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Phase diagram of a quantum Hall ferromagnet edge, spin-textured edges,
and collective excitations

M. Franco and L. Brey
Instituto de Ciencia de Materiales (CSIC), Cantoblanco, 28049 Madrid, Spain
(Received 30 May 1997

We study the electric and magnetic properties of the edge of a two-dimensional electron gas in the presence
of a magnetic field and at filling factor unity. We obtain the phase diagram of the system as a function of the
smoothness of the confining potential and of the Zeeman energy. The existence of a spin-textured edge is
proved as a function of these parameters. We also calculate the low-energy excitations of the spin-textured
phase. We obtain that in addition to the classical edge magnetoplasmons, at small wave vectors, there is an
almost dispersionless excitation, with a finite gap of energy at zero wave vector. This excitation is associated
with internal excitations of the spin-textured edge phfS6163-18207)07140-3

I. INTRODUCTION treatment of the composite fermions does not describe appro-
piately the exchange interaction between electrons, which is
There is great interest in understanding the properties dhe important physics behind the creation of stripes at the
the edge states of a two-dimensional electron(@&EG) in edge of the 2DEG ar=1.
the presence of a strong magnetic fiBléh the quantum Hall When the spin degree of freedom is included in the theo-
effect (QHE) regime. The edge states are important becaustetical models, effects such as spontaneous spin
they can control the magnetotransport of the 2DEG in dPolarizatiort” and spin texturéS™at the edges of quantum
broad class of mesoscopic and macroscopic systesso, ~ Hall systems have been predicted. _
under normal conditions the only gapless excitations in the 1€ low-energy collective excitations localized at the
QHE regime are edge excitatiofs. edge of the system have dispersion relations that depend

Because of the screening properties of the 2DEG, thgtrongly on the type of reconstruction at the edge. For a

structure of the edge states changes when the smoothnesssgf‘rp edge, a maggnl%toplasmgn. with a dispersion of the form
q In q is expected®!® Here q||y is the wave vector of the

the edge confining potentialy(x) varies. For studying the excitation. This is a classical result, which is obtained from

que state properties, we consmjer_a S(_aml-mfumge plane, solving the hydrodynamical equations for a sharp edge in the
with a straight edge parallel to thyedirection. In the case of ,aqence of a magnetic field. This dispersion relation can be
sharp confinement potentials the electron density falls frong|so obtained from microscopic calculatidisEor smooth

the bulk value to zero in a distance of the order of the magdzompressible edges, in addition to the edge magnetoplasmon,
netic length/'= J#ic/eB. For a sufficiently smooth confin- the existence of new branches of acoustic excitations has
ing potential, it has been proposed theoretically that the edggeen proposéd and measuret. The difference between the
separates into incompressible and compressible redfbns.edge magnetoplasmon and the acoustic excitations originates
This picture appears to be in reasonable agreement with r¢rom their charge distribution pattern; in the magnetoplas-
cent experiment3 For intermediate smooth confining poten- mon the charge varies monotonically across the edge,
tials, due to the exchange interactions it has been suggest@ghereas the charge oscillates in the acoustic modes.

that stripes of charge density corresponding to filling factor In this work we study the electrical and magnetical prop-
v=1 can be stabilized at the edge of the 2DEGhis edge erties of the edge states of the 2DEGvat1 as a function of
reconstruction can explain transport experiments in quantuithe Zeeman couplingg=gugB, and of the smoothness of
dots’. For very smooth confining potentials, the formation of the confining potential. In particular, we are interested in the
a Wigner crystal of holes at the edge of the 2DEG couldexistence and properties of a spin textured edge. Edge tex-
happer?*° Also, in the context of the mean-field theory of tures are configurations of the spin density that possess a
the composite fermions, it has been proposed that for topological charge density at the edge of the system. The unit
smooth confining potentials, the density distribution couldspin fieldn(r) of the spin texture has the fofm

show featsluges related to the existence of fractional quantun

Hall states:” In particular, in Ref. 12 it was obtained that as ) .

the confining potential becomes smoother, an incompressible Nyting=V1-f2x)eCy* % n,=f(x), @
region with filling factor 2/3 occurs at the edge. In this cal-

culation there does not appear any signal of the existence afhereGg is the wave vector of the spin-texture afids an

a stripe phase. This result is not in full agreement with exacarbitrary phase. In the spin-polarized bulk we have
diagonalization results!® which seem to indicate the exis- f(x)=—1. In the QHE regime the topological charge density
tence of a charge reconstruction at the the edge very similamincides with the real charge densif{#*and, therefore, the

to the predicted by the Hartree-Fock calculatibisProb-  charge density associated with the spin textoréas the
ably, the reason for this discrepancy is that the mean-fieléxpression
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q(7) = ef- (diX dyfi) /4. 2) (throughout this work we take” as the unit of length and

e?// e as the unit of energy

In the spin-textured edge case, Ed), the charge density g :

associated with the texture only dependsxand has the H=kz Vo(k) + 5 @|Ckalka

form q= —e(Gs/4m)df/dx. The system can develop a spin “

texture in order to modulate the charge density profile in the 1 )

x direction and, therefore, to screen the edge confinement. + LL E v(p)e P

The lowering of the confinement energy competes with the XY kk'pa.B

cost in exchange and Zeeman energies. Therefore the spin- w @iPx(k—k'+py)f ot o c 3

textured edge occurs only for smooth enough confinement VChaCir fC +py £Ckpy 0 (3

potential and for small enough Zeeman coupling. Note thatjere o, 8= + (up)—(down) are spin indicesl., and L, are
although the charge generated by the spin texture is invariafke sample dimensionsp(p)=2me%ep is the two-
along the edge, the existence of the spin texture breaks trangimensional Fourier transform of the Coulomb interaction,
lational invariance. However, the system is invariant under g Cl creates an electron with spatial wave function
combination of a translation along the edge and a spmwk(r): (1/\/Ly—77m) ekvg— (-2 anq spina2.

rotation’® .
In order to change the smoothness of the edge continuosly

The two main results of this work are the following. . A :
(i) We obtain the phase diagram of the system asga funcve takeV, as the potential created by a distribution of posi-

tion of the smoothness of the confining potential and of the'Ve Ehia/rzge,p;(x), which falls "F‘ea”¥ fr%Tm;FS bulk value,
Zeeman energy. By performing a full unrestricted HartreePbuk™ /<, {0 ZE€TO, OVEr a region of widtv:

Fock (HF) calculation we obtain the range of parameters W x<0

where a spin-textured edge can be expected. Given a confin- Pbulk '

ing potential, we obtain that the maximum valuegoivhere p+() ==y W=x, 0<x<W (4)
the spin texture exists is considerably smaller than the ob- 0, x>W.

tained in Ref. 15. This discrepancy occurs because Ref. 15
only considers the competition of the spin-textured state witHn this way the edge confining potential is smoother in direct
the striped phase. However, we obtain that makwg Proportion toWw,
smoother, the sharp edge becomes unstable to a smooth
charge modulation in both t.h)e andy directions before it Vo(k)=2j dx’p4 (x")In[k—x'|. (5)
becomes unstable to the stripe phase.

(ii) We study the dispersion relation of the collective ex- o
citations in a spin-textured edge phase. We obtain that in !N order to solve the Hamiltonian, E(B), we make the
addition to magnetoplasmonlike excitations and the bulkiartree-Fock pairing of the second-quantized operators,
spin-density waves, there exists a low-energy mode associ- ~

ated with internal excitations of this phase. This mode isHF_ (Vo(k)+§ a Cl,ack,a+ > T(dy k—k')

almost dispersionless, and it has a finite energy at gero ke KK\ dy a8
The existence of this gap is due to the finite width of the ; :
charge density produced by the spin texture in thdirec- X[Ck,ack_qy,a<ck,ﬁck,+qy,5)
tion.
. . . . : t
This paper is organized as follows, in Sec. Il we describe _Cl,ack’+qy,ﬁ<ck/’ﬁck7qy,a>]a (6)

the Hartree-Fock approximation used for solving the micro-

scopic Hamiltonian of the system. Section Ill is dedicated toVith

the analysis of the phase diagram of the edge. In Sec. IV we

compute the low-energy collective excitations of different T(qy k—Kk')=

phases existing at the edge of the 2DEG, in particular, the Y

collective excitations in the spin-textured edge. We conclude{‘
i

v »)eiqx<quy>efq2/2. @)
LxLqux (q

e HF Hamiltonian is solved self-consistently allowing for
the possibility of different broken translational symmetries in
the ground stat&>2® In particular, in this work we allow the
system to modulate the charge and spin in both directions
Il. MICROSCOPIC HAMILTONIAN and)?. Because ai»'zl the ground state. of an infinite 2DEG
AND HARTREE FOCK APPROXIMATION is a Slater determinat, the HF approximation is a good ap-
proximation for describing the properties of the system at
We are interested in properties of the edge states of thilling factors near unity. Therefore we believe the HF results
v=1 quantum Hall state. In this regime we assume that thean be trusted for intermediate confinement potential,
electron-electron interaction and Zeeman energies are mudhv<12, and it should be necessary to be carefull in the in-
smaller than the Landau-level splitting, and we therefore reterpretation of the HF results when the confinement potential
strict the orbital Hilbert space to the lowest Landau level.is smooth enough such that correlated fractional quantum
Since the confining potential only depends on theoordi-  Hall states can occur.
nate, it is convenient to work in the Landau gauge, To characterize the different solutions, it is very conve-
A=—Bxy. The Hamiltonian of this system has the form nient to introduce the operators

with some possible experimental consequences and a br
summary.



56 PHASE DIAGRAM OF A QUANTUM HALL FERROMAGNET . .. 10 385

13 10
12
0.8
114
&
0.6
o] S
= 2
’ o T e e 0C7 0.4
[}
°
8_
0.2
SPCE
7_
SPCE 0.0 T T T
6 . , , . 2 0 2 10 12
0.0 0.002 0.004 0.006 0.008 0.01 X

gusB

FIG. 2. Charge-density profile of a spin-polarized edge state as a
function of x. The dashed line represents the background of posi-

FIG. 1. Phase diagram, as a functiongef gu.gB andW, of the tive charge created by the confining potential. In this figiue 6.

edge of a 2DEG av=1. The shadow region corresponds to the
spin-textured and charge-density-wave phgse.in units ofe?/ e/
and W in units of /. The dashed line represents the valuewof
where the stripe phase has lower energy than the SPCE phase.

The spin-polarized compact edge is the sharpest edge pos-
sible. In this state the exchange energy gets its maximum
possible value, and, therefore, it is the ground state for small
20 values ofW,’ where the electrons cannot screen the confin-

Pap(d)= L Ek e’iqx(k*qy’”clvackwy,ﬁ (8)  ing potential.
xby

which are related to the charggq) and spinS(q) density B. Spin-polarized charge-density wavgSPCDW)

operators through the relations . o . :
In this state only the majority-spin electronic states are

. 1 o 2la—iGT occupied, i.e.{pq,p(0))* 3, 04, - In this class of solu-
n(N=5_—= 2 (Paal@)e T, (9 tions, the system modulates the charge alongyttiection,
B in order to screen the edge potential. In the spin-polarized
and QHE regime the system only can modulate smoothly the
1 charge along th& direction by modulating also the charge
2 e ~ . . —~
WN—(p_ (G))]e 9lheidl along they direction. Atg— o, the SPCDW state has lower
w/? % [+ +(@)=(p-~(@)] energy than the SPCE state fa¢>>Wpy=7. Since the
L phase transition between the SPCE and the SPCDW state is
e () S\ o 02— iGF announced by the softening of the low-energy charge-density
S(P)+iSy(F) 277/’22.1 {p-+(@))e e excitation of the SPCHsee below this transition is a
(10 second-order phase transition.

By solving selfconsistently the Hartree-Fock equations we For values oW near but bigger thaWcpw, the SPCDW

obtain the espectation values of the energy and of the diﬁe'r_nodulates very smoothly the charge.-density profﬁle across
ent density operators. the edge, and forms a charge-density wave. This charge-

density wave can be interpreted as a precursor of the Wigner
crystal of holes.
For stronger confining potentiald>8.5, the density

The different solutions of the electric and magnetic edgeprofile across the edge develops a modulation at the same
structure can be characterized by the expectation values ¢ime that the system modulates the charge density along the
the productscl‘: «Ck'.p OF by the expectation values of the edge direction. We interpret this solution as the existence of

operatorg,, 5(q). In this work we find the following type of an incipient Wigner crystal of holes on top of a stripe phase.
solutions(see Fig. 1 In Figs. 3 and 4 we plot the charge density for a SPCDW edg

coreesponding toV=11.
For larger values ofN more exotic reconstructions can
happen, however, we think that for very smooth confining
In this state(c] ,Cis )= Sk k' 8a.p8,— » and there is a potentials the HF approximation could be not appropiate and
maximum wave vector such that all states with smaller mofractional quantum Hall states could hapgénh?
mentum are occupied. This maximum wave vector can be
considered as the Fermi wave vector of the edlge,In this
solution the charge density falls from its bulk value &/
zero in a distance of the order or the magnetic length, see In this state only the majority-spin electronic states are
Fig. 2, and the charge density is invariant along the edgeoccupied, and the expectation values of the operator

S,(r)=

N

Ill. PHASE DIAGRAM

A. Spin-polarized compact edge(SPCE)

C. Stripe phase
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FIG. 3. Charge-density profile of a spin-polarized charge- FIG. 5. Charge-density profile of a stripe phase state as a func-
density-wave edge state as a functionxofThe charge density is tion of x. The dashed line represents the background of positive

averaged along the direction. The dashed line represents the back-charge created by the confining potential. In this figute 11.
ground of positive charge created by the confining potential. In this

figure W=11. D. Spin-textured edge(STE)

N . In this class of solutions the charge density and the
(Ck,—Cy,-) can be only 0 or 1. The occupation gets the valuecomponent of the spin density are not modulated along the
unity for wave vectork satisfying the relatioi<<k,, orthe  gjrection, i.e.{p, (@))% 8, o. However, we find that the

: v

relationk, <k<ks, with k;<k,<ks. In this solution we do andy components of the spin density varies along and across
not allow modulation of the charge-density along the edg(%he edge, i.e., all thép, _(q)) can be different from zero.

direction. A charge-density profile corresponding to this so- , h
A g N . In the calculation we obtain that the operatps_,(q) are
lution is shown in Fig. 5 for the case 9=11. The stripe different from zero only for one wave vector of the form

phase has lower energy than the SPCE for valua¥ tfrger q=(0.G). Minimizing the energy with respect tG, we
than W;=9.1, however, this phase does not appear in th CSE : CS :
phase diagran(Fig. 1) because we obtain that the stripe%btam microscopically the periodicity of the spin texture. In

. this solution there is not higher harmonics of the spin texture
phase has always higher energy than the SPCDW. In fact, : .
obtain the the stripe phase is not a stable solution of the H ecause, in order to get a constant charge density along the

equation(see below edge,only one wave vector of the spin texture is possible.
q ' Using the relation between spin texture and charge density,
Eq. (2), it can be proved easily that spin textures with a

dependence on the coordengitdifferent than ssineimplies
8 charge modulation in thg direction. In agreement with Ref.
15 we obtain thaG, increases linearly withW and with the
Zeeman coupling.
In Fig. 6 is plotted the charge-density profile across the
6_
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FIG. 6. Charge-density profile of a spin-textured phase state as a
FIG. 4. Two-dimensional charge-density contour of a spin-function of x. The dashed line represents the background of posi-
polarized charge-density-wave edge state correspondiidg-=td0. tive charge created by the confining potential. In this figite 8
This figure represents twice the unit cell in tiedirection. The and g=0. The dotted line corresponds to the contribution of
numbers are the value of the electron density in units ofr1/2 minority-spin electrons to the density profile.
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T where
T R v rvok
A I t t T
‘E,{,{ g{‘rij o de=UkCy — +UKCxs G + - (12
124 s A AR . .
SRR andu, andv are obtained from the expectation values of the
. R AR p..s Operators, and verify the relatiarf+vg=1. The set of
O ;{{ﬁﬁ{{; co eigenstates of the Hartree-Fock Hamiltonian orthogonal to
"""" SN2 20120 the d|. states have the form
84 n:::\’\\‘\‘\'::. :
fﬁ‘,:f:,»»»»));),-»,.. k= — Ukbg, - kCk+Gg,+ -
6—‘111£II§?';';”§ 7
ERERRR I{ﬁ\gii o Solutions of the form described by Eq&l) and (12)
- Esggév\-ﬁr\v\v\:: e break translation invariance along the edge, as well as spin
ERESEAAts s s ool rotational symmetry. In the presence of Zeeman coupling the
B AAAAALA IR Hamiltonian, Eq(3), has a spin rotational @) symmetry in
29 iy iii L the x-y plane. The STE phase breaks this symmetry. When
”””” A = the Zeeman coupling is zero, the STE phase spontaneously
0 S , I breaks all the rotation symmetries.
-2 0 2 4 6 8 10 12 We have not found coexistence between the STE and
« SPCDW state. From our calculations, the line in Fig. 1 sepa-

rating the STE from the SPCDW represents a first-order
FIG. 7. Two-dimensional vector representation of they  Phase transition. This is consistent with the fact that these

components of the spin density for a spin-textured edge. In thi§Wo states have different broken symmetries.

figure W=8 andg=0. This figure represents twice the unit cell in

they direction. E. Spin-textured and charge-density-wave state

edge of a STE wit[§=0 andW=8. We also plot in Fig. 6 This is a fully broken symmetry ground state where the

contribution of the minority-spin electrons to the charge den_expgctatlon values of aw.aﬂ(q)) are not ZEr0. This state IS
a mixture of charge-density waves and spin textures and it is

sity. For the same STE, we plot in Fig. 7 the projection of the' .
y wepoin 19 project reached from both the STE and SPCDW states by making

spin density in thex-y plane. Sincép, _,(0,Gy)) is differ- \ )
ent from zero, the STE phase breaks the translational invarf'€ €dg€ confinement smoother. This phase corresponds to

ance along the edge and the spin rotational symmetry aboﬁl?e shadc_>w region in Fig. 1. .

the magnetic field. However, the STE is invariant under a In particular, we want to mention here the state that ap-

symmetry composed of a translation along the edge and BE2'S when, starting from a STE phase, we_maki_arger.

spin rotation> The states related with this symmetry corre- We f_'nd that for very smooth confining potentials higher har-.

spond to the different values @fin Eq. (1). monics of the spin texture appear. In that case the edge is

Since the phase transition between the SPCE and the ST¢eScribed better by an anti-Skyrmion crystal than by a simple

. 7 .
state is announced by the softening of the low-energy spinzP'" texture”” However for the values oN where this solu-

density excitation of the SPCE, see below, this transition idiOn O0ccurs, we expect the correlation effects becoming im-
also a second-order phase transition. §er0, the SPCE to  Portant, and probably for these large valuesvéfthe HF
STE transiton occurs for confining potentials with approximation could be not appropiate for describing this
W>W,=6.7. This value ofW; increases withg, and for system.

'9>17.=0.008 the system prefers to screen the edge potential

by forming a SPCDW state rather than by creating a STE. IV. COLLECTIVE EXCITATIONS

This value ofg, is about ten times smaller than the obtained
by Karlhedeet al® This discrepancy occurs because in Ref
15 the STE is assumed to compete only with the stripe
phase, and not with the SPCDW state.

It is important to note that the width of the charge and
spin modulation in the direction is much larger tha,.
For example, in the case gi=0 andW=8, Fig. 6, the wave
vector of the spin texture i$54~0.85 and the width of the

modulation is of the order of four magnetic lengths. excitations of the spin-textured edge, and, in particular, the

A final point to mention in this subsecnon' is that since in collective mode associated with internal excitations of the
the STE phase the only order parameters different from zer TE

are (p,.-(0Gy)) and (p, .(a,0)), it is possible to de-

scribe the STE ground state by a simple Slater determinant _ o
of the form A. Collective excitation of the SPCE

In this section we study the low-energy collective excita-
'(%\c/ms occuring at the edge of the 2DEG at filling factor unity.

e first analyze the collective excitations of the SPCE state,
showing that the phase transitions to the SPCDW edge or the
STE are second order. We also discuss the instability of the
stripe phase against modulation of the charge density along
the edge direction.

In the second part of this section we study the collective

This state has two types of collective excitations: charge-
|STE = H dT|0> (11) density excitations(CDE’s) and spin-density excitations
R (SDE’s). The CDE's only involve changes in the charge den-



10 388

0.5
w=0
0.4
w=3
=y
~
~  0.31
[
SN’
>
E" w=5
5 0.2
c
L
W=6
0.1+
W=7
0.0 T T T T T T T
00 02 04 06 08 10 12 14 16 18 20

FIG. 8. Energy as a function of the momentgnof the lowest-
energy charge-density excitations of a SPCE, for different values
W.

sity whereas the SDE’s also involves changes in the spin
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FIG. 9. Energy as a function of the momentunof the low-
gnergy spin-density excitations of a SPCE, for different values of
W.

2. Spin-density excitations

density. Due to the symmetry of the SPCE ground state the The elementary SDE’s of this spin-polarized state are

collective excitations can be labeled by a quantum nurgber
which corresponds to the momentum in thdirection of the
excitations.

1. Charge-density excitations

The elementary CDE’s of this spin-polarized state are
constructed by allowing all conserving spin particle-hole ex-

citations of momentung to couple, i.e., the CDE’s of the
SPCE can be written in the form

|¢L>=§ al(q)cl, k| SPCB. (14)

In this equation|SPCE repesents the SPCE ground-state
wave function, which is a Slater determinant formed with all

constructed by allowing all spin-flip particle-hole excitations
of momentumq to couple. The SDE'’s of the SPCE can be
written in the form

|¥5) =2 al@)Cleq 0 |SPCB. (16
Since the electron-hole pairs do not conserve spin, and the
ground state is spin polarized, there is not restriction on the
values ofk in Eq. (16). The coefficientsa,(q) and the en-
ergy of the excitations are obtained in the same way as in the
CDE'’s case, which for the SDE’s implies diagonalization of
the matrix

(SPCHC), _CyraqHCl g Cc_|SPCB.  (17)

the majority spin one electron wave functions of momentum , )
smaller tharke . Therefore, since the spin is conserved, theln Fig. 9 we plot the low-energy SDE'’s of a SPCE for dif-

sum over momentak is restricted to the region
kr—q<k<kg. The coefficientsaik(q) are obatined by mini-
mizing the energy of the excitationsw'(q)=(yyH|y),
with the condition=,|a,(q)|?=1. This procedure reduces
finally to the diagonalization of the matrix

(SPCHC,, Cyrsq-HCl o Cc_|SPCB, (15

ferent values of the confining potential. For all values/\f

the SDE expectrum contains a continuum of excitations
starting from an energg+4mp.q%, wherep is the spin
stiffness of the 2DEG at= 1. These excitations extend over
all the system and they are the well-known bulk spin-density
waves?® In the SPCE phase the total spin and the third com-
ponent of the spin are good quantum numbers. The ground
state has the maximum value of the total spin and in absence

the matrix elements of which are computed using the Wickof Zeeman coupling the ferromagnetic state is degenerated in
theorem. This method of calculation is equivalent to theall the possible values of thecomponent of the total spin.

time-dependent Hartree-Fock approximatfon.

The spin-density wave is the Goldstone mode associated

In Fig. 8 we plot the lowest-energy CDE of a SPCE for with the broken symmetry occuring when thealirection is
different values of the confining potential. In agreement withprivileged and thez component of the spin is taken as the

the semiclassical result all the curves disperses gsin q
at small wave vectors. As th&/ becomes larger, i.e., the

order parameter of the ferromagnetic phase.
In addition to the spin-density waves, the SDE expectrum

confinement potential smoother, the lowest-energy CDE dealso contains &V-dependent branch, with lower energy than
velops a minimum in the dispersion at wave vectors aroundhe bulk spin waves and which is spatially localized at the

g~1.4. This minimum becomes a soft modeVit- 7, indi-

edge of the 2DEG. As the confinement becomes smoother,

cating the existence of an instability in the system. Thisthis edge localized SDE develops a minimum in energy a

value ofW coincides withWepg and, therefore, we conclude

finite wave vector. This mode becomes soft Wrk>6.7, in-

that the transition SPCE to SPCDW edge is a second-ordeticating the existence of a spin instability in the system. This

phase transition driven by this instability.

value of W coincides withWg and, therefore, we conclude
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lowest-energy charge-density excitations of a stripe edge. In this g
figure W=9.5.

» ) FIG. 11. Low-energy collective excitations of the spin-textured
that the transition SPCE to STE is a second-order phase traggge phase. The results corrrespondgtegusB=0 and W=8.
sition driven by this spin wave instability. The energy is in units 06%/ e/ and the wave vectaq in units of

/L
B. Charge-density excitations of the stripe phase

- _ .. i
As in the SPCE the collective CDE’s are constructed bywhereg_f—tr? andgt+t_ Gs. The gtoéﬁlzgntzk'aﬂ’ andthe
the linear combination of electron-hole pairs of the form energy of the excitalions are obtanéd In the same way as in

the previous cases, which in the STE case implies the diago-
nalization of the matrix

|#a)= 2 &g, - ISP, (19 . .
<STECk'+gB, YB'Ck’+gB+q,ﬁHCk+ga+q,aCk+gar ,a'|STE>'

where |SP) represents the stripe phase wave function. The 20
stripe phase is a spin-polarized state characterized by three

Fermi wave vectorsk, , k,, andks and for smallg the sum Due to the existence of the spin texture, the collective

excitations are a mixture of spin- and charge-density excita-

over momentak is restricted to the regionk; — q<k<k; . T .
andk,— q<k<k,. The existence of these two regions madelions. Also note that because the STE is invariant under a
possible that the charge distribution of the CDE oscillatedranslation along the edge plus a spin rotatibany electron

across the edge, making possible the appearance of an acog@" fliP is accompanied by a change of the electron wave
tic mode. vector in £ Gq.

In Fig. 10 we show the two lowest-energy excitations of a In Fig. 11 we plot the lowest-energy collective excitations

stripe phase corresponding W=9.5. The lowest-energy for”thefcaseg=0 e.m.dW= 8. The exp?ctrur_n consists b§5|—
one varies linearly witlg and it is the acoustic mode. All the cally of two parts:(i) a continuum of excitations starting

other modes disperses as classical magnetoplasméms,. from an energig+4mp(q—Gs)?, and(|_|) a set of discrete

It is important to note in Fig. 10 that the lower-energy moded’ranches around=0. The former excitations extend over
become negative at finig, announcing the instability of the aII_the syspem and far from the edgg they e\{olve into the bylk
stripe phase. This result is independent of the valu&vof spin-density waves. The dispersion relation of the spin-

and confirms the results show in the phase diagram that tHi€NSity waves starts af=—Gs, because in the STE phase
stripe phase is not a stable solution of the system. the electron-hole pairs involving a majority spin flip have the

form [see Eq.(19)] cl+Gs+q‘+ck‘, . In the absence of Zee-
_ o ) man coupling these excitations become gapless. This branch
C. Collective excitations of spin-textured edge of excitations corresponds to the Goldstone mode associated
In the STE phase the low-energy collective excitation carwith one of the broken symmetries occuring in the STE
be written as a linear combination of the electron-hole pairphase: spin rotation around an axis of g plane. On the
of the form.qudk andqudk. From the form of thel and  other hand, the low-energy excitations startinggatO are
b operators, Eqs(12) and (13), the collective excitations localized at the edge of the system and they correspond to
have the general expression edge excitations of the STE phase.
We describe now the character of the edge excitations of
the STE phase. At small wave vectors, all but one of the
|¢,i1>: E a:(,a,a’(q)CIJrg +a,aCk+g,, «|STE), (19 Iow-gnergy excitations are gaplesscg# 0, and have.a_dis-
Ka,a’ “ persion of the forng In g. The analysis of the coefficcients



10 390 M. FRANCO AND L. BREY 56

a:( ..o Of these gapless excitations reveals that they are lovalues ofq we find that this excitation is damped into the
calized at the edge of the system in a region of thickness ofPin density wave region at wave vectors of the order of
the order of the magnetic length. These excitations corre= Gs.

spond to the classical edge magnetoplasiftiief the sys-

tem. The difference with the edge magnetoplasmon of the V. EXPERIMENTAL CONSEQUENCES
spin-polarized compact edge is that in the STE the spin and

charge excitations are mixed. . —
As mentioned above, in addition to the magnetoplasmori'€ Z€eman energy for the existence of the STE phasge is
=0.008 This is a rather small value but it can be reached in

there is a low-energy excitation that is practically dispersion- ) ;
less at small wave vectors and that has a finite gap-ed. ~ C@AS Systems by applying hydrostatic presstiiie. order to

This excitation anticrosses with the edge magnetoplasmord€t @ STE phase a smooth confining potential is also neces-
see inset of Fig. 11. It is localized at the edge of the systeni®[- It is possible to tune the edge potential to the appropri-
but with a thickness equal to the spatial width of the charge€ value by applying gate bias to the edge of the 2BEG.
modulation in thex direction. In the case V=8 andg=0, The existence of the STE gffects the spin polarization of
this thickness is around four magnetic lengths, see Fig. 6N€¢ 2DEG edge at=1. By using a local NMR probé the _
This thickness is rather independent on the wave vector dpolarization of an edge as a function of the Zeeman coupling
the excitation, and therefore this mode is almost dispersior?" ©f thﬁ strengthfoflihe cor%gnement pOteT'il can be stlud|ed.
; . i : . As in the case of Skyrmiohsa variation of the spin polar-
less inq. The coefficcientsa, ~, corresponding to this .. : .
mode sﬂow that this excitatiorl?ciyéaone in WEiCh théJ transversIzatlon with these parameters should probe the existence of

component of the spin polarization becomes time dependen -e STE phasé:

Also, there is a motion of the charge density associated wit As discussed above, in the STE phase there exists a low-
' 9 y I%nergy excitation with a finite gap g&=0. The detection of
the spin texture across the edge.

This mode corresponds to an internal excitation of thethiS mode propagating along the edge of a 2DEG should be a
STE phase. In a classical calculation, @t 0, this mode probe of the existence of the STE phase. It could be possible

should be gapless and it should be the Goldstone mode to detect the existence of this mode by time-resolved mag-

. > i . . etotransport experimentsr by measuring the transmission
sociated with spin rotations in the-y plane. However, a b P y 9

e . . ._of electromagnetic waves.
finite gap appears in the Hartree-Fock calculation. We think 9

the reason is the following: this excitation changesxtand
y components of the spin at the same time that it changes the

momentum along thg direction. The change in the momen-  |n summary, we have studied the electronic and magnetic
tum in they direction modifies the charge-density modula- strycture of the edge of a 2DEG in the=1 QHE regime.

tion, which exits in thex direction because of the Spin tex- We have obtained the phase diagram of the System as a func-
ture. This modulation of the Charge denSity is confined at th%on of the Zeeman Coup"ng and the smoothness of the con-
edge of the system. The external, exchange, and Hartree pinement potential. We obtain the range of parameters where
tentials confine the charge modulation against motion tog spin-textured edge phase is expected. We have also studied
wards the outer part of the edge, whereas the exchange aggk collective excitations of this phase. We have found the
Hartree potentials confine the charge against motion towardsxistence of a low-energy gapfull collective excitation asso-

the inner part of the 2DEG. This excitation of the STE ro-cjated with the symmetry of the spin-textured phase.
tates the projection of the spin-density in tkiey plane and

al_so moves thg charge-density modulgtlon across the edg.e. ACKNOWLEDGMENTS
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