!

where He and HL are the uncoupled electron and lattic
Hamiltonians, andHeL is their linear interaction

HeL5(
q

Vqeiq•rQq . ~2!
10 423 © 1997 The American Physical Society
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10 424 56XIN-QI LI AND YASUHIKO ARAKAWA
Here and in the following, we treat the coupling of electr
to LO and LA phonons in a unified form. For electro
LA-phonon interaction, Vq

25D2qvq /rcV, where V is
the system volume,D the deformation potential,r the
density, andc the sound velocity. For the Fro¨hlich electron
LO-phonon interactionVq

254paA\/2mvLO(2\vLO
3 /Vq2),

with the dimensionless coupling constant a
5(e2/2\vLO)A2mvLO /\~1/e`21/e0), where \vLO is the
LO-phonon energy,e` and e0 are the high-frequency an
static dielectric constants. Note that in Eq.~2!, Qq is a com-
plex coordinate describing the normal mode of lattice vib
tion. To apply the standard LR theory straightforwardly, w
separate its real and imaginary parts asQq5Q1q1 iQ2q . In
the form of Qlq (l51,2), the interaction Hamiltonian ca
be rewritten as

HeL5(
l,q

Vqf l~q•r !Qlq[(
l,q

ulqQlq , ~3!

with f 1(q•r )5sin(q•r ) and f 2(q•r )5cos(q•r ). Corre-
spondingly, the lattice HamiltonianHL51/2(q@Q̇q* Q̇q

1vq
2Qq* Qq# becomesHL5 1

2 (lq@Q̇lq
2 1vq

2Qlq
2 #.

For the coupled electron lattice system, in the Bo
Oppenheimer approximation the state can be decompose
C i(r ,$Qlq%)5c i(r ,$Qlq%)F i($Qlq%), wherec i andF i are
the electron and lattice wave functions, respectively. In
electron wave function,Qlq only plays a role of parameter
The lattice wave functionF i is a direct product of states o
harmonic oscillators whose oscillating equilibrium origi
are influenced by the electronic state. According to Ferm
golden rule, the decay rate of the initial stateC i is given by

W5
2p

\
Av i(

f
z^ f uH8u i & z 2dFEf2Ei2(

lq
\vq~nlq

f 2nlq
i !G ,

~4!

wherenlq
i andnlq

f are the initial and final phonon numbe
and the average over the initial phonon states and summa
over the final phonon states are explicitly shown in Eq.~4!.
Ef (Ei) is the initial ~final! electronic-state energy, includ
ing the renormalization due to lattice relaxation, i.e.,Ej

5Ej
02(lqvq

2/2D j lq
2 , wehre Ej

0 is the bare-electronic-stat
energy, andD j lq5^c j uulq(q•r )uc j&/vq

2. Note that, in this
work, we are in fact considering the transition between
QD state and the defect state in the vicinity of barrier. A
tight-binding treatment,17 H8 in Eq. ~4! is the defect potentia
if the initial ~final! state is the QD~defect! state, andH8 is
the QD potential vice versa. In the Condon approximati
the electronic matrix in Eq.~4!, H f i8 5^c f uH8uc i&, can be
regarded as lattice coordinate independent. Following
standard procedure of LR to carry out the average~summa-
tion! over initial ~final! phonon states,19–21 we have

W5
uH f i8 u2

\ E
2`

`

dm eF~m!, ~5!

with
-

-
as

e

s

on

e
a

,

e

F~m!52 im~Ef2Ei !1(
lq

S vq

2\ DD f ilq
2

3Fcoth
b\vq

2
~cosm\vq21!1 i sinm\vqG , ~6!

whereD f ilq is equal toD f lq2D ilq , describing the shift of
the lattice normal oscillator origin before and after the tra
sition. As mentioned previously, we have treated the elect
LA-phonon and LO-phonon couplings in a unified form
Equation~6! contains the contribution of both electron LA
phonon and LO-phonon interactions. We decompose th
two parts as

F~m!5FLA~m!1SLOFcoth
b\vLO

2
~cosm\vLO21!

1 isinm\vLOG , ~7!

with SLO5(lq8 (vLO/2\)D f ilq
2 , where the prime means

summation only over LO-phonon modes.FLA(m) has the
same form of Eq.~6!, except that the summation is restricte
only over LA-phonon modes, which we denote by(lq9 . For
the LO-phonon modes with single frequency, we can tr
them exactly by applying the well-known formulaez cosu

5(pIp(z)e
ipu, whereI p(z) is the imaginary argument Bess

function. For the LA-phonon modes, in the strong-coupli
limit, the function FLA(m) can be expanded approximate
up to the second order ofm. Consequently, the integral o
Eq. ~5! can be carried out as

W5
uH f i8 u2

\
(

p
e2SLO~2N011!I p@2SLO

AN0~N011!#

3S N011

N0
D p/2H F 2p

ST~\vLA !T
2
G 1/2

3expF2
~Ef2Ei2p\vLO2S\vLA !2

2ST~~\vLA !T
2

G J , ~8!

whereN05(eb\vLO21)21 is the Bose occupation functio
of LO phonons. Here we defined two LA-phonon relaxati
quantities: S\vLA5(lq9 vq

2/2D f ilq
2 , and ST(\vLA)T

2

5(lq9 (vq/2\)D f ilq
2 (\vq)2coth(b\vq/2). The LO-phonon

relaxation quantitiesS\vLO andST(\vLO)T
2 can be defined

similarly. These LR quantities, e.g.,S\v, can be interpreted
physically as the difference of lattice elastic energies of d
ferent lattice configurations owing to the different electr
states, which corresponds to a most probable MPE pro
with the electron energy difference exactly equal to the
energy. If the electron energy difference does not equal
LR energy, quantum transition can also happen due to
flexible MPE, but with a smaller transition rate with respe
to the most probable case. It is worthwhile to point out th
Eq. ~8! describes the arbitrary multi-LO and LA phonon
involved in nonradiative transition. For eachp LO phonon
process, the peak weight is proportional to the Bessel fu
tion I p , while the multi-LA phonons manifest themselves b
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56 10 425ULTRAFAST ENERGY RELAXATION IN QUANTUM DOTS . . .
shifting thep LO phonon peak byS\vLA and expanding it

to a widthA2ST(\vLA)T
2. At zero temperatureST(\vLA)T

2

5 S\vLA)2, and in the high-temperature limitST(\vLA)T
2

. 2kBTS\vLA. Note that the temperature dependence in
~8! is more complicated than the usual second-order per
bation calculation for a LO6LA process,16 where the tem-
perature dependence is simply proportional to the Bose fu
tion.

To calculate the relaxation quantities in Eq.~8!, the de-
tailed nature of electronic states and their coupling to
lattice are required. In effective-mass approximation~EMA!,
we model the quantum dot by a finite deep spherical po
tial well with radiusa and potential depthU0. The solution
of this simple quantum mechanical problem is well know
The order of states from the low-energy level to the hig
one is 1s,1p,1d,2s,1f ,..., wheres, p, d, and f denote the
angular momentum. For the defect state in the nearby bar
as in Ref. 17, we model it by a wave functionc t

5A2/ate
2R/at/R, resulted from ad trap potential, whereR

5ur2R0u, R0 is the position of the defect that is assum
2.5 lattice constant away from the QD interface in our c
culation. For GaAs the lattice constantb is 5.65 Å. The
energy level of the defect state is atEt5U02\2/2m* at

2,
with the effective massm* 50.067me . In our numerical cal-
culation, other parameters related to GaAs material are c
sen as: for the quantum dot, the conduction-band of
U05600 meV, the dot radiusa55 nm; for the deformation
potential model of the electron LA-phonon interaction, t
deformation potentialD57.8 eV, densityr55.32 g/cm3, and
the sound velocityc55.223105 cm/sec; for the Fro¨hlich
electron LO-phonon interaction, the dimensionless coup
constanta50.07, the LO-phonon energy\vLO536 meV.

In Fig. 1 we present our calculated LR quantities betwe
the QD and defect states, to demonstrate that the LR dep
obviously on the localization extent of the defect state, wh
the LR quantities decrease with increasing the extension
our calculation, the summation of phonon modes is appro

FIG. 1. LR quantities between the defect state and the QDs
state~solid line! and 2s state~dotted line!, where the average LA-
and LO-phonon number and the corresponding phonon en
emitted in the relaxation process are shown as a function of sp
extent of the defect state.
.
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mated by an integral ofq with an upper cutoffqc5p/b, and
the linear LA-phonon dispersionvq5qc is assumed. In
Figs. 1~a!–1~d!, we show the average relaxed LA-phono
numberSLA , LO-phonon numberSLO , and corresponding
relaxation energiesS\vLA and S\vLO as a function of the
localization extent of the defect state, where the solid~dot-
ted! curve is for the lattice relaxation between the Q
1s (2s) state and the defect state. Here, we notice that
LA-phonon relaxation energy of 20–30 meV is smaller th
the phenomenological Huang-Rhys parameter 100 meV u
by Sercel and co-workers in Ref. 17, while the relaxati
LO-phonon numberSLO;0.3 is considerably smaller tha
the typical valueSLO;5 in the polar ionic crystal where th
electron LO-phonon coupling~a.1! is much stronger than
the present valuea50.07 from the GaAs material. Howeve
in the following we will show that this LR strength is stron
enough to result in a rapid energy relaxation to overcome
phonon bottleneck in a wide energy range of tens of me

To our knowledge, a quantitative criterion is too wide
absent in the LR approach to justify the necessary local
tion extent of a bound state to cause strong lattice relaxat
In bulk semiconductors, the reason that the impurity st
can cause strong LR may be understood by its bound-s
nature. Accordingly, one may expect strong LR between
QD bound states. Unfortunately, in the present electr
phonon coupling strength, our calculation failed to sho
strong LR between the QD states, mainly because the
nometer scale~e.g., 10 nm! of the QD state is not so local
ized, compared to the defect state.

To make a conservative estimation for the time scale
relaxation, we present here the transition rate from the de
state to the QD ground state, which is slower than the tr
sition rate from higher QD states or extended states over
barrier to the defect state, due to the smaller overlap of w
functions. Figure 2 shows the transition rate from the def
state to the QD ground state as a function of their ene
difference at zero temperature, where the defect energy l
changes by varying the wave-function extensionat , and the
electronic state-dependent renormalization energy has b

gy
ial

FIG. 2. Transition rate from the defect to the QD ground state
a function of their energy difference at zero temperature. The z
and one LO-phonon processes are shown by the solid and da
curves.
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10 426 56XIN-QI LI AND YASUHIKO ARAKAWA
taken into account@see the explanation of Eq.~4!#. The
p50 and 1 LO-phonon-related processes are shown
the solid and dashed curves, respectively. We see
for each LO-phonon process there is a rather wide p
due to the multiple LA-phonon emission. The width

each peak is approximatelyA2S(\vLA)2, having the order
of tens of meV. The strong relaxation rate in this wide e
ergy range indicates a rather rapid relaxation process fa
than picosecond, which means that no bottleneck effect
ists if one takes into account the role of defect state dur
the QD state relaxing. In Fig. 2 the position of each peak
determined by thep LO-phonon emission and the averag
LA-phonon relaxation energyS\vLA, which gives rise to a
separation of about\vLO between them. The relative heigh
of each peak is determined by thep LO-phonon emission
strength distribution, which was presented in detail in R
22. At zero temperature, it satisfies the Poisson distribut
with the highest peak approximately atSLO . In our case,
SLO;0.3, thus the zero LO-phonon peak is the highest o
Here we do not show the higher-order LO-phonon proces
because of the relatively weak electron LO-phonon coupl
in GaAs material.

One may have noticed an unsatisfactory feature in
zero-temperature result: for thep LO-phonon process, the
transition rate is nonzero whenDE,p\vLO . This unphysi-
cal problem is caused by the strong-coupling approximat
in Eq. ~8!, when treating the LA-phonon relaxation. In Eq
~5!, this kind of unphysical factor does not exist. At ze
temperature, the strong-coupling approximation is valid
the energy range ofS\vLA around the peak, which is fortu
nately wide enough for the phonon bottleneck problem.
high temperatures, this approximation becomes better, wh
the nonzero transition rate inDE,p\vLO is mainly due to
the LA-phonon absorption. In Fig. 3 we show the transiti
rate from the defect to the QD ground state at room tempe
ture T5300 K. We see that eachp LO-phonon emission
peak is further expanded as a result of the temperature ef
since the high-temperature LR quantityST(\vLA)T

2 is larger
than the zero-temperature value. The height of each spe
LO-phonon peak is reduced by the increased multiple L
and LA-phonon processes at high temperatures, which
be understood easily from Eq.~8!. We conclude that at high
temperatures an even larger energy window is opened for
relaxation, and the phonon bottleneck effect cannot hap
at all in the presence of nearby defect states in the QD b
rier.

To summarize, we have described a defect-assisted r
energy relaxation pathway for states in quantum dot, ba
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on a multimode LR approach. Our calculation is able
show the influence of localization extent of electronic st
on LR. The numerical result showed that the bound state
quantum dot with radius about 5 nm does not give rise
strong LR, but strong LR exists between the QD state an
nearby defect state in the barrier region, which results
large energy relaxation by MPE. We calculated the rel
ation rate from the defect state to the QD ground state, wh
shows a wide energy window of tens of meV, permitting
rapid nonradiative transition faster than picosecond. Con
quently, from a QD excited state to the ground state, a ra
relaxation rate exists in the presence of a nearby defect s
with energy between their energy levels, since the cap
rate from the QD excited state to the defect is expected to
even faster than the transition rate from the defect state to
QD ground state. In practice, this extrinsic energy relaxat
mechanism may be utilized positively to overcome the p
non bottleneck problem, thus to enhance the luminesce
efficiency of quantum dot structures.
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FIG. 3. Transition rate from the defect to the QD ground state
a function of their energy difference atT5300 K.
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