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A new type of collective electromagnetic excitations, namely the surface polat®éis, in a double-layer
two-dimensional electron syste(®L2DES) (of nn-type, pp-type, andnp-type) in a high magnetic field is
predicted. Using a Wigner distribution function formalism, we investigate the spectrum, damping, and polar-
ization of the SP’s in a wide range of the frequenciesind the wave vectork. It is shown that near the
cyclotron resonancéCR) (o~ Q=eB/mc) the phase velocity of the SP’s is drastically slowed down, and the
group velocity undergoes the fundamental steps defined by the fine-structure censetit c (as well as for
the one-layer 2DES For thenn-type DL2DES, each dispersion curve splits, and strongly correlated collective
electromagnetic excitations propagate in the system. The group velocity of these excitations is defined by the
interlayer distancel, and is much smaller than that for the one-layer 2DES. In the vicinity of a CR subhar-
monic (w~2Q) the negativéanomalousdispersion of the SP occurs. For thp-type DL2DES the branches
of the dispersion curves are intercrossed in the long-wave region, near the subhghon@i€R, and in the
short-wave region, due to the resonance interaction between the prifelgaton CR mode and the subhar-
monic (hole) CR mode. The relaxation of the electrofas holes in the DL2DES leads to the occurrence of a
dissipative collective mode of the SP type—the “additional SP(&SP’s). This mode exists under certain
threshold condition, which is determined by a fine-structure constamts a consequence, the dispersion
curves for these excitations exhibit spectrum endpoints, and mode’s confluence. The threshold condition for the
ASP’s in the DL2DES has a “geometrical oscillating” form due to the coherence effects between the split
ASP modes. The potential importance for various applications in microelectronics is discussed.
[S0163-182697)08339-3

I. INTRODUCTION Hall systems were investigated. In Ref. 12 the integer quan-
tum Hall effect(IQHE) for nonintracting double-layer elec-
Recent technological progress has made it possible to praron systems was investigated in the presence of disorder.
duce double-layer two-dimension&D) electron-gas sys- Experimental studi¢s'*have been devoted to the investiga-
tems(DL2DES’s) of extremely high mobilityh? As is illus-  tion of the double-layer electron systems in a high magnetic
trated schematically in Fig. 1, these systems consist of a paffeld, and have observed the many-body interactions of elec-
of 2D electron gase$2DEG) separated by a distanad trons in coupled quantum double welfsand the tunneling
Many authory™® have discussed very interesting strong cor-between parallel two-dimensional electron ga$es.
relations effects between the layers in a high magnetic field In this paper we consider a DL2DESee Fig. 1 when the
which were predicted to lead to fractional quantum Hall ef-interlayer lengthd is large enough that tunneling between the
fects (FQHE'S). When the layer separatiah is sufficiently  two layers is negligible. Therefore we do not consider the
small and comparable to the typical separation of electronsffects of interlayer coherence, which could be important
within a layer, the correlations in the strong magnetic fieldwhen the tunneling between the layers is considerable
are especially important because all electrons can be accordemonstrate that in this system a different type of collective
modated within the lowest Landau level, and execute theielectromagnetic excitationfviz., slow surface polaritons
cyclotron orbits with the same kinetic energy. The FQHE(SP’9] exist. These types of collective electromagnetic exci-
occurs when the system has a gap for “induced chargethtions produce strongly correlated electromagnetic modes,
excitations.” The theor}f predicts that at some Landau-level whose velocity are relatively small.
filling factor (even for the system of noninteracting 2DEG  Surface polaritons are electromagnetic waves that propa-
inside a layerthis gap in the double-layer system may occurgate along a flat surface which separates two dielectric me-
only if the interlayer interaction is sufficiently strong. In Ref. dia, and whose amplitudes decay exponentially with increas-
11 the topological excitations in the double-layer quantuming distance from the surface into either medium. In recent
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PR ST T T e o ASP’s is determined by the quantized threshold criterion,

P A which allows one to determine the relaxation frequency at
O T low temperature to an accuracy of
P UUTUT ; In this paper a new type of collective electromagnetic
T i excitations (viz., the slow SP’sin a DL2DES in a high
I B,\ € ‘ magnetic field is predicted. We have investigated the spec-

trum, damping, and polarization of the SP in a wide range of
frequenciesw and wave vectork. Various types of the
DL2DES, namelynn-, pp-, andnp-types of layers are con-
sidered. It is shown that near each (#ectron CR(n-type
and hole CR(p-type)] the phase velocity of the SP is dras-
tically slowed down, and their group velocity undergoes the
fundamental steps determined by the fine-structure constant
a. In the DL2DES each dispersion curve splits into the two
modes—one is slower than in the one-layer system, and the
other one is faster. The splitting width is determined by the
values of Landau-level filling factors in the layers and by the
separation distana between the layer@in-type DL2DES.
For thepn-type DL2DES strong interacting modes are ex-
cited. In the long-wave regime these interacting modes exist
near the subharmonic of the holes CR. In the short-wave
regime there are interacting modes between the SP of the
hole layer(subharmonic of the hole QRand the SP of the
electron layer(principal electron CR The relaxation of the
conduction electrons in each layer gives rise to dissipative
threshold-type modes of the ASP for the DL2DES.

The paper is organized as follows. In Sec. Il we use the

FIG. 1. The geometry of the structure of a double-layer two-formalism of the Wigner distribution functiogWDF) for
dimensional electron-gas system DL2DES embedded in a die|eCtri6escribing the quantum transport phenomena in a 2DES in a
medium with the dielectric constant; d is the distance between high magnetic fieldunder the IQHE conditionsIn Sec. IlI
two layers. the electrodynamics in the DL2DES in a high magnetic field

years considerable interest arose in the study of the SP inig presented. In this section we derive th.e dispersior] relati.on
2DES(Ref. 19 and superlatticetsee, e.g., Ref. 26In Ref. for el_ectr_omagnetlc surface waves and_ dlsquss the dispersion,
17 the magnetoplasma oscillations in a 2DES in a magnetifolarization, and damping for the SP in this system. In Sec.
field were investigated. In Ref. 18 the magnetoplasmon exl/! we consider the DL2DES ofin, pp, andnp types. Sec-
citations in a double-quantum-well system were investigatedion IV concludes the paper with a brief summary of results
The authors of Ref. 18 calculated the collective plasma ex@nd possible applications.
citations in a high magnetic field when only the lowest Lan-
dau level is occupied at zero temperature. _They_calc_ulated Il TRANSPORT IN A 2DES IN A HIGH MAGNETIC
the magnetoplasmon’s spectrum in the semiclassical limit. FIELD

Many authors have investigated the weak damping of col-
lective electromagnetic waves in 2DES in a high magnetic To find a conductivity tensor that accounts for the spatial
field 1?22 The quantization of the Hall conductivity, van- and temporal dispersion in a 2D electron gas placed in a high
ishingly small dissipative(longitudina) conductivity, and magnetic fieldB oriented normally to the 2D layésee Fig.
spatial and temporal dispersion of the conductivity tensorl), we apply the WDF formalisri?=2°
lead to the generation of an unusual collective wave, whose
dispersion characteristics are also quant@etwas shown

f\,ﬁ"(r,t)zf dr’ Tr[fa exp{—i

in Ref. 22 that near the cyclotron resonarf@R) (wv~Q)

the phase velocity of the SP for the one-layer 2DES is dras-
tically slowed down, and their group velocity undergoes fun-
damental jumps, whose magnitude is determined by the fine- Xyt(r=r'12) zﬁ(r+r’/2)}. (2.1
structure constantr=e?/#c. The number of the slow SP

modes is specified by the magnitude of the Landau-level

filling factor 9= 71?n [wherel = (c#/eB)*? is the magnetic Herep is the density matrix operator of the systeyi(r)
length, n is the density of 2D electrons, arélis the mag- andy(r) are the Fermi operators of creation and annihilation
netic field in the 2DES i.e., by the value of the quantized of a particle at the point, respectively;A is the vector
Hall conductivity. In the vicinity of the CR subharmonic potential of the electromagnetic fieldThe effectiveness of
(w~2Q), the negativdanomalous dispersion of SP'ssee  the WDF approach to the modeling of mesoscopic solid-state
Fig. 3 occurs. Also, a different type of SP’s of a dissipative devices was demonstrated in Refs. 26, 27 the case when
nature (namely, “additional surface polaritons”—ASB’s the scale of the spatial inhomogeneity exceeds both the ra-
appear near the CR. The condition for the existence of thesdius of interaction between the particles and the de Broglie

e '
p+EA(r,t))r
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electron wavelength, the kinetic equation for the WQ2F) in a magnetic field as intrinsic properties, and makes it pos-
takes the forrff=2° equivalent to the classical kinetic equa- sible to describe the electron transport and equilibrium prop-
tion: erties in terms of classical variables. In this way, the descrip-
tion of the quantum kinetics becomes highly transparent.
The relation between the electron densityand the
chemical potentiak in a high magnetic field can be found,
g . as usual, from the normalization condition. Below we will
I—_IereE andB are the electric field and the magnetu_: induc- consider the 2DES with a fixed value of the chemical poten-
tion vectorsie is the electron charge, ands the velocity of tial . The real 2DES is in fact extremely inhomogeneous in

thel cor?ductlon eléectrons.'d . he 2D el one of the directions of a 3D electron system. A 2DES
n the case under consideration, the 2D electron system ig..,,.s for example, in the inversion layers of a metal-

extended in thay plane(see Fig. 1, and the typical scale of - ,jqe.semiconductor-field-effect  transistor, or in  the
the .f'eld S lnhomogen_elty is the wavelengin .c.)f the col- .GaAs—Al,Ga, _,As heterostructures at low temperature. In
Iectw_e electromagnetic Wa\{/ez. T.hus, the conditions fpr app“'such systems the chemical potentials determined for the
cability of Ea. (2.2) arek<n"* (since at weak screening the ;g 35 an equilibrium value gf for an extremely inho-
value ofn is the Character|§t|c length of the. interaction mogeneous 3D systems. The densityf the 2D electrons is
between pl?zrtlcles andkl<1 [since the magnetic length o yerage of o(€) Eq. (2.3). As a result, we obtain after
=(ch/eB) " represents the de Broglie wavelength of elec-5,eraging the expression for the Landau-level filling factor,
trons in a high magnetic fieldThe collision integrall{f‘;"},
in Eq. (2.2 differs essentially from the classical collision *
integral, since the quantum transitions contributing{tq‘;"} N=ml’n= 2 Ne
reflect the character of the particle’s statistics, and a distinc- s=0
tion of the WDF from the classical orié.The equilibrium  Below we assume that the IQHE conditions are satisfied:
WDF sets the collision integral{f\é"}, to zero. The equilib- AQ/T>1, u/T>1.
rium WDF can be expressed via its value for an equilibrium  The formalism used in this paper is based on the assump-
ensemble of quantum states of an electron in a magnetic fieldon that the kinetic equation for the WDR.2) can also
B. Using the definitior(2.1), and substituting the wave func- involve the collision integral. Usually, the kinetic approach
tions of an electron in an electromagnetic field into E41), based on the collision integral can be justified under the con-
we obtain the equilibrium WDF for spinless electréfd??  dition kel*>1, wherek is the Fermi wave number of an
electron, and* is the characteristic electron’s mean free
( € ) path?8=33 We will consider in this paper the effects deter-
s [}

w

1 ] 1 afy -
p p b _ W
St TV teEt¢ [v,B]} p =Hfy}. (2.2

ot d

hQ(s+32)—p

T (2.9

fo(€)=520 Ne T e mined by the linear response to the electric field. In this case

- {ﬁQ(SwL%)—M
the WDF,f‘,;", can be found in a linear approximation with

T(x)=2(—1)S exp( — 2x)LO(4x) respect to the external fiel&. It is well knowr?* that for a
s s ’ sample with a high electron mobility and in the high-
ne(x)=(1+e L. 2.3 frequency regime ¢ r>1) the collision integral can be used

, . _ ~in the 7 approximation, where the mean-free-path times
Heree=p“/2m is the energy of 2D electrong, is the chemi-  determined by the relaxation frequenege)=r"*, a func-
cal potential,T is the temperature, and®)(x) is the La- tion of the electron energy.

guerre polynomial. If we replace the summation ogein In the following we assume that the distantédetween
Eqg. (2.3 by integration, then foli Q<T, Eq. (2.3 trans- the two layers is large enough, and the potential barrier be-
forms into an equilibrium Fermi distribution function. tween the layers is rather high. In this case, tunneling and

Using the equilibrium WDR2.3), we can derive all ther- strong electron correlation effects can be neglected, and we
modynamical relations. In this paper we will consider thecan consider the electron’s kinetics in both layers indepen-
2DES when the chemical potential is constant over the dently. We represent the WDF in each layer in the form
entire 3D systenti.e., the grand canonical electron sysjem

Figures 2a)—2(f) demonstrate the equilibrium WDR.3) fo'="fo(e)+ 1y, (2.9
as a function ofe/p at T=50 mK, x=20 meV, and for
different values of the magnetic field (and, correspond-
ingly, for the different values of the Landau-level filling fac- . S
tor, 9= 12n). It is easy to see that at high magnetic field, mation the collision integral,{
rQ>T, [Fig. 2@)] the edge of the Fermi distribution func- SSRYY
tion in the electron distribution does not manifest itself, and Hfp}=—v(efs.
the WDF(2.3) decays exponentially; exp(—2€/%(}). Figure Generally, the electric fiel& in Eq. (2.2) is a function of

2(b)_Q|spIays the equilibrium .WDF fofi=3. In this case the three coordinates and time. Then for the Fourier transforms
equilibrium WDF has one minimum and one maximum as a

function of energye. When91 increasegsee Figs. &), 2(d), ?r:;r}gl;;%;:ﬁmls;gsr'?é];?fntshe electric field, one obtains
2(e), 2(f)] the equilibrium WDHF2.3) oscillates as a function 9 ’

of energy, and trgnsforms_to_ the Fermi distribution function, Jol©,K)=00p(@,K)Eg(@,K)  (,f=XY), (2.7
when the magnetic field diminishes. Thus, the WDF formal-

ism takes into account quantization of the electron spectrurwhere

wherefy(e) andf,=f,(p,r,t) are the equilibrium and non-
equilibrium parts of the WDF, respectively. In th@pproxi-

f'}, can be written as

(2.6
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FIG. 2. The equilibrium Wigner distribution function of electrons in a magnetic field. Each fig€) shows the value of the magnetic
field B, and the Landau-level filling factdd. The value of the chemical potential is chosernuas20 meV.

dw where

2
E(r,t)= dk E(w k)elkr—ob 2.8
o1,1) a7 [ w,K)e , (2.9
4 Buix=Byy=7, Byy=—By=1,

ga(w7k)= J d?k dw Ea(w,k)ei(kr*wt)_ (29) C,x=2a+cos, ny=a—cos%,

C,yw=—b—sin28, C,,=b—sin2g.

The Fourier transform of the conductivity tensor, X B Cyx 28

0 .5(w,K) can be found from Eqg2.2)—(2.6). In the general 2(y2+2) 6y

case we have, for the conductivity tensor in each layer, the a=
same equation as the one derived in Ref. 22.

In this paper we will assume that the mobility of electrons  grom Eq.(2.14 we derive the formulas for the resistance

is very high, and the relaxation frequency is an effectivejosor in the dc case. whesm—0. k—0 (IQHE)
constant, i.e.p=const. We will consider the most realistic

ea o T (212

case, when the spatial dispersion is sufficiently weak, i.e, Oxx h vy
Pxx="2 Y :Ea, (2.13
kl<1. (2.10 Txxt Oxy
Then the Fourier transform of the conductivity tensor in T h 1 (2.14
each layer can be represented in the form Py~ 52 + o, 2820 '
_2_62 N B (kl)? N N As one can see, Eq2.13 and (2.14 are rather conve-
Tap= "N 14 Y|P 2y 2 TeB| nient for describing the IQHEsee also Ref. 34 even at

(2.11 v=const. Equation(2.1) and Eg. (2.13 show that, if
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v=const, then the relatiop,,/py,= y=v/{) should exist, 2w (= o plz—2]

which can be observed under the IQHE condition. The de$(@:K.2)= el w,k,2)+ pe fﬁmdz pin(w,K,2")e ,
viation from this simple relation demonstrates the energy 3.5
dependence of the relaxation frequeney; v(e) (see Ref.

34). Equation(2.14) describes the line shape bthe CR(the

high-frequency absorption is proportional todgg for vari- om [

ous frequenciesy, as a function of the magnetic field. Ob- A (w,k,z)=A(w,k,2)+ — f dz'ji(w,k,z')e Pz 2],
viously, the line shape of the CR is highly sensitive to its CPp J-=

position. In the case when the center of the resonant line is (3.6
located at the center of the IQHE plateau, it shows kink-type

behavior at the points where the jumps of the IQHE océur.
It is easy to see from Ed2.14) (see, also, Ref. 32hat the ~Where p=vk“—(w%/c%)e, Rep>0. It follows from Egs.

resonant line, whose center is located at the centre of the3-5 and (3.6) that the electromagnetic waves exist in the
IQHE plateau, has structures on the wings of the resonarfiyStém in the form of the surface waves localized in the
line at the values of magnetic fieB corresponding to the Vicinity of the DL2DES(see Fig. 1 In this case the compo-
jumps of the Landau-level filling factdR. The amplitude of nentA,=0, while the scalar potential can .be found from the
a CR resonant line increases when the center of the CR lingoreéntz gauge(2.14: kA=(we/c)¢. Using Egs.(2.7),

is located at the point of a jump of the Landau-level filling (3-1), and(3.4), the current densities in the 2D electron lay-
factor M. Such features of the CR resonant line were ob-ers of the DL2DES can be represented in the form

served by a number of authots®®

IIl. ELECTRODYNAMICS OF DOUBLE-LAYER 2DES iD(w,k)=i hd og}g(w,k) Ag(w,k,—d/2)
IN A HIGH MAGNETIC FIELD ¢
2
The propagation of the electromagnetic waves in the sys- _c _
tems with a 2D electron gas placed in a dielectric environ- sw? kgky Ak, =di2) |, @7
ment, in a strong magnetic fieldee Fig. 1, is described by
the Maxwell equations for the scalar and vector potentials,
i.e., in the Lorentz gauge, ®
iP(w,k)=i < o)(w,K)| Ag(w,k,di2)
e do
VA+ c Ezo. (3. c2
L2 kﬁkyAy(w,k,d/Z)} (3.8
The potentialsA and ¢ satisfy the usual wave equatidh®’
e [ 9)2 A The indicesa, B, v in Egs.(3.7) and(3.9) take the valuex
V- = (5) o(r,t)=—— pii(r,t), (3.2 andy. Using Egs.(3.1)—(3.6), the vector potential of the
¢ & electromagnetic fields in each layer of the DL2DES can be
represented in the form
v? 7)° A(r,t)= i 3.3
2\ 7] ALY ==l 3.3
A, (w,k —d/z)—z—w [P (w,k)+]?(w,k)exp —pd)]
These values are related to the fields in Bj2) as ol @K, “¢p He l@X)T a0, A—pd)],
(3.9
E=-V 1 oA B=rotA 3.4
= T =rotA. (3.9
2m ) ((2)
_ o Anw k,d2)= —[j, (o,k)exp(—pd)+] ;" (o,k)].
Herepoi=pext p is the total charge density in the system, cp
andj=jext] is the total current densityjo, andj., are the (3.10

external charge and current densities, respectively. In the

system under consideratign=p,&(z+ d/2) - p,5(z—d/2) The dispersion relation is given by the determinant of the

andj=j,8(z+d/2)+],5(z—d/2),>" so the charges and cur- o
rents exist only in the 2D electron layers. There are no ex_homogeneous system of equatidBs?)—(3.10),

ternal currents and charges in the systpg=je=0. In this
case the potential& and ¢ can be found from the homoge-
neous eqFl)Jation£3.2), (3(.P3). Using Fourier-transformati?)n [Aexp(pd) + B exp—pd) J[APexp(pd)

(2.7 and taking into account thaj(w,k,z)=]®(w,k, +B@exg —pd)]=D+CVC?, (3.11)
—d/2)8(z+di2)+jP(w,k,d/2) §(z—d/2) [with the upper

indexes(1) and(2) indicating the first and the second laygrs

we obtain where the following notations are introduceid=(1,2):
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GaAs/ALGa _,As, the effective electron massm
=0.068ny and e=12. They-axis shows the real part of
frequency, and th& axis shows the value of the wave num-
ber. It is seen from Fig. 3 that the spectrum of the SP’s is
gapless at low frequenciew&()), and the SP’s exist both

in the low-frequency regionw<<(), and in the high-
frequency regionw>(. In the low-frequency region, far
away from the CR, the phase velocity of the SP is close to
the light velocity vg=c/+e in the dielectric medium that
surrounds the 2D electron layer. In the high-frequency region
and in the vicinity of the principal CR{~(}), the phase
velocity of the SP’s decreases drastically, and they are trans-
formed into slow waves. In the frequency regiéh<w
<20, and under the conditioh™ '>k>(w/c) e, one can
neglect the retardation effect, and the spatial dispersion in
the conductivity tensor is given by E@.11). In this case,
the dispersion relation can be transformed into the form

270, kQ
wi=024 0 (3.14

1 Y7
T 77

0 20 300 600 900 .

ck/Q where v,=(2e?/h)M. It is easy to see that whet)
S>(vnk/s)(‘ﬁ~1), the dispersion law of the SP is linear

FIG. 3. The dispersion curves for the SP’s for a one-layer 2DE o .
P y (w—Q~Kk), while in the opposite cas€) <(v,k/e) (or

calculated for various values of the Landau-level filling fadtbr

(N=1, N=5, andN=10), Q=10 s ! (taken from Ref. 22 when91>1), the dispersion relation is of a square-root type
(0~ k).
AD=BOLFEO ¢ Near the CR {~ (1) one cannot neglect the retardation

effect, and the dispersion law of the SP has the form

2 . )

B0 =" Lo + oW1, oo [70 (PiC_ | 27|

c w=0+Q —{— 5= —iv.

c (cp; \ e
2 31

,:m:iz_”( 2.2 )Um (319

wp c e Here p;=Jk>—(Q?/c?)e. The value of the relative decel-

’ — eration of the SP is determined by the fine-structure constant

C=2BW4+E0), a. The group velocityvy=(dw/dk), of the SP undergoes

fundamental steps in the vicinity of the CR:

27
D=s — {[o\} — o} PP+[oly -0y 1P} (.12 v, 2iam

The conductivity tensor forth (i=1,2) layer is determined Ud N
by the expressiong.14), (2.15,

(3.19

Thus, the deceleration of the wave near the CR is significant,

0 (k1)? ( sn(i))cm] and the reason for the quantization of the group velocity is
aB” 20 ,

1+T aB the quantization of the Hall conductivity, i.e., the system
(3.13 possesses a fundamental paramgtdich has the dimension

_ ' of velocity)—the conductance quantuneZh. At the point

wheren™ is the Landau-level filling factor for thigh layer  of the CR the character of the conductivity changes, and the

(i=1,2). We assume that each layer has its own value of thimaginary part of the conductivity becomes large. This leads

chemical potential, and its own value of the effective elec-to the occurrence of the slow wavéke slow SP’s%? With

tron (hole) mass. Different values of the chemical potential further increase of the frequenay, near the CR subhar-

for two layers can be realized, for example, by applying dif-monic (w~2(Q), the spatial dispersion effects of the con-

ferent gate voltages to the corresponding potential wedéle,  ductivity (2.11) become noticeable; the group velocity

e.g., Refs. 1 and)2 changes its sign and takes negative values. In this region the

Before considering the 2LDES, it is convenient first to SP’s show anomalousegative dispersion.

discuss the dispersion relation of the SP in a high magnetic The SP spectrum near the CR subharmonie-Q()) has

field for a one-layer 2DE® Figure 3(taken from Ref. 22  the form

represents the dispersion curves of the SP propagating in the

one-layer 2DES. The dispersion curves for the surface po- b (kl\?

laritons in the one-layer 2DES were calculated for various w=20-0 d (E) (

values of the Landau-level filling factét (91=1, 91=5, and

M=10). If the 2DES is realized using the heterostructureHere

0ok 2¢O
Tapl@, )_T1+y(i)2

n
l+E —lv. (317)
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e[Sl
b="7173 cp = 2s0) (3.18
d=1+2b, and p,= Vk*—(40%/c%)e. At 0>2Q, the SP
propagates through the system at a velocity close to that of
the SP far away from the CR subharmoitsee Fig. 3. It 1,04
follows from Eqgs.(3.17), (3.18 that the dispersion curve of
the SP is closely pinned to the line of the CR subharmonic
(w=2Q). The dispersion curve of the SP near the CR sub-
harmonic has a characteristic scale set by the small param-
eterA=#Q/mc<1. This dispersion curvésee the insert in
Fig. 3 of the SP starts near the fundamental mode of the
light line (w=kvg), then it branches upwardhe number of
branches is equal to the Landau-level filling facf®), and
the group velocity is quantized in the same way as near the
principal CR @={(1). But in the case of the CR subhar- ‘
monic, the group velocity is very lowy~v4(AQ/mc?) in 1.00
the region of the wave numbers where the dispersion curve is
closely pinned to the linew=2Q. The dispersion curve of _ i . i
the SP approaches the line=2Q for k<eQ/v,. At k ) 40 60 80 100
~eQlv, the dispersion curve separates from the line ck/Q
=2Q) (see Fig. 3 The relative attenuating rate of the SP is
of the orderv/w and is small for the samples with a high ~ FIG. 4. The dispersion curves for the SP for a double-layer
electron mobility. 2DES (nn-type). The Landau level filling factors:N;=N,=1).

In the case of two identical layers in the DL2DES The interior split curvegl and 3: dQ)/c=0.1. The exterior split

(nn-type or pp-type), the dispersion relations are given by curves(3 and 4: d2/c=0.05. The dotted line is the dispersion
the expressions, curve for a one-layer 2DES. The dashed line is the light line

=kvy, wherevy=c/s?

o/Q

1.02 4

27\ ) ) C2TOwx [, w?
2| | [Tt oy llch(pd) £ 1]+i wp PTG DL2DES each dispersion cungor different) is split into
two modes. The splitting of the SP dispersion curves is sig-
X[exppd)=1]+e exp(pd)=0. (3.19 nificant in the long-wave regiorkd<1. A lower curve(the
mode indicated by the " sign in Eq. (3.22] has the end-
Points of the spectrurp=0 that are located at the light line

w=kvy. These endpoint&or the curves 2 and 4 in Fig.)4

In the limiting case when the interlayer distante>0, the
dispersion relation takes the form equivalent to a one-laye

2
systent, are determined from the equation w=Q/[1
27\ 2 +2aM(dQ/c)]. The group velocity 4 of the SP near the
(T) {{o QX+ 021 +[o)+021%) principal CR @~Q), is
(1) (2) 2
+i M(pz—w—za +&=0, ﬁzzam\ﬁ[liexq—ﬁdmc)], vy=cls.
wp C Uy &
(3.20 (3.2)

where the longitudinal componentsf=o®+c{?) and When JedQ/c<1, the group velocity is given by the ex-

the Hall componentsaZ = o{})+ () of the effective con- ~ Pression,

ductivity tensor should be introduced.

2
- “+" mode,
A. nn-type double-layer 2DES Y _ 4o \[s’ (3.22
v
Let us consider than-type DL2DES in the case when the d 2V2aMdQ/c, ‘=" mode.

Landau-level filling factor is the same for each layér (
=9,=MN,). The dispersion curves determined by the disperSo, in the DL2DES two slow SP’s propagate. The-
sion relation(3.19 for the high mobility electrons®—0) in  mode (lower line 2 or 4 in Fig. 4 describes the strongly
a DL2DES are shown in Fig. 4. correlated collective electromagnetic excitatigg8®’s. The
Generally, the dispersion curves are of the same type agroup velocity of the “~=” mode is smaller than for the
the dispersion curves for the one-layer system. Near the priri- +” mode, and smaller than the group velocity for the one-
cipal CR the phase velocity is slowed down, and the groupayer systerff [see Fig. 3, Eq(3.14), Eq. (3.16]. The split-
velocity undergoes the fundamental stggse Fig. 3 and ting of the dispersion curves is vanishingly small in the
Egs. (3.14—(3.16 for different values of the Landau-level short-wave regiorisee Fig. 4
filling factor 91]. In Fig. 4 the dotted line describes the dis- Figures %a) and Jb) show the dispersion curveaty
persion curve for a one-layer system and for 1. For the <) for the DL2DES, when the Landau-level filling factors
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FIG. 6. The dispersion curves for the SP of a DL2DES
(np-type), Ne=5 and N,=10; dQ./c=0.1. The curve 1 corre-
sponds to the electron CR; the curves 2 and 3 correspond to the hole
CR’s at the principal hole CR«(=()},), and at its subharmonic
(0=2Q4); Q=108s1

Figure 5a) demonstrates the dispersion curves for the case,
when the Landau-level filling factors ar8,=5 and
M,=10[solid lines 1 and 2 in Fig.®)]. The dotted lines in
Fig. 5@ demonstrate the corresponding dispersion curves
for a one-layer 2DES. Figure(l» shows the dispersion
curves fordt; =1 and,=2. Both cases represented in Figs.
5(a) and 8b) demonstrate that the lower spectral line pos-
sesses the endpoints on the light line=kvy4. It is easy to
see from Figs. 4, ®), 5(b) that one of the two SP modes is
slower than the SP in a one-layer 2DES with the Landau-
level filling factor 9= min[91,,M,]. The other SP mode is
faster than the SP for a one-layer 2DES with
=max{M;,MN,]. The slower mode has the endpoint in the
spectrump= 0. With decreasing of the interlayer distante
(Fig. 1), one mode slows down, and the other mode is accel-
erated see Eqgs(3.21), (3.22, and(3.23]. Near the principal

FIG. 5. The dispersion curves for the SP of a DL2DESCR (w~(2) the accelerated mode approaches a one-layer

(nn-type) for different values of the Landau-level filling factdt

2DES dispersion curve with an effective value of the

(solid lines 1 and 2 The dotted lines are the corresponding disper-Landau-level filling factor) =9, +9,. In the case, when

sion curves for the one-layer 2DE&) curve 1,N;=10; curve 2,
N,=5; dQ/c=0.1; (b) curve 1,N;=2; curve 2,N,=1; dQ/c
=0.1;,Q=10"s""

are different for different layersdt, # 91,). Near the princi-
pal CR the group velocity is described by the formula
N+ N,

v _, \F
Ud_ “« € 2
M —N,\ 2
i\/( 12 2) + 91,9, exp(—24/edQ/c) |.

(3.23

the DL2DES is of thepp-type, the picture for the dispersion
curves is the same as is shown in Figs. &),55(b).

B. np-type of double-layer 2DES

Figure 6 shows the dispersion curves for thp-type
DL2DES. Near the subharmonic of the holes CR the spectral
curves in the long-wave limit represent two interacting
modes(curves 2 and 3 in Fig.)6 The first modgcurve 2 in
Fig. 6) is generated near the hole subharmonies-(},),
another modécurve 3 in Fig. § is generated near the prin-
cipal (hole) CR (w~Q}). The dispersion curve 3 in Fig. 6
possesses the anomalduegative dispersion at short wave-
lengths. In the short-wavelength region the dispersion curve
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1 is generated by the princip@lectron) CR (w~(),) thatis  this point the SP field is delocalized. As is seen from Eqg.
strongly interacting with the SP modeurve 2 in Fig. 6 (3.31) (see, also, Ref. 22the threshold condition for the
which is generated near the subharmotiiole CR. The ASP occurrence in a high magnetic field is determined by the
mode 1 occurs at the endpoint of the spectral curve. Théine-structure constant, and by the quantized value of the
endpoint of the mode 1 is located on the light lime Landau-level filling factor. Thus, the threshold condition

=kvg, and its coordinate is (3.3 for the ASP existence in a high magnetic field is de-
termined by the discrete valui® due to the Hall quantiza-
_0 Me MMy + My, vz tion. The spatial dispersion of the conductiviB.14 of the
W= 2le my, My + m,+ 4a9,9mdQ./c| 2DES in a high magnetic field does not significantly influ-

(3.24  ences either the ASP threshold condition or the ASP spec-
trum and damping. Note that the experimental observation of
Thus, near the principghole) CR (w~()y), and near the  sych an ASP specifies the relaxation frequemcwith an
subharmonic of(hole) CR (o~2(),) one mode of the SP  accuracy up to the fine-structure constant
exists, which is the same as in the one-lageule) 2DES. In a DL2DES (see Fig. 1 the ASP also exists. The dis-
Near the subharmonithole) CR (o~2()y,) the SP mode persion relation for the ASP is
possesses the negativ@nomalous dispersion. The second
SP mode occurs near the princigalectron CR (wv~Q,), w=0'+in",
and its exhibits the endpoint of the spectrup=0). In the (3.29
short-wave region both SP modes exhibit a mutual resonance 2u

' 1 expl"dve/c)sin(w’dVe/c) |,
Ve

interaction, where they interchange the energy, and their lo- ©'=Q¢ 1+
calization regions vary. The resonance interaction of two
modes(curves 1 and 2 in Fig.)6of the SP takes place near

. . 2a00)
the point (o, ko): T © [1+exp w"d/\e/c)sin(w' dy/c)].
_ 1/2 €
0= (2| e Tt~ NeMe 75 (3.25 (3.30
my 9 Me— Mg . . . .
Equations(3.29, (3.30 can be solved iteratively, using the
eQe m2—m? small parameter @9/ \e<1. In this case,
k°:2acmh NMe— NeMmy,” (3.29 2
=1+ exp(—vdye/c)sin(Qdyelc), (3.3
The insets in Fig. 6 demonstrate the fine structure of the @ Je XB(— v elo)sinQd\e/c), (33
dispersion curves near the points where the modes strongly
interact. In the system of coordinates near the p@n25), 2aM0
(3.26 the dispersion curves are described by a simple equa-w"=—v+ % ¢ [1=exp(—vd \/glc)cos(Qed \/E/c)].
tion €
(3.32
2_ 2_ _
a(Aw)"—ay(AK)"=exp(—2wod/C), (327 The threshold condition for the ASP occurrence in the
where DL2DES has the form¢”<0),
2.2
wge My s Nyme  Nemy, 2aMMQ,
= = + + -
A o rerTe ko 21 o T mel’ v> T [1=exp — vdye/c)cog Qdye/c)].
With Aw=w— wg, andAk=k—k,. (3.33

In a one-layer 2DES another type of SP exigse Ref. This condition looks like Eq(3.31) but it reflects different
22), which appears near the CRo{-Q). This SP is a values of the threshold for each split ASP mdtlee signs
dissipative-type wave. As was mentioned above, the surfaceé+" in (3.36]. The threshold3.36 possesses geometrical
waves exist when Re>0. At the same time, when the relax- oscillations as a function of the magnetic field and the inter-
ation frequencyv#0, the frequencyw is complex. A layer distancel.
straightforward analysis shows that the ASP mode is practi- Figures Ta)—7(d) demonstrate the dispersion and the
cally nondissipative, and its existence is determined by thelamping of the SP and the ASP, when the threshold condi-

threshold condition, tions (3.39 are met. Figure & (9,=9%=1,v/Q,
=0.1,dQ./c=0.1) shows that at such values of the relax-

v N ation frequencyv the split ASP in the DL2DES ofin-type
§>2a ﬁ (3.28 appearg(dispersion curves 1 and 2, and the corresponding

dampings, the curves 4 angl. The ASP has the endpoint of
Thus, the dissipation can influence the SP dispersion propethe spectrum defined by the condition jlReD (dispersion
ties and can lead to new interesting features. Wiherceeds curve 3. The damping of the corresponding SP increases
a critical value[see EQq.(3.28], the SP dispersion curve sharply(curve 7 transforms into curve) 4iear the principal
splits into two brancheésee Fig. 4 in Ref. 22 One of those CR, where the SP drastically decelerates. The ASP exists
curves practically coincides with the light linew( from the left side of the light linev=kvy, and represents
=ck/\/e), and has the endpoint of the spectrunpR€. At  the delocalization wave because it is only weakly pinned to
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FIG. 7. Dispersion curvesy’)—solid lines 1, 2, and 3, and the corresponding dampinrg9-dashed lines 4 and 5 of the SP’s, and
ASP’s in a DL2DES. The dashed line 6 is the dispersion curve of the SP when the collision fregusigtow the threshold given by Eq.
(3.3D); (@ N;=N,=1,v/Q,=0.1,dQ./c=0.1; (b) N;=N,=1, v/Q,=0.2,dQ./c=0.1; (c) Ny=1,N,=2, »/Qa,=0.1,dQ./c=0.1; (d)
N;=1,N,=2, 1/Q,=0.2,dQ./c=0.1.

the DL2DES. The SP is a surface wave, which is strongly=2 /(0 ,=0.1,dQ./c=0.1) shows that for different values
pinned to the DL2DES far from the principal mo@ae light  of the Landau-level filling factor the splitting of the disper-
line) w=kvy. In the DL2DES the dispersion curves 1 and 2sion curves 1 and 2 increases, and the minimum for the faster
split near the CR, and the faster mode has a minimum mode 1 becomes deeper and sharper. Figude M1,=1,

near the light line. When the relaxation frequency increasest,=2, v/Q),=0.2,dQ./c=0.1) is similar to Fig. 7c), but
[Fig. 7(b)] the endpoint of the main mode »E&Ekvy) moves  with increased values of the relaxation frequencyn this
down from the principal CR. Figure (@ (91,=1,91, case, the endpoint moves down from the CR, and the mini-
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mum of the faster modécurve ) becomes smoother. The systems represent an effectively decelerating systems under
curves 4, 5 for the damping of the $fe right-hand side of the IQHE condition. This fact could be used for various ap-
the light line in the series of pictures shown in Fig. 7 are plications in microelectronics and for the contactless mea-
qualitatively similar. The damping of the SP becomes strongurements of the quantum Hall effect in new materialg.,

near the CR, where the SP is drastically decelerated, and @ganic conductods Also, it can be used for excitation of

of orderv/Q). When the relaxation frequenayincreases, the surface electromagnetic waves by a beam of charged par-
endpoint of the principal modécurve 3 in Fig. 7 moves ticles which passes near 2D electron layers, and for the effi-
down, and this mode becomes significantly separated fromient conversion of the beam energy into the wave energy.

the SP and the ASP modes. In recent experiments (see also the excellent review by
Pinczuk® and references hereithe collective excitations in
IV. CONCLUSION 2DES under the quantum Hall regime were observed, using

_ o the resonant inelastic light scattering metio& The disper-

In conclusion, we have calculated explicitly the spectrumsion curves of the collective excitations observed in Refs. 21
of collective excitations, damping and polarization in aang 39 for one-layer 2DES qualitatively coincide with the
double-layer 2DES in a high magnetic field—the slow sur-resyits represented in Fig. 3, when the Landau-level filling
face polaritons, when the effects of quantization are essefactorm=1. In Refs. 21, 39 the authors give the explanation
tial. We used the Wigner distribution function formalism for of the observed dispersive collective excitations as a mani-
the calculation of the spatial and time dispersion of the confestation of the electron-electron interaction, including the
ductivity tensor for each layer in the double layer 2DES in atime-dependent Hartree-Fock approximatidfi2 single-
high _magnetic field. Near the CR the phase yelocity of a SRhode approximatiof® and numerical studie¥. In Refs.
drastically slows down, and the group velocity of a SP un-41_44 the spectrum of magnetoplasmon excitations was cal-
dergoes_fundamental steps, whose magnltude_ is det?rm'n%ﬁlated. These excitations are the bulk type moghes the
by the fine-structure constant=e’/hc. Thus, in a high syrface excitations and of a longitudinal type. As it was
magnetic field under the IQHE condition, the dispersionshown in Ref. 22 and in our present paper, in the 2DES and
characteristics of the SP in a one-layer 2DES and in &, the DL2DES the geometric factor plays a significant role,
double-layer 2DES are also quantized. Also, due to the Spayq the excitations are of the surface type—SP and GSE
tial dispersion of the conductivity, the group velocity of the not only the bulk eigenmodes, as those considered in Refs.
SP becomes negativanomalous near the CR subharmon- 41_44 The polarization and the spectral properties of these
ics. For thenn-type DL2DES each dispersion curve splits, excitations are generally more complicated and informative.
and strongly correlated collective electromagnetic excitationfyamely, the spectrum, damping and polarization of the SP
(SP propagate in the system. The group velocity of one ofang ASP considered in Ref. 22 for 2DES and in this paper
the split SP modes is smaller than that for the one-layefor the DL2DES depend significantly on the geometric fac-
2DES. For thenp-type DL2DES the branches of the SP tor, Measurements of polarization of the SP and ASP, and
strongly interact in the long-wave regignear the subhar-  the spectral behavior as a function of the Landau-level filling
monic (hole) CR], and in the short-wave region, due to in- factor are of significant interest.
teraction between the subharmoifimle) CR mode and the
principal (electron CR mode. When the relaxation fre- ACKNOWLEDGMENTS
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