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A new type of collective electromagnetic excitations, namely the surface polaritons~SP’s!, in a double-layer
two-dimensional electron system~DL2DES! ~of nn-type, pp-type, andnp-type! in a high magnetic field is
predicted. Using a Wigner distribution function formalism, we investigate the spectrum, damping, and polar-
ization of the SP’s in a wide range of the frequenciesv and the wave vectorsk. It is shown that near the
cyclotron resonance~CR! (v;V5eB/mc) the phase velocity of the SP’s is drastically slowed down, and the
group velocity undergoes the fundamental steps defined by the fine-structure constanta5e2/\c ~as well as for
the one-layer 2DES!. For thenn-type DL2DES, each dispersion curve splits, and strongly correlated collective
electromagnetic excitations propagate in the system. The group velocity of these excitations is defined by the
interlayer distanced, and is much smaller than that for the one-layer 2DES. In the vicinity of a CR subhar-
monic (v;2V) the negative~anomalous! dispersion of the SP occurs. For thenp-type DL2DES the branches
of the dispersion curves are intercrossed in the long-wave region, near the subharmonic~hole! CR, and in the
short-wave region, due to the resonance interaction between the principal~electron! CR mode and the subhar-
monic ~hole! CR mode. The relaxation of the electrons~or holes! in the DL2DES leads to the occurrence of a
dissipative collective mode of the SP type—the ‘‘additional SP’s’’~ASP’s!. This mode exists under certain
threshold condition, which is determined by a fine-structure constanta. As a consequence, the dispersion
curves for these excitations exhibit spectrum endpoints, and mode’s confluence. The threshold condition for the
ASP’s in the DL2DES has a ‘‘geometrical oscillating’’ form due to the coherence effects between the split
ASP modes. The potential importance for various applications in microelectronics is discussed.
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I. INTRODUCTION

Recent technological progress has made it possible to
duce double-layer two-dimensional~2D! electron-gas sys
tems~DL2DES’s! of extremely high mobility.1,2 As is illus-
trated schematically in Fig. 1, these systems consist of a
of 2D electron gases~2DEG! separated by a distanced.
Many authors1–9 have discussed very interesting strong c
relations effects between the layers in a high magnetic fi
which were predicted to lead to fractional quantum Hall
fects ~FQHE’s!. When the layer separationd is sufficiently
small and comparable to the typical separation of electr
within a layer, the correlations in the strong magnetic fie
are especially important because all electrons can be acc
modated within the lowest Landau level, and execute th
cyclotron orbits with the same kinetic energy. The FQH
occurs when the system has a gap for ‘‘induced char
excitations.’’ The theory10 predicts that at some Landau-lev
filling factor ~even for the system of noninteracting 2DE
inside a layer! this gap in the double-layer system may occ
only if the interlayer interaction is sufficiently strong. In Re
11 the topological excitations in the double-layer quant
560163-1829/97/56~16!/10392~12!/$10.00
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Hall systems were investigated. In Ref. 12 the integer qu
tum Hall effect~IQHE! for nonintracting double-layer elec
tron systems was investigated in the presence of disor
Experimental studies13,14have been devoted to the investig
tion of the double-layer electron systems in a high magn
field, and have observed the many-body interactions of e
trons in coupled quantum double wells,13 and the tunneling
between parallel two-dimensional electron gases.14

In this paper we consider a DL2DES~see Fig. 1! when the
interlayer lengthd is large enough that tunneling between t
two layers is negligible. Therefore we do not consider t
effects of interlayer coherence, which could be importa
when the tunneling between the layers is considerable.3,4 We
demonstrate that in this system a different type of collect
electromagnetic excitations@viz., slow surface polaritons
~SP’s!# exist. These types of collective electromagnetic ex
tations produce strongly correlated electromagnetic mod
whose velocity are relatively small.

Surface polaritons are electromagnetic waves that pro
gate along a flat surface which separates two dielectric
dia, and whose amplitudes decay exponentially with incre
ing distance from the surface into either medium. In rec
10 392 © 1997 The American Physical Society



in

et
e
te
e
n
te

it.
o
ti
-

so
os

ra
n
n

v

d
c

ve

e

on,
at

tic

ec-
of

-

s-
he
tant
o
the
he
he

x-
xist
ave
the

tive

the

in a

ld
tion
sion,
ec.

lts

tial
igh

ion

tate

ra-
glie

o
ct
n

56 10 393COLLECTIVE ELECTROMAGNETIC EXCITATIONS INA . . .
years considerable interest arose in the study of the SP
2DES~Ref. 15! and superlattices~see, e.g., Ref. 16!. In Ref.
17 the magnetoplasma oscillations in a 2DES in a magn
field were investigated. In Ref. 18 the magnetoplasmon
citations in a double-quantum-well system were investiga
The authors of Ref. 18 calculated the collective plasma
citations in a high magnetic field when only the lowest La
dau level is occupied at zero temperature. They calcula
the magnetoplasmon’s spectrum in the semiclassical lim

Many authors have investigated the weak damping of c
lective electromagnetic waves in 2DES in a high magne
field.19,21,22 The quantization of the Hall conductivity, van
ishingly small dissipative~longitudinal! conductivity, and
spatial and temporal dispersion of the conductivity ten
lead to the generation of an unusual collective wave, wh
dispersion characteristics are also quantized.22 It was shown
in Ref. 22 that near the cyclotron resonance~CR! (v;V)
the phase velocity of the SP for the one-layer 2DES is d
tically slowed down, and their group velocity undergoes fu
damental jumps, whose magnitude is determined by the fi
structure constanta5e2/\c. The number of the slow SP
modes is specified by the magnitude of the Landau-le
filling factor N5p l 2n @wherel 5(c\/eB)1/2 is the magnetic
length,n is the density of 2D electrons, andB is the mag-
netic field in the 2DES#, i.e., by the value of the quantize
Hall conductivity. In the vicinity of the CR subharmoni
(v;2V), the negative~anomalous! dispersion of SP’s~see
Fig. 3! occurs. Also, a different type of SP’s of a dissipati
nature ~namely, ‘‘additional surface polaritons’’—ASP’s!
appear near the CR. The condition for the existence of th

FIG. 1. The geometry of the structure of a double-layer tw
dimensional electron-gas system DL2DES embedded in a diele
medium with the dielectric constant,«; d is the distance betwee
two layers.
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ASP’s is determined by the quantized threshold criteri
which allows one to determine the relaxation frequency
low temperature to an accuracy ofa.

In this paper a new type of collective electromagne
excitations ~viz., the slow SP’s! in a DL2DES in a high
magnetic field is predicted. We have investigated the sp
trum, damping, and polarization of the SP in a wide range
frequenciesv and wave vectorsk. Various types of the
DL2DES, namelynn-, pp-, andnp-types of layers are con
sidered. It is shown that near each CR@electron CR~n-type!
and hole CR~p-type!# the phase velocity of the SP is dra
tically slowed down, and their group velocity undergoes t
fundamental steps determined by the fine-structure cons
a. In the DL2DES each dispersion curve splits into the tw
modes—one is slower than in the one-layer system, and
other one is faster. The splitting width is determined by t
values of Landau-level filling factors in the layers and by t
separation distanced between the layers~nn-type DL2DES!.
For thepn-type DL2DES strong interacting modes are e
cited. In the long-wave regime these interacting modes e
near the subharmonic of the holes CR. In the short-w
regime there are interacting modes between the SP of
hole layer~subharmonic of the hole CR! and the SP of the
electron layer~principal electron CR!. The relaxation of the
conduction electrons in each layer gives rise to dissipa
threshold-type modes of the ASP for the DL2DES.

The paper is organized as follows. In Sec. II we use
formalism of the Wigner distribution function~WDF! for
describing the quantum transport phenomena in a 2DES
high magnetic field~under the IQHE conditions!. In Sec. III
the electrodynamics in the DL2DES in a high magnetic fie
is presented. In this section we derive the dispersion rela
for electromagnetic surface waves and discuss the disper
polarization, and damping for the SP in this system. In S
III we consider the DL2DES ofnn, pp, andnp types. Sec-
tion IV concludes the paper with a brief summary of resu
and possible applications.

II. TRANSPORT IN A 2DES IN A HIGH MAGNETIC
FIELD

To find a conductivity tensor that accounts for the spa
and temporal dispersion in a 2D electron gas placed in a h
magnetic fieldB oriented normally to the 2D layer~see Fig.
1!, we apply the WDF formalism:22–25

f p
W~r ,t !5E dr 8 TrH r̂ expF2 i S p1

e

c
A~r ,t ! D r 8G

3c†~r2r 8/2!c~r1r 8/2!J . ~2.1!

Herer̂ is the density matrix operator of the system;c†(r )
andc(r ) are the Fermi operators of creation and annihilat
of a particle at the pointr , respectively;A is the vector
potential of the electromagnetic field.~The effectiveness of
the WDF approach to the modeling of mesoscopic solid-s
devices was demonstrated in Refs. 26, 27.! In the case when
the scale of the spatial inhomogeneity exceeds both the
dius of interaction between the particles and the de Bro

-
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electron wavelength, the kinetic equation for the WDF~2.1!
takes the form22–25 equivalent to the classical kinetic equ
tion:

] f p
W

]t
1v

] f p
W

]r
1eH E1

1

c
@v,B#J ] f p

W

]p
5 Î $ f p

W%. ~2.2!

HereE andB are the electric field and the magnetic indu
tion vectors;e is the electron charge, andv is the velocity of
the conduction electrons.

In the case under consideration, the 2D electron syste
extended in thexy plane~see Fig. 1!, and the typical scale o
the field’s inhomogeneity is the wavelengthk21 of the col-
lective electromagnetic wave. Thus, the conditions for ap
cability of Eq. ~2.2! arek!n1/2 ~since at weak screening th
value of n21/2 is the characteristic length of the interactio
between particles!, and kl!1 @since the magnetic lengthl
5(c\/eB)1/2 represents the de Broglie wavelength of ele
trons in a high magnetic field#. The collision integral,Î $ f p

W%,
in Eq. ~2.2! differs essentially from the classical collisio
integral, since the quantum transitions contributing toÎ $ f p

W%
reflect the character of the particle’s statistics, and a dist
tion of the WDF from the classical one.24 The equilibrium
WDF sets the collision integralÎ $ f p

W%, to zero. The equilib-
rium WDF can be expressed via its value for an equilibriu
ensemble of quantum states of an electron in a magnetic
B. Using the definition~2.1!, and substituting the wave func
tions of an electron in an electromagnetic field into Eq.~2.1!,
we obtain the equilibrium WDF for spinless electrons,22,24,25

f 0~e!5(
s50

`

nFF\V~s1 1
2 !2m

T
GGsS e

\V D ,

Gs~x!52~21!s exp~22x!Ls
~0!~4x!,

nF~x!5~11ex!21. ~2.3!

Heree5p2/2m is the energy of 2D electrons,m is the chemi-
cal potential,T is the temperature, andLs

(0)(x) is the La-
guerre polynomial. If we replace the summation overs in
Eq. ~2.3! by integration, then for\V!T, Eq. ~2.3! trans-
forms into an equilibrium Fermi distribution function.

Using the equilibrium WDF~2.3!, we can derive all ther-
modynamical relations. In this paper we will consider t
2DES when the chemical potentialm is constant over the
entire 3D system~i.e., the grand canonical electron system!.

Figures 2~a!–2~f! demonstrate the equilibrium WDF~2.3!
as a function ofe/m at T550 mK, m520 meV, and for
different values of the magnetic fieldB ~and, correspond-
ingly, for the different values of the Landau-level filling fac
tor, N5p l 2n!. It is easy to see that at high magnetic fie
\V@T, @Fig. 2~a!# the edge of the Fermi distribution func
tion in the electron distribution does not manifest itself, a
the WDF~2.3! decays exponentially,;exp(22e/\V). Figure
2~b! displays the equilibrium WDF forN53. In this case the
equilibrium WDF has one minimum and one maximum a
function of energye. WhenN increases@see Figs. 2~c!, 2~d!,
2~e!, 2~f!# the equilibrium WDF~2.3! oscillates as a function
of energy, and transforms to the Fermi distribution functio
when the magnetic field diminishes. Thus, the WDF form
ism takes into account quantization of the electron spect
is

i-
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c-

ld
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d
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,
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m

in a magnetic field as intrinsic properties, and makes it p
sible to describe the electron transport and equilibrium pr
erties in terms of classical variables. In this way, the desc
tion of the quantum kinetics becomes highly transparent.

The relation between the electron densityn and the
chemical potentialm in a high magnetic field can be found
as usual, from the normalization condition. Below we w
consider the 2DES with a fixed value of the chemical pot
tial m. The real 2DES is in fact extremely inhomogeneous
one of the directions of a 3D electron system. A 2DE
occurs, for example, in the inversion layers of a met
oxide-semiconductor-field-effect transistor, or in th
GaAs2Al xGa12xAs heterostructures at low temperature.
such systems the chemical potentialm is determined for the
2DES as an equilibrium value ofm for an extremely inho-
mogeneous 3D systems. The densityn of the 2D electrons is
an average off 0(e) Eq. ~2.3!. As a result, we obtain afte
averaging the expression for the Landau-level filling facto

N5p l 2n5(
s50

`

nFF\V~s1 1
2 !2m

T
G . ~2.4!

Below we assume that the IQHE conditions are satisfi
\V/T@1, m/T@1.

The formalism used in this paper is based on the assu
tion that the kinetic equation for the WDF~2.2! can also
involve the collision integral. Usually, the kinetic approa
based on the collision integral can be justified under the c
dition kFl * @1, wherekF is the Fermi wave number of a
electron, andl * is the characteristic electron’s mean fre
path.28–33 We will consider in this paper the effects dete
mined by the linear response to the electric field. In this c
the WDF, f p

W , can be found in a linear approximation wit
respect to the external field,E. It is well known24 that for a
sample with a high electron mobility and in the hig
frequency regime (vt@1) the collision integral can be use
in the t approximation, where the mean-free-path timet is
determined by the relaxation frequencyn(e)5t21, a func-
tion of the electron energy,e.

In the following we assume that the distanced between
the two layers is large enough, and the potential barrier
tween the layers is rather high. In this case, tunneling
strong electron correlation effects can be neglected, and
can consider the electron’s kinetics in both layers indep
dently. We represent the WDF in each layer in the form

f p
W5 f 0~e!1 f 1 , ~2.5!

where f 0(e) and f 1[ f 1(p,r ,t) are the equilibrium and non
equilibrium parts of the WDF, respectively. In thet approxi-
mation the collision integral,Î $ f p

W%, can be written as

Î $ f p
W%52n~e! f 1 . ~2.6!

Generally, the electric fieldE in Eq. ~2.2! is a function of
three coordinates and time. Then for the Fourier transfo
of the current density,j , and the electric field,E, one obtains
the following linear relations:

j a~v,k!5sab~v,k!Eb~v,k! ~a,b5x,y!, ~2.7!

where
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FIG. 2. The equilibrium Wigner distribution function of electrons in a magnetic field. Each figure~a!–~f! shows the value of the magneti
field B, and the Landau-level filling factorN. The value of the chemical potential is chosen asm520 meV.
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Ea~r ,t !5E d2k dv

~2p!3 Ea~v,k!ei ~kr 2vt !, ~2.8!

Ea~v,k!5E d2k dv Ea~v,k!ei ~kr 2vt !. ~2.9!

The Fourier transform of the conductivity tenso
sab(v,k) can be found from Eqs.~2.2!–~2.6!. In the general
case we have, for the conductivity tensor in each layer,
same equation as the one derived in Ref. 22.

In this paper we will assume that the mobility of electro
is very high, and the relaxation frequency is an effect
constant, i.e.,n5const. We will consider the most realist
case, when the spatial dispersion is sufficiently weak, i.e

kl<1. ~2.10!

Then the Fourier transform of the conductivity tensor
each layer can be represented in the form

sab5
2e2

h

N

11g2 H Bab2
~kl !2

2g S 11
N

2 DCabJ ,

~2.11!
e

e

where

Bxx5Byy5g, Bxy52Byx51,

Cxx5a1cos2b, Cyy5a2cos2b,

Cxy52b2sin2b, Cyx5b2sin2b.

a5
2~g212!

g214
, b5

6g

g214
. ~2.12!

From Eq.~2.14! we derive the formulas for the resistanc
tensor in the dc case, whenv→0, k→0 ~IQHE!,

rxx5
sxx

sxx
2 1sxy

2 5
h

2e2

g

N
, ~2.13!

rxy5
sxy

sxx
2 1sxy

2 5
h

2e2

1

N
. ~2.14!

As one can see, Eqs.~2.13! and ~2.14! are rather conve-
nient for describing the IQHE~see also Ref. 34!, even at
n5const. Equation~2.11! and Eq. ~2.13! show that, if
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n5const, then the relationrxx /rxy5g5n/V should exist,
which can be observed under the IQHE condition. The
viation from this simple relation demonstrates the ene
dependence of the relaxation frequency,n5n(e) ~see Ref.
34!. Equation~2.14! describes the line shape oft the CR~the
high-frequency absorption is proportional to Resxx! for vari-
ous frequencies,v, as a function of the magnetic field. Ob
viously, the line shape of the CR is highly sensitive to
position. In the case when the center of the resonant lin
located at the center of the IQHE plateau, it shows kink-ty
behavior at the points where the jumps of the IQHE occu22

It is easy to see from Eq.~2.14! ~see, also, Ref. 22! that the
resonant line, whose center is located at the centre of
IQHE plateau, has structures on the wings of the reson
line at the values of magnetic fieldB corresponding to the
jumps of the Landau-level filling factorN. The amplitude of
a CR resonant line increases when the center of the CR
is located at the point of a jump of the Landau-level fillin
factor N. Such features of the CR resonant line were o
served by a number of authors.34,35

III. ELECTRODYNAMICS OF DOUBLE-LAYER 2DES
IN A HIGH MAGNETIC FIELD

The propagation of the electromagnetic waves in the s
tems with a 2D electron gas placed in a dielectric envir
ment, in a strong magnetic field~see Fig. 1!, is described by
the Maxwell equations for the scalar and vector potenti
i.e., in the Lorentz gauge,

¹A1
«

c

]w

]t
50. ~3.1!

The potentialsA andw satisfy the usual wave equation,36,37

F¹22
«

c2 S ]

]t D
2Gw~r ,t !52

4p

«
r tot~r ,t !, ~3.2!

F¹22
«

c2 S ]

]t D
2GA~r ,t !52

4p

c
j tot~r ,t !. ~3.3!

These values are related to the fields in Eq.~2.2! as

E52¹w2
1

c

]A

]t
, B5rotA. ~3.4!

Herer tot5rex1r is the total charge density in the system
and j tot5jex1 j is the total current density;rex and jex are the
external charge and current densities, respectively. In
system under considerationr5r1d(z1d/2)1r2d(z2d/2)
and j5 j1d(z1d/2)1 j2d(z2d/2),37 so the charges and cu
rents exist only in the 2D electron layers. There are no
ternal currents and charges in the system:rex5 jex50. In this
case the potentialsA andw can be found from the homoge
neous equations~3.2!, ~3.3!. Using Fourier-transformation
~2.7! and taking into account thatj (v,k,z)5 j (1)(v,k,
2d/2)d(z1d/2)1 j (2)(v,k,d/2)d(z2d/2) @with the upper
indexes~1! and~2! indicating the first and the second layers#,
we obtain
-
y

is
e

he
nt

ne

-

s-
-

s,

,

e

-

w~v,k,z!5wex~v,k,z!1
2p

p« E
2`

`

dz8r in~v,k,z8!e2puz2z8u,

~3.5!

A~v,k,z!5Aex~v,k,z!1
2p

cp E
2`

`

dz8j in~v,k,z8!e2puz2z8u,

~3.6!

where p5Ak22(v2/c2)«, Rep.0. It follows from Eqs.
~3.5! and ~3.6! that the electromagnetic waves exist in t
system in the form of the surface waves localized in
vicinity of the DL2DES~see Fig. 1!. In this case the compo
nentAz50, while the scalar potential can be found from t
Lorentz gauge~2.14!: kA5(v«/c)w. Using Eqs. ~2.7!,
~3.1!, and~3.4!, the current densities in the 2D electron la
ers of the DL2DES can be represented in the form

ja
~1!~v,k!5 i

v

c
sab

~1!~v,k!FAb~v,k,2d/2!

2
c2

«v2 kbkgAg~v,k,2d/2!G , ~3.7!

ja
~2!~v,k!5 i

v

c
sab

~2!~v,k!FAb~v,k,d/2!

2
c2

«v2 kbkgAg~v,k,d/2!G . ~3.8!

The indicesa, b, g in Eqs.~3.7! and~3.8! take the valuesx
and y. Using Eqs.~3.1!–~3.6!, the vector potential of the
electromagnetic fields in each layer of the DL2DES can
represented in the form

Aa~v,k,2d/2!5
2p

cp
@ j a

~1!~v,k!1 j a
~2!~v,k!exp~2pd!#,

~3.9!

Aa~v,k,d/2!5
2p

cp
@ j a

~1!~v,k!exp~2pd!1 j a
~2!~v,k!#.

~3.10!

The dispersion relation is given by the determinant of
homogeneous system of equations~3.7!–~3.10!,

@A~1!exp~pd!1B~1!exp~2pd!#@A~2!exp~pd!

1B~2!exp~2pd!#5D1C~1!C~2!, ~3.11!

where the following notations are introduced (i 51,2):
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A~ i !5B~ i !1F ~ i !1«,

B~ i !5
2p

c
$@sxx

~ i !#21@sxy
~ i !#2%,

F ~ i !5 i
2p

vp S p22
v2

c2 « Dsxx
~ i ! ,

C~ i !52B~ i !1F ~ i !,

D5«
2p

c
$@sxx

~1!2sxx
~2!#21@sxy

~1!2sxy
~2!#2%. ~3.12!

The conductivity tensor fori th (i 51,2) layer is determined
by the expressions~2.14!, ~2.15!,

sab
~ i ! ~v,k!5

2e2

h

N~ i !

11g~ i !2 H Bab
~ i ! 2

~kl !2

2g~ i ! S 11
N~ i !

2 DCab
~ i ! J ,

~3.13!

whereN( i ) is the Landau-level filling factor for thei th layer
( i 51,2). We assume that each layer has its own value of
chemical potential, and its own value of the effective ele
tron ~hole! mass. Different values of the chemical potent
for two layers can be realized, for example, by applying d
ferent gate voltages to the corresponding potential wells~see,
e.g., Refs. 1 and 2!.

Before considering the 2LDES, it is convenient first
discuss the dispersion relation of the SP in a high magn
field for a one-layer 2DES.22 Figure 3~taken from Ref. 22!
represents the dispersion curves of the SP propagating in
one-layer 2DES. The dispersion curves for the surface
laritons in the one-layer 2DES were calculated for vario
values of the Landau-level filling factorN ~N51, N55, and
N510!. If the 2DES is realized using the heterostructu

FIG. 3. The dispersion curves for the SP’s for a one-layer 2D
calculated for various values of the Landau-level filling factorN
~N51, N55, andN510!, V51013 s21 ~taken from Ref. 22!.
e
-
l
-

ic

he
o-
s

GaAs/AlxGa12xAs, the effective electron massm
50.068m0 and «512. The y-axis shows the real part o
frequency, and thex axis shows the value of the wave num
ber. It is seen from Fig. 3 that the spectrum of the SP’s
gapless at low frequencies (v!V), and the SP’s exist both
in the low-frequency regionv,V, and in the high-
frequency regionv.V. In the low-frequency region, fa
away from the CR, the phase velocity of the SP is close
the light velocity vd5c/A« in the dielectric medium tha
surrounds the 2D electron layer. In the high-frequency reg
and in the vicinity of the principal CR (v;V), the phase
velocity of the SP’s decreases drastically, and they are tra
formed into slow waves. In the frequency regionV,v
,2V, and under the conditionl 21@k@(v/c)A«, one can
neglect the retardation effect, and the spatial dispersion
the conductivity tensor is given by Eq.~2.11!. In this case,
the dispersion relation can be transformed into the form

v25V21
2pvnkV

«
, ~3.14!

where vn5(2e2/h)N. It is easy to see that whenV
@(vnk/«)(N;1), the dispersion law of the SP is linea
(v2V;k), while in the opposite caseV!(vnk/«) ~or
whenN@1!, the dispersion relation is of a square-root ty
(v;Ak).

Near the CR (v;V) one cannot neglect the retardatio
effect, and the dispersion law of the SP has the form

v5V1V
vn

c H pV

cp1
S p1

2c2

«V221D 1
2p2vn

«c J 2 in.

~3.15!

Here p15Ak22(V2/c2)«. The value of the relative decel
eration of the SP is determined by the fine-structure cons
a. The group velocity,vg5(]v/]k), of the SP undergoes
fundamental steps in the vicinity of the CR:

vg

vd
5

2&aN

A«
. ~3.16!

Thus, the deceleration of the wave near the CR is signific
and the reason for the quantization of the group velocity
the quantization of the Hall conductivity, i.e., the syste
possesses a fundamental parameter~which has the dimension
of velocity!—the conductance quantum 2e2/h. At the point
of the CR the character of the conductivity changes, and
imaginary part of the conductivity becomes large. This lea
to the occurrence of the slow waves~the slow SP’s!.22 With
further increase of the frequencyv, near the CR subhar
monic (v;2V), the spatial dispersion effects of the co
ductivity ~2.11! become noticeable; the group veloci
changes its sign and takes negative values. In this region
SP’s show anomalous~negative! dispersion.

The SP spectrum near the CR subharmonic (v;2V) has
the form

v52V2V
b

d S kl

2 D 2S 11
N

2 D2 in. ~3.17!

Here

S
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b5
vn

c S 4p

3 D S V

cpD S 12
p2

2c2

4«V D , ~3.18!

d5112b, and p25Ak22(4V2/c2)«. At v.2V, the SP
propagates through the system at a velocity close to tha
the SP far away from the CR subharmonic~see Fig. 3!. It
follows from Eqs.~3.17!, ~3.18! that the dispersion curve o
the SP is closely pinned to the line of the CR subharmo
(v52V). The dispersion curve of the SP near the CR s
harmonic has a characteristic scale set by the small pa
eterD5\V/mc2!1. This dispersion curve~see the insert in
Fig. 3! of the SP starts near the fundamental mode of
light line (v5kvd), then it branches upwards~the number of
branches is equal to the Landau-level filling factorN!, and
the group velocity is quantized in the same way as near
principal CR (v5V). But in the case of the CR subha
monic, the group velocity is very lowvg;vd(\V/mc2) in
the region of the wave numbers where the dispersion curv
closely pinned to the linev52V. The dispersion curve o
the SP approaches the linev52V for k,«V/vn . At k
;«V/vn the dispersion curve separates from the linev
52V ~see Fig. 3!. The relative attenuating rate of the SP
of the ordern/v and is small for the samples with a hig
electron mobility.

In the case of two identical layers in the DL2DE
~nn-type or pp-type!, the dispersion relations are given b
the expressions,

2S 2p

c D 2

@sxx
2 1sxy

2 #@ch~pd!61#1 i
2psxx

vp S p22
v2

c2 « D
3@exp~pd!61#1« exp~pd!50. ~3.19!

In the limiting case when the interlayer distanced→0, the
dispersion relation takes the form equivalent to a one-la
system,22

S 2p

c D 2

$@sxx
~1!1sxx

~2!#21@sxy
~1!1sxy

~2!#2%

1 i
2p@sxx

~1!1sxx
~2!#

vp S p22
v2

c2 « D1«50,

~3.20!

where the longitudinal components (sxx
ef 5sxx

(1)1sxx
(2)) and

the Hall components (sxy
ef 5sxy

(1)1sxy
(2)) of the effective con-

ductivity tensor should be introduced.

A. nn-type double-layer 2DES

Let us consider thenn-type DL2DES in the case when th
Landau-level filling factor is the same for each layer (N

5N15N2). The dispersion curves determined by the disp
sion relation~3.19! for the high mobility electrons (n→0) in
a DL2DES are shown in Fig. 4.

Generally, the dispersion curves are of the same typ
the dispersion curves for the one-layer system. Near the p
cipal CR the phase velocity is slowed down, and the gro
velocity undergoes the fundamental steps@see Fig. 3 and
Eqs. ~3.14!–~3.16! for different values of the Landau-leve
filling factor N#. In Fig. 4 the dotted line describes the di
persion curve for a one-layer system and forN51. For the
of

ic
-

m-

e

e

is

r

r-

as
n-
p

DL2DES each dispersion curve~for differentN! is split into
two modes. The splitting of the SP dispersion curves is s
nificant in the long-wave region,kd,1. A lower curve~the
mode indicated by the ‘‘2’’ sign in Eq. ~3.22!# has the end-
points of the spectrump50 that are located at the light lin
v5kvd . These endpoints~for the curves 2 and 4 in Fig. 4!
are determined from the equation v5V/@1
12aN(dV/c)#. The group velocityvg of the SP near the
principal CR (v;V), is

vg

vd
52aNA2

«
@16exp~2A«dV/c!#, vd5c/A«.

~3.21!

When A«dV/c!1, the group velocity is given by the ex
pression,

vg

vd
5H 4aNA2

«
, ‘ ‘ 1 ’ ’ mode,

2&aNdV/c, ‘ ‘ 2 ’ ’ mode.

~3.22!

So, in the DL2DES two slow SP’s propagate. The ‘‘2’’
mode ~lower line 2 or 4 in Fig. 4! describes the strongly
correlated collective electromagnetic excitations~SP’s!. The
group velocity of the ‘‘2’’ mode is smaller than for the
‘‘ 1’’ mode, and smaller than the group velocity for the on
layer system22 @see Fig. 3, Eq.~3.14!, Eq. ~3.16!#. The split-
ting of the dispersion curves is vanishingly small in t
short-wave region~see Fig. 4!.

Figures 5~a! and 5~b! show the dispersion curves (atn
!V) for the DL2DES, when the Landau-level filling factor

FIG. 4. The dispersion curves for the SP for a double-la
2DES ~nn-type!. The Landau level filling factors: (N15N251).
The interior split curves~1 and 2!: dV/c50.1. The exterior split
curves ~3 and 4!: dV/c50.05. The dotted line is the dispersio
curve for a one-layer 2DES. The dashed line is the light linev
5kvd , wherevd5c/«1/2.
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are different for different layers (N1ÞN2). Near the princi-
pal CR the group velocity is described by the formula

vg

vd
52aA2

« FN11N2

2

6AS N12N2

2 D 2

1N1N2 exp~22A«dV/c!G .
~3.23!

FIG. 5. The dispersion curves for the SP of a DL2DE
~nn-type! for different values of the Landau-level filling factorN
~solid lines 1 and 2!. The dotted lines are the corresponding disp
sion curves for the one-layer 2DES:~a! curve 1,N1510; curve 2,
N255; dV/c50.1; ~b! curve 1, N152; curve 2,N251; dV/c
50.1; V51013 s21.
Figure 5~a! demonstrates the dispersion curves for the ca
when the Landau-level filling factors areN155 and
N2510 @solid lines 1 and 2 in Fig. 5~a!#. The dotted lines in
Fig. 5~a! demonstrate the corresponding dispersion cur
for a one-layer 2DES. Figure 5~b! shows the dispersion
curves forN151 andN252. Both cases represented in Fig
5~a! and 5~b! demonstrate that the lower spectral line po
sesses the endpoints on the light linev5kvd . It is easy to
see from Figs. 4, 5~a!, 5~b! that one of the two SP modes
slower than the SP in a one-layer 2DES with the Land
level filling factor N5min@N1 ,N2#. The other SP mode is
faster than the SP for a one-layer 2DES withN
5max@N1 ,N2#. The slower mode has the endpoint in th
spectrump50. With decreasing of the interlayer distanced
~Fig. 1!, one mode slows down, and the other mode is ac
erated@see Eqs.~3.21!, ~3.22!, and~3.23!#. Near the principal
CR (v;V) the accelerated mode approaches a one-la
2DES dispersion curve with an effective value of t
Landau-level filling factorN5N11N2 . In the case, when
the DL2DES is of thepp-type, the picture for the dispersio
curves is the same as is shown in Figs. 4, 5~a!, 5~b!.

B. np-type of double-layer 2DES

Figure 6 shows the dispersion curves for thenp-type
DL2DES. Near the subharmonic of the holes CR the spec
curves in the long-wave limit represent two interacti
modes~curves 2 and 3 in Fig. 6!. The first mode~curve 2 in
Fig. 6! is generated near the hole subharmonics (v;2Vh),
another mode~curve 3 in Fig. 6! is generated near the prin
cipal ~hole! CR (v;Vh). The dispersion curve 3 in Fig. 6
possesses the anomalous~negative! dispersion at short wave
lengths. In the short-wavelength region the dispersion cu

-

FIG. 6. The dispersion curves for the SP of a DL2DE
~np-type!, Ne55 and Nh510; dVe /c50.1. The curve 1 corre-
sponds to the electron CR; the curves 2 and 3 correspond to the
CR’s at the principal hole CR (v5Vh), and at its subharmonic
(v52Vh); Ve51013 s21.
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1 is generated by the principal~electron! CR (v;Ve) that is
strongly interacting with the SP mode~curve 2 in Fig. 6!
which is generated near the subharmonic~hole! CR. The
mode 1 occurs at the endpoint of the spectral curve.
endpoint of the mode 1 is located on the light linev
5kvd , and its coordinate is

v5VeFme

mh

meN11mhN2

mhN11meN214aN1N2medVe /cG1/2

.

~3.24!

Thus, near the principal~hole! CR (v;Vh), and near the
subharmonic of~hole! CR (v;2Vh) one mode of the SP
exists, which is the same as in the one-layer~hole! 2DES.
Near the subharmonic~hole! CR (v;2Vh) the SP mode
possesses the negative~anomalous! dispersion. The secon
SP mode occurs near the principal~electron! CR (v;Ve),
and its exhibits the endpoint of the spectrum (p50). In the
short-wave region both SP modes exhibit a mutual resona
interaction, where they interchange the energy, and their
calization regions vary. The resonance interaction of t
modes~curves 1 and 2 in Fig. 6! of the SP takes place nea
the point (v0 ,k0):

v05VeFme

mh

Nhmh2Neme

Nhme2Neme
G1/2

, ~3.25!

k05
«Ve

2acmh

mh
22me

2

Nhme2Nemh
. ~3.26!

The insets in Fig. 6 demonstrate the fine structure of
dispersion curves near the points where the modes stro
interact. In the system of coordinates near the point~3.25!,
~3.26! the dispersion curves are described by a simple eq
tion

a1~Dv!22a2~Dk!25exp~22v0d/c!, ~3.27!

where

a15
v0

2«2mh

a2N1N2k0
2c2Ve

2me
, a25k0

22F11
Nhme

Nemh
1

Nemh

Nhme
G ,

with Dv5v2v0 , andDk5k2k0 .
In a one-layer 2DES another type of SP exists~see Ref.

22!, which appears near the CR (v;V). This SP is a
dissipative-type wave. As was mentioned above, the sur
waves exist when Rep.0. At the same time, when the relax
ation frequencynÞ0, the frequencyv is complex. A
straightforward analysis shows that the ASP mode is pra
cally nondissipative, and its existence is determined by
threshold condition,

n

V
.2a

N

Ae
. ~3.28!

Thus, the dissipation can influence the SP dispersion pro
ties and can lead to new interesting features. Whenn exceeds
a critical value @see Eq.~3.28!#, the SP dispersion curv
splits into two branches~see Fig. 4 in Ref. 22!. One of those
curves practically coincides with the light line (v8
5ck/Ae), and has the endpoint of the spectrum Rep50. At
e

ce
o-
o

e
ly

a-

ce

ti-
e

r-

this point the SP field is delocalized. As is seen from E
~3.31! ~see, also, Ref. 22!, the threshold condition for the
ASP occurrence in a high magnetic field is determined by
fine-structure constanta, and by the quantized value of th
Landau-level filling factor. Thus, the threshold conditio
~3.31! for the ASP existence in a high magnetic field is d
termined by the discrete valueN due to the Hall quantiza-
tion. The spatial dispersion of the conductivity~2.14! of the
2DES in a high magnetic field does not significantly infl
ences either the ASP threshold condition or the ASP sp
trum and damping. Note that the experimental observation
such an ASP specifies the relaxation frequencyn with an
accuracy up to the fine-structure constanta.

In a DL2DES~see Fig. 1! the ASP also exists. The dis
persion relation for the ASP is

v5v81 iv9,
~3.29!

v85VeF16
2aN

A«
exp~v9dA«/c!sin~v8dA«/c!G ,

v952n1
2aNVe

A«
@16exp~v9d/A«/c!sin~v8dA«/c!#.

~3.30!

Equations~3.29!, ~3.30! can be solved iteratively, using th
small parameter 2aN/A«!1. In this case,

v8516
2aN

A«
exp~2ndA«/c!sin~VedA«/c!, ~3.31!

v952n1
2aNVe

A«
@16exp~2ndA«/c!cos~VedA«/c!#.

~3.32!

The threshold condition for the ASP occurrence in t
DL2DES has the form (v9,0),

n.
2aNVe

A«
@16exp~2ndA«/c!cos~VedA«/c!#.

~3.33!

This condition looks like Eq.~3.31! but it reflects different
values of the threshold for each split ASP mode@the signs
‘‘ 6’’ in ~3.36!#. The threshold~3.36! possesses geometric
oscillations as a function of the magnetic field and the int
layer distanced.

Figures 7~a!–7~d! demonstrate the dispersion and t
damping of the SP and the ASP, when the threshold co
tions ~3.36! are met. Figure 7~a! (N15N251, n/Ve
50.1,dVe /c50.1) shows that at such values of the rela
ation frequencyn the split ASP in the DL2DES ofnn-type
appears~dispersion curves 1 and 2, and the correspond
dampings, the curves 4 and 5!. The ASP has the endpoint o
the spectrum defined by the condition Rep50 ~dispersion
curve 3!. The damping of the corresponding SP increa
sharply~curve 7 transforms into curve 4! near the principal
CR, where the SP drastically decelerates. The ASP ex
from the left side of the light linev5kvd , and represents
the delocalization wave because it is only weakly pinned



d
.

56 10 401COLLECTIVE ELECTROMAGNETIC EXCITATIONS INA . . .
FIG. 7. Dispersion curves (v8)—solid lines 1, 2, and 3, and the corresponding dampings (v9)—dashed lines 4 and 5 of the SP’s, an
ASP’s in a DL2DES. The dashed line 6 is the dispersion curve of the SP when the collision frequencyn is below the threshold given by Eq
~3.31!; ~a! N15N251, n/Ve50.1,dVe /c50.1; ~b! N15N251, n/Ve50.2,dVe /c50.1; ~c! N151, N252, n/Vae50.1,dVe /c50.1; ~d!
N151, N252, n/Ve50.2, dVe /c50.1.
gl
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the DL2DES. The SP is a surface wave, which is stron
pinned to the DL2DES far from the principal mode~the light
line! v5kvd . In the DL2DES the dispersion curves 1 and
split near the CR, and the faster mode~1! has a minimum
near the light line. When the relaxation frequency increa
@Fig. 7~b!# the endpoint of the main mode 3 (v5kvd) moves
down from the principal CR. Figure 7~c! (N151, N2
y

s

52, n/Ve50.1,dVe /c50.1) shows that for different value
of the Landau-level filling factor the splitting of the dispe
sion curves 1 and 2 increases, and the minimum for the fa
mode 1 becomes deeper and sharper. Figure 7~d! ~N151,
N252, n/Ve50.2, dVe /c50.1! is similar to Fig. 7~c!, but
with increased values of the relaxation frequencyn. In this
case, the endpoint moves down from the CR, and the m
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mum of the faster mode~curve 1! becomes smoother. Th
curves 4, 5 for the damping of the SP~the right-hand side of
the light line! in the series of pictures shown in Fig. 7 a
qualitatively similar. The damping of the SP becomes stro
near the CR, where the SP is drastically decelerated, an
of ordern/V. When the relaxation frequencyn increases, the
endpoint of the principal mode~curve 3 in Fig. 7! moves
down, and this mode becomes significantly separated f
the SP and the ASP modes.

IV. CONCLUSION

In conclusion, we have calculated explicitly the spectru
of collective excitations, damping and polarization in
double-layer 2DES in a high magnetic field—the slow s
face polaritons, when the effects of quantization are ess
tial. We used the Wigner distribution function formalism f
the calculation of the spatial and time dispersion of the c
ductivity tensor for each layer in the double layer 2DES in
high magnetic field. Near the CR the phase velocity of a
drastically slows down, and the group velocity of a SP u
dergoes fundamental steps, whose magnitude is determ
by the fine-structure constanta5e2/\c. Thus, in a high
magnetic field under the IQHE condition, the dispersi
characteristics of the SP in a one-layer 2DES and in
double-layer 2DES are also quantized. Also, due to the s
tial dispersion of the conductivity, the group velocity of th
SP becomes negative~anomalous! near the CR subharmon
ics. For thenn-type DL2DES each dispersion curve split
and strongly correlated collective electromagnetic excitati
~SP! propagate in the system. The group velocity of one
the split SP modes is smaller than that for the one-la
2DES. For thenp-type DL2DES the branches of the S
strongly interact in the long-wave region@near the subhar
monic ~hole! CR#, and in the short-wave region, due to i
teraction between the subharmonic~hole! CR mode and the
principal ~electron! CR mode. When the relaxation fre
quency exceeds a critical threshold condition, in the o
layer 2DES and in the double-layer 2DES, the ASP
occur—a new mode of surface electromagnetic oscillatio
As a consequence, the dispersion curves of the SP and o
ASP change significantly—spectrum endpoints and m
confluence appear. In a double-layer 2DES the thresh
condition for the ASP has an oscillating form due to t
coherence effects between split SP modes.

Note that the phase velocity of the SP has a remarka
small value near the CR. Thus, the double-layer 2D elec
C
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systems represent an effectively decelerating systems u
the IQHE condition. This fact could be used for various a
plications in microelectronics and for the contactless m
surements of the quantum Hall effect in new materials~e.g.,
organic conductors!. Also, it can be used for excitation o
surface electromagnetic waves by a beam of charged
ticles which passes near 2D electron layers, and for the
cient conversion of the beam energy into the wave energ

In recent experiments21 ~see also the excellent review b
Pinczuk39 and references herein! the collective excitations in
2DES under the quantum Hall regime were observed, us
the resonant inelastic light scattering method.39,40The disper-
sion curves of the collective excitations observed in Refs.
and 39 for one-layer 2DES qualitatively coincide with th
results represented in Fig. 3, when the Landau-level fill
factorN51. In Refs. 21, 39 the authors give the explanati
of the observed dispersive collective excitations as a m
festation of the electron-electron interaction, including t
time-dependent Hartree-Fock approximation,41,42 single-
mode approximation,43 and numerical studies.44 In Refs.
41–44 the spectrum of magnetoplasmon excitations was
culated. These excitations are the bulk type modes~not the
surface excitations!, and of a longitudinal type. As it was
shown in Ref. 22 and in our present paper, in the 2DES
in the DL2DES the geometric factor plays a significant ro
and the excitations are of the surface type—SP and ASP~and
not only the bulk eigenmodes, as those considered in R
41–44!. The polarization and the spectral properties of the
excitations are generally more complicated and informati
Namely, the spectrum, damping and polarization of the
and ASP considered in Ref. 22 for 2DES and in this pa
for the DL2DES depend significantly on the geometric fa
tor. Measurements of polarization of the SP and ASP,
the spectral behavior as a function of the Landau-level fill
factor are of significant interest.
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