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Phase diagram of a quantum Hall ferromagnet edge, spin-textured edges,
and collective excitations

M. Franco and L. Brey
Instituto de Ciencia de Materiales (CSIC), Cantoblanco, 28049 Madrid, Spain

~Received 30 May 1997!

We study the electric and magnetic properties of the edge of a two-dimensional electron gas in the presence
of a magnetic field and at filling factor unity. We obtain the phase diagram of the system as a function of the
smoothness of the confining potential and of the Zeeman energy. The existence of a spin-textured edge is
proved as a function of these parameters. We also calculate the low-energy excitations of the spin-textured
phase. We obtain that in addition to the classical edge magnetoplasmons, at small wave vectors, there is an
almost dispersionless excitation, with a finite gap of energy at zero wave vector. This excitation is associated
with internal excitations of the spin-textured edge phase.@S0163-1829~97!07140-3#
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I. INTRODUCTION

There is great interest in understanding the propertie
the edge states of a two-dimensional electron gas~2DEG! in
the presence of a strong magnetic fieldB in the quantum Hall
effect ~QHE! regime. The edge states are important beca
they can control the magnetotransport of the 2DEG in
broad class of mesoscopic and macroscopic systems.1 Also,
under normal conditions the only gapless excitations in
QHE regime are edge excitations.2

Because of the screening properties of the 2DEG,
structure of the edge states changes when the smoothne
the edge confining potentialV0(x) varies. For studying the
edge state properties, we consider a semi-infinitex-y plane,
with a straight edge parallel to theŷ direction. In the case o
sharp confinement potentials the electron density falls fr
the bulk value to zero in a distance of the order of the m
netic lengthl 5A\c/eB. For a sufficiently smooth confin
ing potential, it has been proposed theoretically that the e
separates into incompressible and compressible region3,4

This picture appears to be in reasonable agreement with
cent experiments.5 For intermediate smooth confining pote
tials, due to the exchange interactions it has been sugge
that stripes of charge density corresponding to filling fac
n51 can be stabilized at the edge of the 2DEG.6,7 This edge
reconstruction can explain transport experiments in quan
dots8. For very smooth confining potentials, the formation
a Wigner crystal of holes at the edge of the 2DEG co
happen.9,10 Also, in the context of the mean-field theory o
the composite fermions,11 it has been proposed that fo
smooth confining potentials, the density distribution cou
show features related to the existence of fractional quan
Hall states.12 In particular, in Ref. 12 it was obtained that a
the confining potential becomes smoother, an incompress
region with filling factor 2/3 occurs at the edge. In this ca
culation there does not appear any signal of the existenc
a stripe phase. This result is not in full agreement with ex
diagonalization results,7,13 which seem to indicate the exis
tence of a charge reconstruction at the the edge very sim
to the predicted by the Hartree-Fock calculations.6,7 Prob-
ably, the reason for this discrepancy is that the mean-fi
560163-1829/97/56~16!/10383~9!/$10.00
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treatment of the composite fermions does not describe ap
piately the exchange interaction between electrons, whic
the important physics behind the creation of stripes at
edge of the 2DEG atn51.

When the spin degree of freedom is included in the th
retical models, effects such as spontaneous s
polarization14 and spin textures15–17at the edges of quantum
Hall systems have been predicted.

The low-energy collective excitations localized at t
edge of the system have dispersion relations that dep
strongly on the type of reconstruction at the edge. Fo
sharp edge, a magnetoplasmon with a dispersion of the f
q ln q is expected.18,19 Here qi ŷ is the wave vector of the
excitation. This is a classical result, which is obtained fro
solving the hydrodynamical equations for a sharp edge in
presence of a magnetic field. This dispersion relation can
also obtained from microscopic calculations.20 For smooth
compressible edges, in addition to the edge magnetoplasm
the existence of new branches of acoustic excitations
been proposed21 and measured.22 The difference between th
edge magnetoplasmon and the acoustic excitations origin
from their charge distribution pattern; in the magnetopl
mon the charge varies monotonically across the ed
whereas the charge oscillates in the acoustic modes.

In this work we study the electrical and magnetical pro
erties of the edge states of the 2DEG atn51 as a function of
the Zeeman coupling,g̃5gmBB, and of the smoothness o
the confining potential. In particular, we are interested in
existence and properties of a spin textured edge. Edge
tures are configurations of the spin density that posse
topological charge density at the edge of the system. The
spin fieldn~r ! of the spin texture has the form15

nx1 iny5A12 f 2~x!ei ~Gsy1u!, nz5 f ~x!, ~1!

whereGs is the wave vector of the spin-texture andu is an
arbitrary phase. In the spin-polarized bulk we ha
f (x)521. In the QHE regime the topological charge dens
coincides with the real charge density,23,24and, therefore, the
charge density associated with the spin texturen has the
expression
10 383 © 1997 The American Physical Society
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10 384 56M. FRANCO AND L. BREY
q~rW !5enW •~]xnW 3]ynW !/4p. ~2!

In the spin-textured edge case, Eq.~1!, the charge density
associated with the texture only depends onx and has the
form q52e(Gs /4p)d f /dx. The system can develop a sp
texture in order to modulate the charge density profile in
x̂ direction and, therefore, to screen the edge confinem
The lowering of the confinement energy competes with
cost in exchange and Zeeman energies. Therefore the
textured edge occurs only for smooth enough confinem
potential and for small enough Zeeman coupling. Note t
although the charge generated by the spin texture is inva
along the edge, the existence of the spin texture breaks tr
lational invariance. However, the system is invariant unde
combination of a translation along the edge and a s
rotation.15

The two main results of this work are the following.
~i! We obtain the phase diagram of the system as a fu

tion of the smoothness of the confining potential and of
Zeeman energy. By performing a full unrestricted Hartre
Fock ~HF! calculation we obtain the range of paramete
where a spin-textured edge can be expected. Given a co
ing potential, we obtain that the maximum value ofg̃ where
the spin texture exists is considerably smaller than the
tained in Ref. 15. This discrepancy occurs because Ref
only considers the competition of the spin-textured state w
the striped phase. However, we obtain that makingV0
smoother, the sharp edge becomes unstable to a sm
charge modulation in both thex and y directions before it
becomes unstable to the stripe phase.

~ii ! We study the dispersion relation of the collective e
citations in a spin-textured edge phase. We obtain tha
addition to magnetoplasmonlike excitations and the b
spin-density waves, there exists a low-energy mode ass
ated with internal excitations of this phase. This mode
almost dispersionless, and it has a finite energy at zeroq.
The existence of this gap is due to the finite width of t
charge density produced by the spin texture in thex̂ direc-
tion.

This paper is organized as follows, in Sec. II we descr
the Hartree-Fock approximation used for solving the mic
scopic Hamiltonian of the system. Section III is dedicated
the analysis of the phase diagram of the edge. In Sec. IV
compute the low-energy collective excitations of differe
phases existing at the edge of the 2DEG, in particular,
collective excitations in the spin-textured edge. We conclu
with some possible experimental consequences and a
summary.

II. MICROSCOPIC HAMILTONIAN
AND HARTREE FOCK APPROXIMATION

We are interested in properties of the edge states of
n51 quantum Hall state. In this regime we assume that
electron-electron interaction and Zeeman energies are m
smaller than the Landau-level splitting, and we therefore
strict the orbital Hilbert space to the lowest Landau lev
Since the confining potential only depends on thex coordi-
nate, it is convenient to work in the Landau gaug
A52Bxŷ. The Hamiltonian of this system has the for
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,

~throughout this work we takel as the unit of length and
e2/l e as the unit of energy!

H5(
k,a

S V0~k!1
g̃

2
a D ck,a

† ck,a

1
1

2LxLy
(

k,k8,pW ,a,b
v~p!e2p2/2

3eipx~k2k81py!ck,a
† ck8,b

† ck81py ,bck2py ,a . ~3!

Here a,b51~up!2~down! are spin indices,Lx and Ly are
the sample dimensions,v(p)52pe2/ep is the two-
dimensional Fourier transform of the Coulomb interactio
and ck,a

† creates an electron with spatial wave functi

ck(r )5 (1/ALyp
1/2) eikye2(x2k)2/2, and spina/2.

In order to change the smoothness of the edge continu
we takeV0 as the potential created by a distribution of po
tive charge,r1(x), which falls linearly from its bulk value,
rbulk51/2p, to zero, over a region of widthW:

r1~x!5
rbulk

W H W, x,0

W2x, 0,x,W

0, x.W.

~4!

In this way the edge confining potential is smoother in dir
proportion toW,

V0~k!52E dx8r1~x8!lnuk2x8u. ~5!

In order to solve the Hamiltonian, Eq.~3!, we make the
Hartree-Fock pairing of the second-quantized operators,

HHF5(
k,a

S V0~k!1
g̃

2
a D ck,a

† ck,a1 (
k,k8,qy ,a,b

ṽ~qy ,k2k8!

3@ck,a
† ck2qy ,a^ck8,b

† ck81qy ,b&

2ck,a
† ck81qy ,b^ck8,b

† ck2qy ,a&#, ~6!

with

ṽ~qy ,k2k8!5
1

LxLy
(
qx

v~qW !eiqx~k2qy!e2q2/2. ~7!

The HF Hamiltonian is solved self-consistently allowing f
the possibility of different broken translational symmetries
the ground state.25,26 In particular, in this work we allow the
system to modulate the charge and spin in both directionx̂
andŷ. Because atn51 the ground state of an infinite 2DEG
is a Slater determinat, the HF approximation is a good
proximation for describing the properties of the system
filling factors near unity. Therefore we believe the HF resu
can be trusted for intermediate confinement potent
W,12, and it should be necessary to be carefull in the
terpretation of the HF results when the confinement poten
is smooth enough such that correlated fractional quan
Hall states can occur.

To characterize the different solutions, it is very conv
nient to introduce the operators
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ra,b~q!5
2p

LxLy
(

k
e2 iqx~k2qy/2!ck,a

† ck1qy ,b ~8!

which are related to the chargen(q) and spinS~q! density
operators through the relations

n~rW !5
1

2pl 2 (
qW a

^ra,a~qW !&e2q2/4e2 iqW rW, ~9!

and

Sz~rW !5
1

4pl 2 (
qW

@^r1,1~qW !&2^r2,2~qW !&#e2q2/4e2 iqW rW.

Sx~rW !1 iSy~rW !5
1

2pl 2 (
qW

^r2,1~qW !&e2q2/4e2 iqW rW.

~10!

By solving selfconsistently the Hartree-Fock equations
obtain the espectation values of the energy and of the dif
ent density operators.

III. PHASE DIAGRAM

The different solutions of the electric and magnetic ed
structure can be characterized by the expectation value
the productsck,a

† ck8,b or by the expectation values of th
operatorsra,b(q). In this work we find the following type of
solutions~see Fig. 1!.

A. Spin-polarized compact edge„SPCE…

In this state^ck,a
† ck8,b&5dk,k8da,bda,2 , and there is a

maximum wave vector such that all states with smaller m
mentum are occupied. This maximum wave vector can
considered as the Fermi wave vector of the edge,kF . In this
solution the charge density falls from its bulk value 1/2p to
zero in a distance of the order or the magnetic length,
Fig. 2, and the charge density is invariant along the ed

FIG. 1. Phase diagram, as a function ofg̃5gmBB andW, of the
edge of a 2DEG atn51. The shadow region corresponds to t
spin-textured and charge-density-wave phase.g̃ is in units ofe2/el

and W in units of l . The dashed line represents the value ofW
where the stripe phase has lower energy than the SPCE phas
e
r-

e
of

-
e

e
e.

The spin-polarized compact edge is the sharpest edge
sible. In this state the exchange energy gets its maxim
possible value, and, therefore, it is the ground state for sm
values ofW,7 where the electrons cannot screen the con
ing potential.

B. Spin-polarized charge-density wave„SPCDW…

In this state only the majority-spin electronic states a
occupied, i.e.,̂ ra,b(q)&}da,bda,2 . In this class of solu-
tions, the system modulates the charge along theŷ direction,
in order to screen the edge potential. In the spin-polari
QHE regime the system only can modulate smoothly
charge along thex̂ direction by modulating also the charg
along theŷ direction. At g̃→`, the SPCDW state has lowe
energy than the SPCE state forW.WCDW.7. Since the
phase transition between the SPCE and the SPCDW sta
announced by the softening of the low-energy charge-den
excitation of the SPCE~see below! this transition is a
second-order phase transition.

For values ofW near but bigger thanWCDW, the SPCDW
modulates very smoothly the charge-density profile acr
the edge, and forms a charge-density wave. This cha
density wave can be interpreted as a precursor of the Wig
crystal of holes.9

For stronger confining potentials,W.8.5, the density
profile across the edge develops a modulation at the s
time that the system modulates the charge density along
edge direction. We interpret this solution as the existence
an incipient Wigner crystal of holes on top of a stripe pha
In Figs. 3 and 4 we plot the charge density for a SPCDW e
coreesponding toW511.

For larger values ofW more exotic reconstructions ca
happen, however, we think that for very smooth confini
potentials the HF approximation could be not appropiate
fractional quantum Hall states could happen.11,12

C. Stripe phase

In this state only the majority-spin electronic states a
occupied, and the expectation values of the opera

FIG. 2. Charge-density profile of a spin-polarized edge state
function of x. The dashed line represents the background of p
tive charge created by the confining potential. In this figureW56.
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10 386 56M. FRANCO AND L. BREY
^ck,2
† ck8,2& can be only 0 or 1. The occupation gets the va

unity for wave vectorsk satisfying the relationk,k1 , or the
relationk2,k,k3 , with k1,k2,k3 . In this solution we do
not allow modulation of the charge-density along the ed
direction. A charge-density profile corresponding to this
lution is shown in Fig. 5 for the case ofW511. The stripe
phase has lower energy than the SPCE for values ofW larger
than Wc59.1, however, this phase does not appear in
phase diagram~Fig. 1! because we obtain that the strip
phase has always higher energy than the SPCDW. In fact
obtain the the stripe phase is not a stable solution of the
equation~see below!.

FIG. 3. Charge-density profile of a spin-polarized charg
density-wave edge state as a function ofx. The charge density is
averaged along they direction. The dashed line represents the ba
ground of positive charge created by the confining potential. In
figure W511.

FIG. 4. Two-dimensional charge-density contour of a sp
polarized charge-density-wave edge state corresponding toW510.
This figure represents twice the unit cell in they direction. The
numbers are the value of the electron density in units of 1/2p.
e

e
-

e

e
F

D. Spin-textured edge„STE…

In this class of solutions the charge density and thez
component of the spin density are not modulated along thŷ
direction, i.e.,̂ ra,a(q)&}dqy,0 . However, we find that thex

andy components of the spin density varies along and acr
the edge, i.e., all thêra,2a(q)& can be different from zero
In the calculation we obtain that the operatorsra,2a(q) are
different from zero only for one wave vector of the for
q5(0,Gs). Minimizing the energy with respect toGs we
obtain microscopically the periodicity of the spin texture.
this solution there is not higher harmonics of the spin text
because, in order to get a constant charge density along
edge,only one wave vector of the spin texture is possib
Using the relation between spin texture and charge den
Eq. ~2!, it can be proved easily that spin textures with
dependence on the coordenatey different than asineimplies
charge modulation in theŷ direction. In agreement with Ref
15 we obtain thatGs increases linearly withW and with the
Zeeman couplingg̃.

In Fig. 6 is plotted the charge-density profile across

-

-
is

-

FIG. 5. Charge-density profile of a stripe phase state as a fu
tion of x. The dashed line represents the background of posi
charge created by the confining potential. In this figureW511.

FIG. 6. Charge-density profile of a spin-textured phase state
function of x. The dashed line represents the background of p
tive charge created by the confining potential. In this figureW58
and g̃50. The dotted line corresponds to the contribution
minority-spin electrons to the density profile.
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edge of a STE withg̃50 andW58. We also plot in Fig. 6
contribution of the minority-spin electrons to the charge d
sity. For the same STE, we plot in Fig. 7 the projection of t
spin density in thex-y plane. Sincêra,2a(0,Gs)& is differ-
ent from zero, the STE phase breaks the translational inv
ance along the edge and the spin rotational symmetry a
the magnetic field. However, the STE is invariant unde
symmetry composed of a translation along the edge an
spin rotation.15 The states related with this symmetry corr
spond to the different values ofu in Eq. ~1!.

Since the phase transition between the SPCE and the
state is announced by the softening of the low-energy s
density excitation of the SPCE, see below, this transition
also a second-order phase transition. Forg̃50, the SPCE to
STE transition occurs for confining potentials wi
W.Ws56.7. This value ofWs increases withg̃, and for
g̃.g̃c.0.008 the system prefers to screen the edge pote
by forming a SPCDW state rather than by creating a S
This value ofg̃c is about ten times smaller than the obtain
by Karlhedeet al.15 This discrepancy occurs because in R
15 the STE is assumed to compete only with the strip
phase, and not with the SPCDW state.

It is important to note that the width of the charge a
spin modulation in thex̂ direction is much larger thanGs .
For example, in the case ofg̃50 andW58, Fig. 6, the wave
vector of the spin texture is,Gs'0.85 and the width of the
modulation is of the order of four magnetic lengths.

A final point to mention in this subsection is that since
the STE phase the only order parameters different from z
are ^ra,2a(0,Gs)& and ^ra,a(qx,0)&, it is possible to de-
scribe the STE ground state by a simple Slater determin
of the form

uSTE&5)
k

dk
†u0&, ~11!

FIG. 7. Two-dimensional vector representation of thex2y
components of the spin density for a spin-textured edge. In
figure W58 andg̃50. This figure represents twice the unit cell
the y direction.
-
e
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where

dk
†5ukck,2

† 1vkck1Gs ,1
† , ~12!

anduk andvk are obtained from the expectation values of t
ra,b operators, and verify the relationuk

21vk
251. The set of

eigenstates of the Hartree-Fock Hamiltonian orthogona
the dk

† states have the form

bk
†52vkck,2

† 1ukck1Gs ,1
† . ~13!

Solutions of the form described by Eqs.~11! and ~12!
break translation invariance along the edge, as well as
rotational symmetry. In the presence of Zeeman coupling
Hamiltonian, Eq.~3!, has a spin rotational O~2! symmetry in
the x-y plane. The STE phase breaks this symmetry. Wh
the Zeeman coupling is zero, the STE phase spontaneo
breaks all the rotation symmetries.

We have not found coexistence between the STE
SPCDW state. From our calculations, the line in Fig. 1 se
rating the STE from the SPCDW represents a first-or
phase transition. This is consistent with the fact that th
two states have different broken symmetries.

E. Spin-textured and charge-density-wave state

This is a fully broken symmetry ground state where t
expectation values of all^ra,b(q)& are not zero. This state i
a mixture of charge-density waves and spin textures and
reached from both the STE and SPCDW states by mak
the edge confinement smoother. This phase correspond
the shadow region in Fig. 1.

In particular, we want to mention here the state that
pears when, starting from a STE phase, we makeW larger.
We find that for very smooth confining potentials higher h
monics of the spin texture appear. In that case the edg
described better by an anti-Skyrmion crystal than by a sim
spin texture.27 However for the values ofW where this solu-
tion occurs, we expect the correlation effects becoming
portant, and probably for these large values ofW the HF
approximation could be not appropiate for describing t
system.

IV. COLLECTIVE EXCITATIONS

In this section we study the low-energy collective exci
tions occuring at the edge of the 2DEG at filling factor uni
We first analyze the collective excitations of the SPCE sta
showing that the phase transitions to the SPCDW edge or
STE are second order. We also discuss the instability of
stripe phase against modulation of the charge density a
the edge direction.

In the second part of this section we study the collect
excitations of the spin-textured edge, and, in particular,
collective mode associated with internal excitations of
STE.

A. Collective excitation of the SPCE

This state has two types of collective excitations: char
density excitations~CDE’s! and spin-density excitation
~SDE’s!. The CDE’s only involve changes in the charge de

is



p
th
r

ar
x

te
al
um
h

s

ic
h

or
ith

e
d

un

hi
e
rd

are
ns
e

the
the

the
of

f-

ns

r
ity
m-
und
nce
d in
.
ted

e

um
n

he
her,
y a

his
e

s of

10 388 56M. FRANCO AND L. BREY
sity whereas the SDE’s also involves changes in the s
density. Due to the symmetry of the SPCE ground state
collective excitations can be labeled by a quantum numbeq,
which corresponds to the momentum in theŷ direction of the
excitations.

1. Charge-density excitations

The elementary CDE’s of this spin-polarized state
constructed by allowing all conserving spin particle-hole e
citations of momentumq to couple, i.e., the CDE’s of the
SPCE can be written in the form

ucq
i &5(

k
ak

i ~q!ck1q,2
† ck,2uSPCE&. ~14!

In this equationuSPCE& repesents the SPCE ground-sta
wave function, which is a Slater determinant formed with
the majority spin one electron wave functions of moment
smaller thankF . Therefore, since the spin is conserved, t
sum over momenta k is restricted to the region
kF2q,k,kF . The coefficientsak

i (q) are obatined by mini-
mizing the energy of the excitations,\v i(q)5^cq

i uHucq
i &,

with the condition(kuak
i (q)u251. This procedure reduce

finally to the diagonalization of the matrix

^SPCEuck8,2
† ck81q,2Hck1q,2

† ck,2uSPCE&, ~15!

the matrix elements of which are computed using the W
theorem. This method of calculation is equivalent to t
time-dependent Hartree-Fock approximation.20

In Fig. 8 we plot the lowest-energy CDE of a SPCE f
different values of the confining potential. In agreement w
the semiclassical results,18 all the curves disperses asq ln q
at small wave vectors. As theW becomes larger, i.e., th
confinement potential smoother, the lowest-energy CDE
velops a minimum in the dispersion at wave vectors aro
q;1.4. This minimum becomes a soft mode atW;7, indi-
cating the existence of an instability in the system. T
value ofW coincides withWCDE and, therefore, we conclud
that the transition SPCE to SPCDW edge is a second-o
phase transition driven by this instability.

FIG. 8. Energy as a function of the momentumq of the lowest-
energy charge-density excitations of a SPCE, for different value
W.
in
e

e
-

l

e

k
e

e-
d

s

er

2. Spin-density excitations

The elementary SDE’s of this spin-polarized state
constructed by allowing all spin-flip particle-hole excitatio
of momentumq to couple. The SDE’s of the SPCE can b
written in the form

ucq
i &5(

k
ak

i ~q!ck1q,1
† ck,2uSPCE&. ~16!

Since the electron-hole pairs do not conserve spin, and
ground state is spin polarized, there is not restriction on
values ofk in Eq. ~16!. The coefficientsak

i (q) and the en-
ergy of the excitations are obtained in the same way as in
CDE’s case, which for the SDE’s implies diagonalization
the matrix

^SPCEuck8,2
† ck81q,1Hck1q,1

† ck,2uSPCE&. ~17!

In Fig. 9 we plot the low-energy SDE’s of a SPCE for di
ferent values of the confining potential. For all values ofW,
the SDE expectrum contains a continuum of excitatio
starting from an energyg̃14prsq

2, where rs is the spin
stiffness of the 2DEG atn51. These excitations extend ove
all the system and they are the well-known bulk spin-dens
waves.28 In the SPCE phase the total spin and the third co
ponent of the spin are good quantum numbers. The gro
state has the maximum value of the total spin and in abse
of Zeeman coupling the ferromagnetic state is degenerate
all the possible values of thez component of the total spin
The spin-density wave is the Goldstone mode associa
with the broken symmetry occuring when thez direction is
privileged and thez component of the spin is taken as th
order parameter of the ferromagnetic phase.

In addition to the spin-density waves, the SDE expectr
also contains aW-dependent branch, with lower energy tha
the bulk spin waves and which is spatially localized at t
edge of the 2DEG. As the confinement becomes smoot
this edge localized SDE develops a minimum in energ
finite wave vector. This mode becomes soft forW.6.7, in-
dicating the existence of a spin instability in the system. T
value of W coincides withWS and, therefore, we conclud

of

FIG. 9. Energy as a function of the momentumq of the low-
energy spin-density excitations of a SPCE, for different values
W.
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that the transition SPCE to STE is a second-order phase
sition driven by this spin wave instability.

B. Charge-density excitations of the stripe phase

As in the SPCE the collective CDE’s are constructed
the linear combination of electron-hole pairs of the form

ucq
i &5(

k
ak

i ~q!ck1q,2
† ck,2uSP&, ~18!

where uSP& represents the stripe phase wave function. T
stripe phase is a spin-polarized state characterized by t
Fermi wave vectors:k1 , k2 , andk3 and for smallq the sum
over momentak is restricted to the regionsk12q,k,k1
andk22q,k,k2 . The existence of these two regions ma
possible that the charge distribution of the CDE oscilla
across the edge, making possible the appearance of an a
tic mode.

In Fig. 10 we show the two lowest-energy excitations o
stripe phase corresponding toW59.5. The lowest-energy
one varies linearly withq and it is the acoustic mode. All th
other modes disperses as classical magnetoplasmonsq ln q.
It is important to note in Fig. 10 that the lower-energy mod
become negative at finiteq, announcing the instability of the
stripe phase. This result is independent of the value ofW,
and confirms the results show in the phase diagram tha
stripe phase is not a stable solution of the system.

C. Collective excitations of spin-textured edge

In the STE phase the low-energy collective excitation c
be written as a linear combination of the electron-hole pa
of the form.dk1q

† dk andbk1q
† dk . From the form of thed and

b operators, Eqs.~12! and ~13!, the collective excitations
have the general expression

ucq
i &5 (

k,a,a8
ak,a,a8

i
~q!ck1ga1q,a

† ck1ga8 ,a8uSTE&, ~19!

FIG. 10. Energy as a function of the momentumq of the two
lowest-energy charge-density excitations of a stripe edge. In
figure W59.5.
n-

y

e
ee

s
us-

s

he

n
s

whereg250 andg15Gs . The coefficientsak,a,a8
i and the

energy of the excitations are obtained in the same way a
the previous cases, which in the STE case implies the dia
nalization of the matrix

^STEuck81gb8 ,b8
† ck81gb1q,bHck1ga1q,a

† ck1ga8 ,a8uSTE&.

~20!

Due to the existence of the spin texture, the collect
excitations are a mixture of spin- and charge-density exc
tions. Also note that because the STE is invariant unde
translation along the edge plus a spin rotation,15 any electron
spin flip is accompanied by a change of the electron w
vector in6Gs .

In Fig. 11 we plot the lowest-energy collective excitatio
for the caseg̃50 andW58. The expectrum consists bas
cally of two parts:~i! a continuum of excitations startin
from an energyg̃14prs(q2Gs)

2, and~ii ! a set of discrete
branches aroundq50. The former excitations extend ove
all the system and far from the edge they evolve into the b
spin-density waves. The dispersion relation of the sp
density waves starts atq52Gs , because in the STE phas
the electron-hole pairs involving a majority spin flip have t
form @see Eq.~19!# ck1Gs1q,1

† ck,2 . In the absence of Zee

man coupling these excitations become gapless. This bra
of excitations corresponds to the Goldstone mode associ
with one of the broken symmetries occuring in the ST
phase: spin rotation around an axis of thex-y plane. On the
other hand, the low-energy excitations starting atq50 are
localized at the edge of the system and they correspon
edge excitations of the STE phase.

We describe now the character of the edge excitation
the STE phase. At small wave vectors, all but one of
low-energy excitations are gapless atq50, and have a dis-
persion of the formq ln q. The analysis of the coefficcient

is

FIG. 11. Low-energy collective excitations of the spin-textur
edge phase. The results corrrespond tog̃5gmBB50 and W58.
The energy is in units ofe2/el and the wave vectorq in units of
l 21.



l
s
rr

th
an

o
on

o
te
rg

.
r
io

rs
e
i

th

in

t
-

la-
-
th
p

to
a

ar
o

d
e
pe
e
th

ue
tiv

e
of

of
is

in

ces-
pri-
.
of

ling
ied.

e of

low-

e a
ible
ag-
n

etic

unc-
on-
ere
died

the
so-

n-
.
,
ully
he
.

10 390 56M. FRANCO AND L. BREY
ak,a,a8
i of these gapless excitations reveals that they are

calized at the edge of the system in a region of thicknes
the order of the magnetic length. These excitations co
spond to the classical edge magnetoplasmons18,20 of the sys-
tem. The difference with the edge magnetoplasmon of
spin-polarized compact edge is that in the STE the spin
charge excitations are mixed.

As mentioned above, in addition to the magnetoplasm
there is a low-energy excitation that is practically dispersi
less at small wave vectors and that has a finite gap atq50.
This excitation anticrosses with the edge magnetoplasm
see inset of Fig. 11. It is localized at the edge of the sys
but with a thickness equal to the spatial width of the cha
modulation in thex̂ direction. In the case ofW58 andg̃50,
this thickness is around four magnetic lengths, see Fig
This thickness is rather independent on the wave vecto
the excitation, and therefore this mode is almost dispers
less in q. The coefficcientsak,a,a8

i corresponding to this
mode show that this excitation is one in which the transve
component of the spin polarization becomes time depend
Also, there is a motion of the charge density associated w
the spin texture across the edge.

This mode corresponds to an internal excitation of
STE phase. In a classical calculation, atq50, this mode
should be gapless and it should be the Goldstone mode
sociated with spin rotations in thex-y plane. However, a
finite gap appears in the Hartree-Fock calculation. We th
the reason is the following: this excitation changes thex and
y components of the spin at the same time that it changes
momentum along they direction. The change in the momen
tum in they direction modifies the charge-density modu
tion, which exits in thex direction because of the spin tex
ture. This modulation of the charge density is confined at
edge of the system. The external, exchange, and Hartree
tentials confine the charge modulation against motion
wards the outer part of the edge, whereas the exchange
Hartree potentials confine the charge against motion tow
the inner part of the 2DEG. This excitation of the STE r
tates the projection of the spin-density in thex-y plane and
also moves the charge-density modulation across the e
Since the motion of the charge density across the edg
confined, quantum mechanically an energy gap does ap
in this mode even atq50. We think that the rotational mod
of the spin texture is coupled with a breathing mode of
charge across the edge.26

Because of the external potential at positive large val
of q, the energy of this excitation increases. For nega
o-
of
e-

e
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n
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6.
of
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values ofq we find that this excitation is damped into th
spin density wave region at wave vectors of the order
2Gs .

V. EXPERIMENTAL CONSEQUENCES

From the phase diagram, Fig. 1, the maximum value
the Zeeman energy for the existence of the STE phaseg̃
50.008 This is a rather small value but it can be reached
GaAs systems by applying hydrostatic pressure.29 In order to
get a STE phase a smooth confining potential is also ne
sary. It is possible to tune the edge potential to the appro
ate value by applying gate bias to the edge of the 2DEG30

The existence of the STE affects the spin polarization
the 2DEG edge atn51. By using a local NMR probe31 the
polarization of an edge as a function of the Zeeman coup
or of the strength of the confinement potential can be stud
As in the case of Skyrmions24 a variation of the spin polar-
ization with these parameters should probe the existenc
the STE phase.32

As discussed above, in the STE phase there exists a
energy excitation with a finite gap atq50. The detection of
this mode propagating along the edge of a 2DEG should b
probe of the existence of the STE phase. It could be poss
to detect the existence of this mode by time-resolved m
netotransport experiments5 or by measuring the transmissio
of electromagnetic waves.19

VI. SUMMARY

In summary, we have studied the electronic and magn
structure of the edge of a 2DEG in then51 QHE regime.
We have obtained the phase diagram of the system as a f
tion of the Zeeman coupling and the smoothness of the c
finement potential. We obtain the range of parameters wh
a spin-textured edge phase is expected. We have also stu
the collective excitations of this phase. We have found
existence of a low-energy gapfull collective excitation as
ciated with the symmetry of the spin-textured phase.
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