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Quantum nonlinear resonance and quantum chaos in Aharonov-Bohm oscillations
in mesoscopic semiconductor rings
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We consider Aharonov-Bohm oscillations in a mesoscopic semiconductor ring threaded by both a constant
magnetic flux and a time-dependent, resonant magnetic field with one or two frequencies. Working in the
ballistic regime, we establish that the theory of ‘‘quantum nonlinear resonance’’ applies, and thus that this
system represents a possible solid-state realization of ‘‘quantum nonlinear resonance’’ and ‘‘quantum chaos.’’
In particular, we investigate the behavior of the time-averaged electron energy at zero temperature in the
regimes of~i! an isolated quantum nonlinear resonance and~ii ! the transition to quantum chaos, when two
quantum nonlinear resonances overlap. The time-averaged energy exhibits sharp resonant behavior as a func-
tion of the applied constant magnetic flux, and has a staircase dependence on the amplitude of the external
time-dependent field. In the chaotic regime, the resonant behavior exhibits complex structure as a function of
flux and frequency. We compare and contrast the quantum chaos expected in these mesoscopic ‘‘solid-state
atoms’’ with that observed in Rydberg atoms in microwave fields, and discuss the prospects for experimental
observation of the effects we predict.@S0163-1829~97!09539-8#
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I. INTRODUCTION

Over the past two decades, advances in nanoscale f
cation, experimental techniques, and theoretical underst
ing have produced whole new classes of mesoscopic sys
in which the consequences of the Aharonov-Bohm~AB!
effect1 can be observed and interpreted. Although they dif
widely in many respects, the common crucial feature of th
systems is that their characteristic linear dimensionL is
smaller than the lengthLf over which the electron wave
function maintains its phase coherence, so that the quan
interference that underlies the AB effect is not destroyed
this limit, both the transport~non-equilibrium! ~Ref. 2! and
thermodynamic~equilibrium! ~Ref. 3! properties of the non-
simply connected mesoscopic systems are periodic funct
of the ~constant! AB flux F @and hence, for fixed geometry
of the ~constant! applied magnetic field# with period F0

52p\c/e, wheree is the electron charge,\ is the Planck
constant, andc is the velocity of light. The amplitude of the
periodic oscillations is a decreasing function of the syst
size, and vanishes in the thermodynamic (L→`) limit.2–6

For instance, in an idealized strictly one-dimensional~1D!
ballistic ring of lengthL, the ground-state energyE0(F)
will exhibit oscillations of periodF0 with an amplitude of
order 2p\vF /L, wherevF is the Fermi velocity. The flux
dependence of the ground state energy~or the corresponding
560163-1829/97/56~16!/10338~17!/$10.00
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flux dependence of the free energy,F, at finite temperature!
leads, via the relationI 0(F)52c]E0 /]F @or I (F)5
2c]F]F at finite temperature#, to a persistent current o
order I 0;evF /L.

Persistent currents have been observed experimental
both metallic7,8 and semiconducting9 ~quasi!-1D rings. In the
case of metallic rings, the~relatively! large number of impu-
rities means that the effects of disorder must be included,
ballistic transport is not expected. Further, because of
relatively large value ofkF for metals, even thin metallic
loops contain many~transverse! channels~n;WkF , where
W is the width of the loop!, and coupling among these cha
nels means that the strictly 1D approaches cannot
applied.10 In contrast, in semiconductors the relatively hig
purity of the materials and the relatively low value ofkF
~which renders the single channel idealization more accur!
mean that the idealized 1D ballistic theory sketched abov
expected to apply. Indeed, recent measurements9 of the pe-
riod and amplitude of the zero-temperature persistent cur
in a Ga12xAl xAs/GaAs heterojunction found good agre
ment with detailed theoretical predictions6,11 based on treat-
ing the electron motion as ballistic within a noninteracti
electron-gas model.

The basic agreement between theory and experimen
persistent currents in semiconductor heterostructures m
that one can begin to investigate more complex AB-li
quantum interference effects in these systems. One of
10 338 © 1997 The American Physical Society
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56 10 339QUANTUM NONLINEAR RESONANCE AND QUANTUM . . .
most natural extensions is an investigation of the influenc
a time-periodicexternal magnetic field, leading to a time
periodic component of the flux. This line of investigation
also suggested by a number of prior studies of the influe
of periodic external fields on mesoscopic systems, includ
investigations of electron transport through the tim
modulated resonant tunneling devices12–16 and harmonic
generation in semiconductor superlattices.17 Indeed, there
have been previous theoretical studies of the effect of p
odic external fields on various manifestations of the AB
fect in mesoscopic systems.11,18–23 We also would like to
mention the papers24 where the nonlinear response of th
Aharonov-Bohm rings to time dependent fluxes has b
studied in the context of Zener tunneling and localization
energy space.

In the present paper we study a 1D, single-channel,
listic mesoscopic ring threaded by a constant magnetic
and located in a resonant cavity to create an additional
tially inhomogeneous, time-periodic magnetic field~and
hence flux!. The electrons in the ring interact resonantly w
the cavity ac magnetic field—described by a vector poten
ARES(w,t)—and with the constant Aharonov-Bohm vect
potential (AAB). The presence ofARES(w,t) changes signifi-
cantly the electron energy spectrum—turning it into
quasienergyspectrum, since the effective Hamiltonian
time periodic—and,a priori, can be expected to have stron
effects on the AB oscillations in the observables of the m
soscopic system. We show that these effects can be in
preted within a suitable generalization of the ‘‘quantum no
linear resonance’’~QNR! theory first proposed by Berma
and Zaslavsky25 ~see also Refs. 26–29!. In particular, we find
that whenARES(x,t) contains a single frequency, a sing
QNR occurs, whereas, whenARES(x,t) contains two fre-
quencies, two QNR’s are formed, and their interactions
lead to ‘‘quantum chaos.’’ Thus time-dependent AB effe
in mesoscopic rings can provide a novel experimental s
tem, distinct from the widely studied problem of ‘‘Rydber
atoms’’ ~Refs. 30–37!—i.e., the microwave ionization of hy
drogen atoms prepared in highly excited~principal quantum
numbern0@1! states–in which to study the quantum no
linear resonant phenomena and quantum chaos. In this
gard, our results provide an explicit illustration of the utili
of viewing mesoscopic systems with discrete spectra~quan-
tum dots and small quantum rings! as ‘‘solid-state atoms.’’17

Note that, in recent experiments with mesoscopic syste
influenced by the time-periodic fields, a quasienergy sp
trum exhibits itself as well-known Rabi oscillations, Sta
oscillations, harmonic generation~see, for example, Ref. 17!,
etc.

In the remainder of the paper, we present the details
our investigation. In Sec. II, we formulate the general pro
lem, specify the details of the vector potentials, and deriv
many-body Hamiltonian describing the dynamics of the el
trons in the mesoscopic ring in the presence of the exte
fields. We then introduce a ‘‘resonant representation’’ wh
allows us to write an effective Hamiltonian that separates
slow ~resonant! and fast dynamics and generalizes the ori
nal QNR approach25,26,28to the many-body case appropria
for our problem. In Sec. III, we prove that the case in whi
ARES(w,t) contains a single frequency that corresponds t
single QNR, and we study the resulting resonant dynamic
of
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detail. We derive a general expression for the time-avera
shift of the ground-state energyDE0 as a function of the
amplitude of the AB flux, and the amplitude and frequen
of the resonant external field. We evaluateDE0 analytically
in the weak-field limit, and then study the case for gene
field strength numerically. Our results show the presence
sharp resonant enhancement, as a function of the cavity
frequency and/or AB flux, of theamplitudeof the AB oscil-
lations in the ground-state energy and hence in the persis
current. In Sec. IV, we examine explicitly the case wh
ARES(w,t) contains two frequencies, establishing that tw
QNRs are formed and that their interaction~‘‘overlap’’ ! can
lead to ‘‘quantum chaos’’ and a complex resonant struct
for E0(F) and for the persistent current. We examine n
merically the conditions for resonance overlap, and the tr
sition to quantum chaos and discuss in detail the nature
the resonance structure inDE0 in this regime. Finally, in
Sec. V we summarize our results, comparing and contras
them both with other studies of time-dependent AB effects
mesoscopic systems and with other systems~notably the Ry-
dberg atoms! in which manifestations of quantum chaos ha
been observed. We provide estimates of the relevant ran
of parameters in which experimental verification of our r
sults should be sought, and discuss open problems for fur
research. For purposes of completeness, in an Appendix
provide some essential background on the quantum nonli
resonance approach and its relation to the more familiar c
sical nonlinear resonance theory.

II. EFFECTIVE HAMILTONIAN
FOR QUANTUM NONLINEAR RESONANCE

In this section we derive the effective Hamiltonian d
scribing the dynamics of the noninteracting electrons in
external magnetic fields relevant to the physical situation
wish to study. Consider a small ballistic ring of the radiusR
placed in the (x,y) plane at the center of a cylindrical reso
nator of the radiusr 0 . Assume that the electrons in the rin
are influenced by an external field which is described by
vector potentialA consisting of two parts,

A5AAB1ARES~ t !, ~2.1!

where the Aharonov-Bohm potential is

AAB5~0,0,Aw
AB!, Aw

AB5
F

2pR
, ~2.2!

whereF is the corresponding magnetic flux. The vector p
tential ARES(t) in Eq. ~2.1! describes the magnetic field cre
ated by the resonator’s eigenmodes. The solution for thenth
eigenmode of the cylindrical resonator can be written in
form38

Az
RES50, ~2.3!

Ar
RES52nS H

k2r D sin~nw!Jn~kr !cos~vt2kzz!,

Aw
RES52

H

k
cos~nw!Jn8~x!ux5krcos~vt2kzz!,
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10 340 56BERMAN, BULGAKOV, CAMPBELL, AND KRIVE
where Jn(x) is the Bessel function andJ8(x)[dJ(x)/dx.
The frequency of this mode is

v25c2~k21Kz
2!. ~2.4!

The cavity boundary conditions imply that the wave vectok
in Eq. ~2.4! is quantized

k5
Knr8

r 0
~2.5!

whereknr8 is ther th zero of the functionJn8(x). For example,

k118 51.84, k128 55.33, k138 58.54,

k018 53.83, k028 57.01. ~2.6!

The wave vectorkz in Eq. ~2.4! is determined by the bound
ary conditions along thez axis. If the resonator is infinite in
the z direction, the value ofkz is arbitrary. In our geometry
the termkzz in Eq. ~2.3! merely adds a constant phase to t
argument of cos(vt2kzz), and, without loss of generality, w
can choose it equal to zero. In Eq.~2.3!, the constantH gives
the order of magnitude of the magnetic field inside the re
nator.

The most general case necessary for our later cons
ations involves a resonant potential having two frequenc
which means that we need to consider two eigenmodes in
resonator, having eigenfrequenciesv1 and v2 . The other
parameters of these eigenmodes will be specified shortly
the absence of any vector potential, the electron’s Ham
tonian is just the kinetic-energy term restricted to the ring,
that making the usual substitutionp→(p2eA/c), leads to a
one-electron Hamiltonian of the form

Ĥ5
\2

2mR2 S ]

i ]w
2a2l1sin~Nw!cosv1t

2l2sin~Mw!cosv2t D 2

, ~2.7!

where m is the effective electron mass andw is the angle
around the ring. Herea is the dimensionless AB flux, an
l1,2 are the amplitudes of the resonant cavity modes:

a5
F

F0
, l1,252

2pR

F0

H1,2

k1,2
JN,M8 ~k1,2R!. ~2.8!

The periodic boundary conditions appropriate for our ri
geometry imply that the wave function of an electron is p
riodic in angle w with the period 2p: C(w12p,t)
5C(w,t). It is thus convenient to choose the functions

un&5
1

A2p
einw, n50,61,62, . . . ~2.9!

as a basis set. In essence, the resonance phenomena w
lyze occur because of transitions induced by the cavity fi
among the electron levels of the ring. We are interested
marily in resonant processes near the Fermi levelnF , where
the values ofn are rather large:n;nF@1. In addition, we
assume that the dimensionless amplitudes of the exte
-
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field are small on the scale ofnF : l1,2!nF . We provide
explicit estimates of the relevant physical parameters at
end of this section.

To first order inl1,2/nF , from Eq. ~2.7! we derive the
one-electron dimensionless HamiltonianĤe ,

Ĥe5
2mR2

\2 Ĥ'S ]

i ]w
2a D 2

22Fl1~ t !sin~Nw!
]

i ]w

1l2~ t !sin~Mw!
]

i ]w G , ~2.10!

where

l1,2~ t ![l1,2cosv1,2t. ~2.11!

In deriving Eq.~2.10!, we have used the commutation rel
tion

F ]

i ]w
,sin~nw!G52 in cos~nw!, ~2.12!

as well as the conditionsN,M!n;nF , reflecting our inter-
est in considering resonances near the Fermi surface. He
forth, we shall useĤe of Eq. ~2.10! to describe the electron
dynamics in the external fields.

From Eq.~2.10! we have, for the matrix elements of th
HamiltonianĤe

^nuĤeun&5~n2a!2, ^n1NuĤeun&5 il1~ t !n,

^n2NuĤeu&52 il1~ t !n, ^n1M uĤeun&5 il2~ t !n,

^n2M uĤeun&52 il2~ t !n. ~2.13!

These matrix elements define completely the one-elec
Hamiltonian~2.10!.

Since we are actually dealing with a many-electron pro
lem, we must take into account the Pauli exclusion princip
Hence we introduce creation and annihilation operatorsĉn

†

and ĉn for electrons in thenth energy leveln, which satisfy
the usual anticommutation relations$ĉn ,ĉn8

† %15dn,n8 ,

$ĉn
† ,ĉn8

† %150, $ĉn ,ĉn8%150. In terms of these operators th
Hamiltonian~2.10! takes the form

Ĥe5(
n

~n2a!2ĉn
†ĉn1 il1~ t !(

n
nĉn1N

† ĉn

2 il1~ t !(
n

nĉn2N
† ĉn1 il2~ t !(

n
nĉn1M

† ĉn

2 il2~ t !(
n

nĉn2M
† ĉn . ~2.14!

In view of our focus on resonance effects in AB oscillatio
~an isolated quantum nonlinear resonance! and on the transi-
tion to quantum chaos, we have chosen to consider only
case of spinless electrons, since for these phenomena sp
an inessential complication.

We are interested in dynamical processes taking plac
the vicinity of a level with quantum numbern* @1. In this
case, we can approximate the HamiltonianĤe by the expres-
sion
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Ĥe'(
n

~n2a!2ĉn
†ĉn1 iL1~ t !(

n
ĉn1N

† ĉn

2 iL1~ t !(
n

ĉn2N
† ĉn1 iL2~ t !(

n
ĉn1M

† ĉn

2 iL2~ t !(
n

ĉn2M
† ĉn , ~2.15!

where

L1,2~ t !5l1,2n* cosv1,2t. ~2.16!

A further simplification of the Hamiltonian~2.15! follows
from measuring the levels with respect ton* . Introducing
the notations

n2n* [ l , ~n2a!25~ l 2a!21n
*
2 12n* ~ l 2a!,

~2.17!

ĉn
†5 ĉn

*
1 l

† [ ĉl
† , ĉn5 ĉnIL1 l[ ĉl ,

we can reexpress Eq.~2.15! as

Ĥe'(
l

@~ l 2a!212n* ~ l 2a!# ĉl
†ĉl

1 iL1~ t !(
l

ĉl 1N
† ĉl2 iL1~ t !(

l
ĉl 2N

† ĉl

1 iL2~ t !(
l

ĉl 1M
† ĉl2 iL2~ t !(

l
ĉl 2M

† ĉl .

~2.18!

In Eqs.~2.18! we dropped a term proportional ton
*
2 , which

merely adds a constant to the energy of the whole syste
Although it is not immediately evident, the Hamiltonia

in Eqs.~2.18! includes both slowly oscillating terms descri
ing the interesting ‘‘resonant’’ dynamics and the rapidly o
cillating terms. Thus our next step is to separate explic
the slow and fast dynamics by introducing a ‘‘resonant r
resentation.’’

We begin with the Schro¨dinger equation for an arbitrar
HamiltonianĤ,

i\
]uC~ t !&

]t
5ĤuC~ t !&, ~2.19!

and introduce a unitary operatorÛ(t) defining a wave func-
tion uC̃(t)& via

uC~ t !&5Û~ t !uC̃~ t !&. ~2.20!

The wave functionuC̃(t)& satisfies the Schro¨dinger equation

i\
]uC̃~ t !&

]t
5ĤeffuC̃~ t !&, ~2.21!

with the effective Hamiltonian

Ĥeff5Û†ĤÛ2 i\Û†
]Û

]t
. ~2.22!
.

-
y
-

To isolate the resonant, we write the operatorÛ(t) in the
form

Û5expH 2 int(
n

nĉn
†ĉnJ , ~2.23!

where the frequencyn is at present an arbitrary paramet
which we will later choose to remove the fast oscillation
Let

c̃̂n8~ t !5Û†ĉn8Û. ~2.24!

Differentiating Eq.~2.24! and using the commutation rela
tions, we derive the explicit time dependence of the opera

c̃̂n8(t) as

c̃̂n8~ t !5e2 inn8tĉn8 . ~2.25!

Similarly, we have, for the operatorc̃̂ n8
† (t),

c̃̂ n8
†

~ t !5Û†ĉn8
† Û5einn8tĉn8

t . ~2.26!

Finally, we need the operator equality

Û†
]Û

]t
52 in(

n
nĉn

†ĉn , ~2.27!

which follows directly from definition~2.23!. Taking Ĥ
5(\2/2mR2)Ĥe and using Eqs.~2.23!–~2.26!, we find that
the HamiltonianĤeff , Eq. ~2.22!, can be written in the di-
mensionless form

Ĥeff[
2mR2

\2 Ĥeff5(
l

F ~ l 2a!21S 2n* 2
2mR2

\
n D l G ĉl

†ĉl

1 iL1~ t !einNt(
l

ĉl 1N
† ĉl2 iL1~ t !e2 inNt(

l
ĉl 2N

† ĉl

1 iL2~ t !einMt(
l

ĉl 1M
† ĉl2 iL2~ t !e2 inMt(

l
ĉl 2M

† ĉl .

~2.28!

In deriving Eq. ~2.28!, we omitted the constant22n* (n*
1a), which does not depend onl , and thus only adds an
additional phase to the wave function. This phase vanis
when calculating the expectation values. Below we shall
the HamiltonianĤeff , Eq. ~2.28!, as the starting point for the
calculation of the evolution of the wave functionuC̃(t)& in
Eq. ~2.21!.

To place the above formal manipulations in a more phy
cal context, let us provide some estimates of the typical
perimental values of the parameters inĤeff . From Ref. 9, we
find that the typical electron~sheet! density is n;4
31011 cm22, the electron mobilitym;106 cm2/V s, the
Fermi velocity vF;33107 cm s21, and the Fermi wave-
length lF;431026 cm. The requirement thatl!nF ,
which we used in derivingĤeff , can be expressed in the form

l'
pr 0RH

F0knr8
'83106r 0RH/knr8 !nF , ~2.29a!



a-

a

nc
of

el

n

Eq.
ncy.
ro-

m-
e-
n in

an

f

-
e-

10 342 56BERMAN, BULGAKOV, CAMPBELL, AND KRIVE
where F0'431027 Oe cm2 and all parameters are me
sured in cgs units. Ifknr8 5k118 .1.84, condition~2.29a! takes
the form

l'4.33106r 0RH!nF , ~2.29b!

with H expressed in Oe andR andr 0 expressed in cm. This
translates into an upper limit on the strength of the reson
field in Oe,

H,Hcr5
nFknr8

83106r 0R
Oe, ~2.29c!

which for typical parameter values~R51024 cm, r 0

50.1 cm, andnF5102– 103, andknr8 ;2 is Hcr52.5–25 Oe.
The conditionL52pR, l el , wherel el is the elastic mean

free path, is easily satisfied by micrometer-sized rings, si
at low temperaturel el can be of the order of several tens
micrometers for high-electron-mobility Ga12xAl xAs/GaAs
heterojunction structures.9,17,39,40

III. AN ISOLATED QUANTUM NONLINEAR RESONANCE

A. Effective Hamiltonian for an isolated QNR

An isolated QNR occurs when the resonant external fi
has only a single eigenmode with frequencyv1[v. Thus in
our general expression~2.28! for the resonant Hamiltonian
we should set

L1~ t ![L~ t !, L2~ t !50. ~3.1!

Introducing a dimensionless time variable via

t5kt S k5
\

2mR2D , ~3.2!

we can write the Schro¨dinger equation for the wave functio
uC̃(t)& as

i
]uC̃~t!&

]t
5ĤeffuC̃~t!&, ~3.3!

where forĤeff we have, from Eq.~2.28!, using Eqs.~3.1! and
~3.2!,

Ĥeff5(
l

@~ l 2a!21~2n* 2n/k!# ĉl
†ĉl

1 iL~t!einNr/k(
l

ĉl 1N
† ĉl

2 iL~t!e2 inNt/k(
l

ĉl 2N
† ĉl . ~3.4!

Consider the time-dependent term in Eq.~3.4!. From defini-
tions ~2.11! and ~2.16!, we find

L~t!e6 inNt/k5
L

2
~eivt/k1e2 ivt/k!e6 inNt/k

with

L[l1n* . ~3.5!
nt

e

d

Choosing

n5v/N ~3.6!

removes the time dependence from half the terms in
~3.5!, and causes the remainder to oscillate at high freque
Neglecting these high frequency terms—the so-called ‘‘
tating wave approximation’’~RWA!, which is standard in
discussions of QNR~Ref. 25!—implies that

L~t!e6 inNt/k'
L

2
. ~3.7!

Hence within the RWA the HamiltonianĤeff , Eq. ~3.4!, is
time independent and assumes the form

Ĥeff5(
l

El ĉl
†ĉl1 i

L

2 (
l

ĉl 1N
† ĉl2 i

L

2 (
l

ĉl 2N
† ĉl ,

~3.8!

where

El5~ l 2a!21~2n* 2v/Nk!l , ~ l 5n2n* !. ~3.9!

If we now assume that the frequencyv of the external field is
resonant with the transitions between the levels with nu
bersn and N1n of the system in the absence of the tim
dependent field, then the resonant condition can be writte
the form

EN1n
~0! 2En

~0!

\
U

n5nr

5k@N212N~n2a!#un5nr
5v,

~3.10!

whereEn
(0) is the eigenvalue of the unperturbed Hamiltoni

Ĥ0

Ĥ05
\2

2mR2 S ]

i ]w
2a D 2

, En
~0!5

\2

2mR2 ~n2a!2.

~3.11!

The solution of Eq.~3.10! definesthe resonant leveln5nr
~the center of an isolated QNR! as

nr5@a1v/2Nk2N/2# int , ~3.12!

where@x# int is the integer part ofx. Note that Eq.~3.10! for
n* coincides with the equation

~EN1 l2El !u l 5050, ~3.13!

whereEl is defined in Eq.~3.9!.
The resonance couples only levels differing byN units,

and thus the expression for the Hamiltonian~3.8! can be
significantly simplified by introducingN subsequences o
levels. Formally, we replace the indexn by k1 lN according
to the rule

ĉn→ ĉk1 lN[b̂l~k!, k5n0 ,...,n01N21,

l 50,61,62, . . . , ~3.14!

wheren0 is an arbitrary number.~Below, we shall assume
that n0;n* ;nF@1.! With this substitution, we can reex
press the Hamiltonian in a form that makes explicit its d
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composition intoN independent terms that reflect the co
plings among the separate towers of states. We find

Ĥeff5 (
k5n0

n01N21

Ĥeff~k!, ~3.15!

where

Ĥeff~k!5(
l

« l ,kb̂l
†~k!b̂l~k!1 i

L

2 (
l

b̂l 11
† ~k!b̂l~k!

2 i
L

2 (
l

b̂l 21
† ~k!b̂l~k! ~3.16!

and

« l ,k5~k1 lN2n* 2a!21~2n* 2v/Nk!~k1 lN2n* !.

~3.17!
The Hamiltonian~3.15! can be used for calculation of a
observables in our system.

B. Expression for the expectation value of the energy shift

The expression for the time-dependent expectation va
of the energy of the system is

E~t![^C~t!u(
n

~n2a!2ĉn
†ĉnuC~t!&

5^C̃~t!uÛ†(
n

~n2a!2ĉn
†ĉnÛuC̃~t!&

5^C̃~t!u(
n

~n2a!2ĉn
†ĉnuC̃~t!&. ~3.18!

We shall evaluate this expression in the Heisenberg re
sentation. Then, according to Eq.~2.21!, the operator equa
tion for an arbitrary operatorf̂ has the form

] f̂

]t
5 i @Ĥeff , f̂ #, ~3.19!

where the HamiltonianĤeff is defined in Eq.~3.15!. Using
@cm

† ĉn ,ĉk#52dk,mĉn and the definitions~3.14!, we can de-
rive immediately the Heisenberg equations of motion for
operatorsb̂l(k):

]b̂l~k!

]t
52 i« l ,kb̂l~k!1

L

2
b̂l 21~k!2

L

2
b̂l 11~k!.

~3.20!

We seek a solution to this equation in the form of an exp
sion in the operators at the initial timet50,

b̂l~t,k!5(
l 8

i lal ,l 8~t!b̂l 8~k!, ~3.21!

where theal ,l 8(t) are time-dependentc-number coefficients.
Substituting Eq.~3.21! into Eq. ~3.20!, we find a system of
equations for the coefficientsal ,l 8(t):

i ȧ l ,l 85« l ,kal ,l 81
L

2
al 21,l 81

L

2
al 11,l 8 . ~3.22!
e

e-

e

-

These equations must be solved with the initial condition

al ,l 8~t50!5 i 2 l 8d l ,l 8 . ~3.23!

To relate the system of equations~3.22! to the canonical
form of the ‘‘quantum nonlinear resonance’’ equations,25,28

we introduce the function

F~u,w,t![(
l ,l 8

al ,l 8~t!ei ~ lu1 l 8w!5F~u12p,w12p,t!,

~3.24!

where the coefficientsal ,l 8(t) satisfy Eqs.~3.22!. F is actu-
ally the wave function, in the action-angle representati
describing the slow dynamics in the vicinity of the QNR
Specifically, from Eq.~3.22!, we find thatF(u,w,t) satisfies
the Schro¨dinger equation

i
]F

]t
5Ĥr

~k!S u,2 i
]

]u DF, ~3.25a!

where the HamiltonianĤr
(k) is of the form

Ĥr
~k!S u,2 i

]

]u D[«̂S 2 i
]

]u
,kD1L cosu. ~3.25b!

According to Eq.~3.17!, the unperturbed part of the Hami
tonian ~3.25b! is given by the expression

«̂S 2 i
]

]u
,kD[S k2 iN

]

]u
2n* 2a D 2

1S 2n* 2
v

Nk D
3S k2 iN

]

]u
2n* D . ~3.26!

The Schro¨dinger equation~3.25a! with the Hamiltonian
~3.25b! has the canonical form of the equation for an isola
QNR ~see, e.g., Refs. 25–28!, and describes a slow resona
dynamics of the system in a vector potential of the form~2.1!
with one resonant frequency of the external ac field. In
Appendix, we also show how this equation provides insig
into the corresponding ‘‘classical limit’’ and the classic
theory of nonlinear resonances.

For our present purposes, it is most useful to solve
~3.22! directly. Substituting

al ,l 8~t!5e2 i etAl ,l 8 ~3.27!

into Eq. ~3.22! leads to a set of eigenvalue equations for t
quasienergy eigenfunctions

eAl ,l 85« l ,kAl ,l 81
L

2
~Al 21,l 81Al 11,l 8!. ~3.28!

We denote the eigenvalues of Eq.~3.28! by es , and the
corresponding eigenfunctions byAl

(s) , with the indexs la-
beling the distinct eigenfunctions, andl 5n2n* defining the
l th component of the eigenfunction in the unperturbed ba
~2.9!. The matrixAl ,l 8 in Eq. ~3.28! is symmetric and has rea
coefficients, so that the eigenfunctionsAl

(s) can be chosen
real. The general solution of Eq.~3.22! can then be written as

al ,l 8~t!5(
s

e2 i estSs
~ l 8!Al

~s! , ~3.29!
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where the expansion coefficientsSs
( l 8) satisfy the equation

i l 8(
s

Ss
~ l 8!Al

~s!5d l ,l 8 . ~3.30!

Using the orthogonality properties of the eigenfunctio
A(s),

(
l

Al
~s!Al

~s8!5ds,s8 , (
s

Al
~s!Al 8

~s!
5d l ,l 8 , ~3.31!

we find that the expansion coefficientsSs
( l ) can be written as

Ss
~ l !5~2 i ! lAl

~s! . ~3.32!

Substituting Eq.~3.32! into Eqs.~3.21! and~3.28!, we obtain

al ,l 8~t!5~2 i ! l 8(
s

e2 i estAl 8
~s!Al

~s! , ~3.33!

b̂l~t,k!5 i l(
l 8

(
s

~2 i ! l 8e2estAl 8
~s!Al

~s!b̂l 8~k!.

~3.34!

Combining the various transformations, we find that
terms of the operatorsb̂l

†(t,k), b̂l(t,k) Eq. ~3.18! for the
time-dependent average energy takes the form

E~t!5^C0u(
k

(
l

~k1 lN2a!2b̂l
†~t,k!b̂l~t,k!uC0&.

~3.35!

Here, uC0. is the ground state of the unperturbed syste
with all levels up tonF occupied by electrons.

It is easily seen that only the diagonal part
b̂l

†(t,k)b̂l(t,k) contributes toE(t), namely,

b̂l
†~t,k!b̂l~t,k!→(

s,s8
ei ~es2es8 !tAl

~s!Al
~s8!

3(
l 8

Al 8
~s!Al 8

~s8!b̂l 8
†

~k!b̂l 8~k!. ~3.36!

Using Eq.~3.36!, from Eq. ~3.35! we derive

E~t!5(
k,l

~k1 lN2a!2 (
s,s8

ei ~es2es8 !tAl
~s!Al

~s8!

3(
l 8

Al 8
~s!Al 8

~s8!^C0ub̂l 8
†

~k!b̂l 8~k!uC0&. ~3.37!

In the absence of the ac external field (L50), the expecta-
tion value of the energy is

E05(
k,l

~k1 lN2a!2^C0ub̂l
†~k!b̂l~k!uC0&, ~3.38!

and of course coincides with the ground-state energy.
From the translation invariance of the sums whena is

shifted by an integer, one can see thatE(t) andE0 are pe-
riodic functions of the magnetic fluxa, with the period 1~the
fundamental periodF0!. Hence we can consider these fun
tions only in the region 0<a<1. The expression forE(t)
s

,

can be simplified by expanding the unperturbed spectrum
the vicinity of the large numbern* ,

~n2a!25~n* 1n2n* 2a!2

5n
*
2 1~n2n* 2a!212n* ~n2n* 2a!.

~3.39!

The n
*
2 term in Eq.~3.39! does not influence thea depen-

dence of the energy shift, and can be ignored for our con
erations. Further, we can neglect the term proportiona
(n2n* 2a)2, as it gives a small contribution to the avera
energy shift in the relevant limitn* @un2n* 2au. With
these approximations, elementary algebra leads from
~3.37! to the final expression for the expectation value of t
energy shift induced by the ac external field:

DE0~t![
1

2Nn*
@E~t!2E0#

5(
k,l

l H (
s,s8

ei ~es2es8 !tAl
~s!Al

~s8!(
l 8

Al 8
~s!Al 8

~s8!

3^C0ub̂l 8
†

~k!b̂l 8~k!uC0&

2^C0ub̂l
†~k!b̂l~k!uC0&J . ~3.40!

In deriving this equation we have neglected terms indep
dent ofl ~which are proportional to the constantsk, n* , and
a!, as these terms do not contribute toDE0(t). Note that the
dependence on the fluxa in Eq. ~3.40! is contained in the
eigenfunctionsAl

(s) and in the eigenvalueses . The function
^C0ub̂l

†(k)b̂l(k)uC0& in Eq. ~3.40! has the simple form

^C0ubl
†~k!bl~k!uC0&5 H1

0
if k1 lN<nF

if k1 lN.nF . ~3.41!

To exhibit the resonance structure most simply, we c
study the time average of the expectation value of
ground-state energy shift,

DE0[ lim
T→`

1

T E
0

T

DE0~t!dt

5(
k,l

l H(s ~Al
~s!!2(

l 8
~Al 8

~s!
!2^C0ub̂l 8

†
~k!b̂l 8~k!uC0&

2^C0ub̂l
†~k!b̂l~k!uC0&J . ~3.42!

In Secs. III C and III D, we study the dependence ofDE0
on the AB flux ~a! and on the amplitude~L! and frequency
v of the ac external field, first analytically in the weak-fie
limit, and then numerically in general. For definiteness in o
calculations, we shall assume that the number of spin
electrons in the ring is odd,ne52Ne11. ~We shall discuss
the case of evenne briefly later.! For oddne , at a50, the
population of electrons in the ground state is symmetric,
positive and negative momenta,l . The relation between the
Fermi levelnF and the Fermi frequencyvF is
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unF~a50!u5Ne5
vF

2Nk
, ~3.43!

where, as in Eq.~3.2!, k5\/(2mR2). Let us also introduce
the dimensionless detuning in frequency fromvF via

v05
1

2Nk
~v2vF!. ~3.44!

There is a simple symmetry which enables one to reduce
summation over momenta,l , in Eq. ~3.42! to positive values
only: namely,

DE0
~2 !~a!5DE0

~1 !~12a!, aÞ0.5,

where we have introduced the notationDE(1)(DE(2)) to
indicate the sum over positive~negative! values of l only.
Using this relation the expression forDE0(a) in Eq. ~3.42!
can be written in the form

DE0~a!5DE0
~1 !~a!1DE0

~1 !~12a!, aÞ0.5.
~3.45!

This result was used to simplify the numerical calculatio
For the casea50.5, for reasons discussed below, the con
butions toDE0(a) from positive and negativel were calcu-
lated separately. Before presenting our detailed numer
results onDE0 in the general case, we provide some analy
insight into the behavior in the weak-field limit.

C. Analytic results in the weak-field limit

The resonant dependence of the functionDE0 on a for
small L can be studied analytically using a ‘‘two-level a
proximation,’’ because, for anyN, whenL!1, only the two
levels nearestnF ~corresponding tol 50 andl 51! give lead-
ing contributions toDE0 . In this case, Eq.~3.28! become

eA15«1A11
L

2
A0 ,

~3.46!

eA05«0A01
L

2
A1 ,

whereA5(A0 ,A1) is the quasienergy eigenfunction@in this
cases51,2 in Eq.~3.29!#. The corresponding quasienergi
are given by the explicit expressions

e1,25
«11«0

2
6 1

2 A~«12«0!21L2/4. ~3.47!

In Eq. ~3.47! the unperturbed energy levels«1 and «0 are
defined by Eq.~3.17!. To calculate the expressionDE0 from
Eq. ~3.42!, we need the following components of th
quasienergy eigenfunctions:

A1
~1!5

L/2

A~«12e1!21~L/2!2
,

~3.48!

A1
~2!5

L/2

A~«12e2!21~L/2!2
.

he

.
-

al
c

Using Eqs.~3.48!, we obtain from Eq.~3.42! the expression
for DE0 ,

DE0512
~L/2!4

H F ~«12«0!

2
2AS «12«0

2
D 2

1S L

2
D 2G 2

1S L

2
D 2J

2
~L/2!2

H F ~«12«0!

2
1AS «12«0

2
D 2

1S L

2
D 2G 2

1S L

2
D 2J 2 .

~3.49!

In deriving this equation, we used

^C0ub̂l
†b̂l uC0&5 H1

0
if l 50
if l 51. ~3.50!

The width of the resonanceda in this approximation satisfies
da;L. In Sec. III D we shall compare these analytic pr
dictions with our full numerical simulations in the limitL
!1.

Our two-level calculation illustrates an important featu
of this resonance phenomenon, which will later emerge fr
our numerics and may be significant for experimental obs
vations: namely, one can observe the resonanceeither by
fixing the AB flux a and tuning the frequencyv, or by fixing
the frequencyv and sweeping through values ofa. To see
this in the present case, note that the energy shiftDE0 in Eq.
~3.49! depends on the value«12«0 . From Eq.~3.17! and
definitions~3.2!, ~3.43!, and~3.44!, we have

«12«05122a22v0 , ~3.51!

where we have chosenN51, k5n05n* 5nF . From Eq.
~3.49!, we see that the center of the resonance is locate
«12«050, which, according to Eq.~3.51!, is equivalent to
the conditiona1v050.5. If v050, the center of the reso
nance occurs ata50.5. At a50, the center of the resonanc
depends on the frequency of detuning, and occurs atv0
50.5. Hence sweeping through either variable with the ot
fixed will yield the resonance structure.

D. Numerical studies of an isolated QNR

We preface the discussion of our numerical simulatio
with several clarifying comments. Forne@1, the resonant
transitions take place in the vicinity of the Fermi surface, a
can be considered separately for positive and negative
mental . In this case, it is convenient to introduce the Fer
levelsnF

(6) , corresponding to positive and negativel . Let us
write the fluxa as a sum of two parts, an integer partna and
a fractional part,ja

a5na1ja , ~3.52!

wherena5@a# int , ja5$a% frac, (0<ja,1). Then, the posi-
tion of Fermi level forl .0 can be written in the form

nF
~1 !5 Hna1Ne

na1Ne11
if ja<0.5
if ja.0.5. ~3.53!
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To exclude large numbersn;nF;102– 104 in the numerical
experiment, it is convenient to use the system of referen
namely, the resonant leveln5nr –introduced in Eq.~3.12!.
This level defines the center of an isolated QNR, where
dominant dynamical effects occur. We express the levelnr in
Eq. ~3.12! in the form

nr5Fa1
v

Nk
2

N

2 G
int

5Ne1na1Fja1v02
N

2 G
int

.

~3.54!

We can now specify the levelsn* andn0 which were intro-
duced above in Eqs.~2.17! and ~3.14!. Specifically, we set

n* 5n05nr , ~3.55!

and for convenience introduce the variables

k̄5k2nr , n̄F
~1 !5nF

~1 !2nr ~ k̄P@0,N21# !.
~3.56!

Then, from Eq.~3.53! we find

n̄F
~1 !5 H 2@ja1v02N/2# int

12@ja1v02N/2# int

if ja<0.5
if ja.0.5. ~3.57!

In this notation the spectrume l ,k , Eq. ~3.17!, is

e l , k̄5~ k̄1 lN !212~ k̄1 lN !~@ja1v02N/2# int2v01ja!.

~3.58!

If, for example, we putv050, N51, spectrum~3.58! takes
the simple form

e l , k̄5~ l 2ja!2. ~3.59!

This equation illustrates a very important subtlety that m
be properly finessed in the numerics: namely, at cer
points there can bedegeneraciesin the spectrum which can
cause problems in evaluating quantities such as time a
ages. Examining Eq.~3.59! shows that at the pointsja50
andja50.5 the unperturbed spectrum of the Hamiltonian
Eq. ~3.25! becomes degenerate@this degeneracy also occu
in the general case~3.58! for some values ofja#. This de-
generacy results in very small differences of quasiener
De i for some quasienergy eigenfunctions, and time-aver
energy~3.42! becomes ill defined at these values ofja . Spe-
cifically, the quasidegenerate symmetric and antisymme
eigenfunctions give a contribution toDE0(a), Eq. ~3.42!, in
this case. Some of these functions describe nearly f
electron dynamics and hence describe large energy mo
(;nF). Actually, this phenomenon leads to exponentia
large times of electron tunneling in the region of large en
gies and is not observable in the types of systems we c
sider here. To exclude these ‘‘dangerous’’ pointsja50 and
0.5, we should include some additional terms~which would
arise from some small additional interactions that split
degeneracy! in the unperturbed spectrum~3.59! and in Eq.
~3.58!, so that the symmetry of the eigenvalue problem
system~3.25! is broken and the quasidegeneracy destroy
In real physical systems, these small terms always exist
can be connected, for example, with crystal-field effects.
deed, it is easy to show that these additional terms are o
–
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order dn;(n2n* 2a)3/n* , and in our case (n* ;nF
;102– 104) can be estimated to be of orderdn
;1024– 1022.

To remove these quasidegeneracies in our numerics
can either add the small symmetry-breaking termdn;(n
2n* 2a)3/n* , or we can add a random number of ord
dn;1022– 1024 to the unperturbed spectrum. The results
our numerical calculations do not depend on the proced
we use to avoid this quasidegeneracy.

We begin the discussion of our numerical results with
case of a resonant field withv5vF (v050) and small am-
plitude. In this case, the dynamics should be described by
two-level approximation examined analytically in Sec. III C
Figure 1 provides numerical evidence justifying this appro
mation: for L51023, Fig. 1 demonstrates that only tw
quasienergy levels~with s51,2! are involved in the electron
dynamics, and respond significantly to small variation of t
AB flux a in the vicinity of a50.5. Moreover, for small
deviations of the AB flux~e.g., a50.495! the quasienergy
eigenfunctions withs51,2 already include only one level o
the unperturbed Hamiltonian. This means that no real
namics happens in the system in this latter case. At the s
time, whena50.5, and the resonant condition is satisfie
two levels of the unperturbed Hamiltonian contribute to t
eigenfunctions withs51,2, and this results in a very narro
resonance inDE0(m50.5); this is shown in Fig. 2. The
quasienergy levels withs53,4 include only one level of the
unperturbed Hamiltonian, and actually do not change th
behavior~but only interchange roles! when the magnetic flux
is varied in the vicinity of the resonance ata50.5. From the
blowup in Fig. 2~b!, we see that the resonance is quite sh
in a, with da;1023. Comparing to our analytic results i
Sec. III C, we find that the two-level approximation is qui
accurate. For instance, expression~3.49! gives da;L
;1023, which is in good agreement with the results of n
merical calculations. Further, the peak amplitude of the re
nance inDE0 is 0.5, which agrees precisely with the nume
cal result in Fig. 2b.

As L increases, additional structure appears inDE0 . Al-
though Fig. 3 (L50.003) appears quite similar to Fig. 2, th
resonance ata50.5 is much broader, and there is a ne
resonancea50 ~mod 1!. The detailed structure of thes
resonances is shown in Fig. 4, for slightly largerL (L
51022). A ‘‘double resonance’’~DR! phenomenon appear

FIG. 1. Dependence of the quasienergy functionsAl
(s) on l : s

51,2,3,4; L50.001; v050; and a50.5 ~solid curve!; and a
50.495~dashed curve!.
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for L50.05 and ata50.5, as shown in Fig. 5. Figure 5~a!
illustrates the strong, sharp second resonance of the
From Fig. 5~b!, we see that the second resonance also
substructure corresponding to a double peak. A similar
phenomenon is demonstrated in Fig. 6 forL50.2. In this
case one also observes the substructure of resonancesa
50 @Fig. 6~c!#. A partial explanation of the results in Figs.
and 6 follows from Fig. 7, which shows that a greater nu
ber of levels of the unperturbed Hamiltonian contribute
the resonances shown in Fig. 6, and hence one expe
greater number of individual resonant frequencies. In p
ticular, Fig. 7 shows that the quasienergy eigenfunction w
s52 actually includes four levels of the unperturbed Ham
tonian.

In Fig. 8 we indicate the dependence ofDE0 on L for
fixed v anda50.5 @Fig. 8~a!#, and fora50.45 @Fig. 8~b!#.
The sharp ‘‘staircase’’ behavior observed at the reson
valuea50.5 washes out rather quickly off resonance.

FIG. 2. Dependence of the average energy shift of the sys
DE0 on a; ~a! L50.001, v050, and N51; ~b! the same, but
scaled in the vicinity of the resonant peak ata50.5.

FIG. 3. Dependence of the average energy shift of the sys
DE0 on a for L50.003,v050, andN51.
R.
as
R

t

-

a
r-
h
-

nt

From our analytic results on the two-level approximatio
we expect that changing the frequency of the external fi
changes the positions of the resonances as functionsa
and, in addition, modifies their shapes. This expectation
confirmed by the data shown in Fig. 9. The change in lo
tion of the resonances that occurs when parameters likev0
~or N! are varied results from the changes in the value oa
~or ja! at which the unperturbed spectrum~3.17! @or ~3.58!#
has degeneracies.

m

m

FIG. 4. Dependence ofDE0 on a in the vicinity of a50.5, L
50.01,v050, andN51 ~a!, anda50 ~b!.

FIG. 5. Dependence ofDE0 on a: ~a! L50.05,v050, andN
51; ~b! the same as in~a!, but scaled in the vicinity ofa50.5.
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Figure 10 demonstrates the resonant behavior ofDE0 as a
function of flux for L51. The characteristic quasienerg
eigenfunctions involved in the resonances are shown in
11; for instance, we see that six unperturbed levels contrib
to the quasienergy eigenfunction withs55. Finally, Fig. 12
demonstrates the resonant structure in the depend
DE0(a) when spatial dependence of the external ac fi
involves the second harmonic of the anglew (N52). In this
example, the frequency of the external fieldv is detuned
from resonance with the Fermi frequencyvF (v050.2). As
in Fig. 9 ~for the caseN51!, the resonances are shifted fro
the pointa50.5, but they also have considerably differe
structure.

Thus far we have assumed that the number of electron
odd,ne52Ne11. It is possible to show that for even numb
of electrons,ne52Ne , we can still apply expression~3.42!
but with the following substitution fora andv0 :

DE0
~even!~a,v0!5DE0

~odd!~a21/2,v011/2!. ~3.60!

Hence there is no need to present separate calculation
the case of evenne .

FIG. 6. Dependence ofDE0 on a: ~a! L50.2, v050, andN
51; ~b! scaled in the vicinity ofa50.5; ~c! scaled in the vicinity
of a50.
g.
te

ce
d

t

is

for

IV. INTERACTION OF TWO QUANTUM NONLINEAR
RESONANCES: OVERLAP AND QUANTUM

CHAOS

A. Effective Hamiltonian for two QNR’s

When a resonant field with two frequencies~v1 andv2!
acts on the electrons in the mesocopic ring, two QNR’s
formed. In this subsection, we derive the effective reson
Hamiltonian describing the slow dynamics of their intera
tion. We show that this dynamics is time dependent and
the classical limit, corresponds to a ‘‘one-and-a-half’’ degr
of freedom, nonintegrable system, which is expected to
hibit chaotic behavior in some regions of classical pha

FIG. 7. Dependence of the quasienergy functionsAl
(s) on l , for

s51,2, . . . ,9,L50.2, v050, N51, anda50.495 ~solid curve!,
anda50.5 ~dashed curve!.

FIG. 8. Dependence ofDE0 on L; ~a! a50.5, v050, andN
51; ~b! the same as in~a!, but a50.45.
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space. In the quantum problem, when QNR’s inter
strongly ~i.e., overlap!, a transition to quantum chaos ca
occur.

Our formulation of the effective Hamiltonian in Sec.
was deliberately chosen to be sufficiently general to inclu
the case of two QNR’s corresponding to two distinct fr
quencies in the resonator field. Hence we may start our
plicit calculations directly from Eq.~2.28!, in which the two
frequencies inARES are denoted byv1Þv2Þ0. For simplic-
ity, we shall takeN5M in Eq. ~2.28!; this is possible, even
though the frequencies are distinct, because of thez degree
of freedom in the resonator@cf. Eq. ~2.4!#.

Recalling the methodology of Sec. III, we see that o
task is to choose the parametern in Eq. ~2.23! so as to sepa
rate the fast and slow dynamics. In the present case,
choose the parametern to be

n5
1

N
~v12D!, ~4.1!

whereD is some slow frequency (D/v1,2!1) which we take
to be

D5
v12v2

2
. ~4.2!

Then the free parametern is completely defined as

n5
v11v2

2N
. ~4.3!

Neglecting the high-frequency oscillating terms, from E
~2.28! we derive the approximate Hamiltonian

Ĥeff5(
n

@~n2n* 2a!212n* ~n2n* 2a!2nn/k!] ĉl
†ĉl

1
i

2
L1e2 iDt(

l
ĉl 1N

† ĉl2
i

2
L1eiDt(

l
ĉl 2N

† ĉl

1
i

2
L2eiDt(

l
ĉl 1M

† ĉl2
i

2
L2e2 iDt(

l
ĉl 2M

† ĉl ,

~4.4!

whereL1,2[n* l1,2. For simplicity, we assume below tha
L15L25L. We next introduce the dimensionless variabl
t as in Eq.~3.2! and frequency

FIG. 9. Dependence ofDE0 on a: L50.2, v050.2, andN
51.
t

e
-
x-

r

e

.

:

D̃5
D

k
. ~4.5!

As in Sec. III, focusing on the diagonal part of Eq.~4.4!,
neglecting irrelevant constants, and choosingn* to be

n* 5F ~v12D!

2Nk G
int

, ~4.6!

we find that the reduced Hamiltonian describing the sl
dynamics of two interacting QNR’s becomes

Ĥeff5(
n

~n2@~v12D!/2Nk# int2a!2ĉn
†ĉn

1 iL cosD̃t(
l

ĉl 1N
† ĉl2 iL cosD̃t(

l
ĉl 2N

† ĉl .

~4.7!

The HamiltonianĤeff in Eq. ~4.7! can be significantly sim-
plified by the same relabeling of states shown in Eq.~3.14!.
As in Sec. III, this relabeling leads to a decomposition
Ĥeff into a sum of individual termsĤeff(k), with

FIG. 10. Dependence ofDE0 on a: ~a! L51, v050, andN
51; ~b! scaled in the vicinity ofa50.5; ~c! scaled in the vicinity
of a50.
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Ĥeff~k!5(
l

H « l ,kb̂l
†~k!b̂l~k!1 iL cosD̃t(

l
b̂l 11

† ~k!b̂l~k!

2 iL cosD̃t(
l

b̂l 21
† ~k!b̂l~k!J , ~4.8!

where

« l ,k5$k1 lN2a2@~v12D!/k# int%
2. ~4.9!

In distinction to the case of an isolated QNR, here
effective Hamiltonian contains explicit time dependen
Nonetheless, we can proceed exactly as in the previous
to write the operator equations forb̂l(k), to expand the so-
lution of this equation in terms of the operators at the init
time, and to derive equations for the dynamics of the exp
sion coefficientsal ,l 8(t) in Eq. ~3.21!. We find

i ȧ l ,l 85« l ,kal ,l 81L cos~D̃t!al 21,l 81L cos~D̃t!al 11,l 8 ,

~4.10!
with the initial conditions for equations~4.10! being the
same as in Eq.~3.23!.

Equations~4.10! can be written in the form~3.25a!, with
the resonant Hamiltonians

Ĥr
~k!S u,2 i

]

]u D5«S 2 i
]

]u
,kD12L cos~D̃t!cosu,

~4.11!

«S 2 i
]

]u
,kD5S k2 i

]

]u
N2a2@~v12D!/k# intD 2

.

The Schro¨dinger equation~3.25a! with the Hamiltonians
~4.11! describe the interaction of two QNR’s.26–29 As dis-
cussed in more detail in the Appendix, the correspond
classical Hamiltonian is time-dependent and describe
~nonintegrable! system having ‘‘one-and-a-half’’ degrees
freedom and hence capable of exhibiting chaos in some
gions of phase space.

We can write a particular solution of Eq.~4.10! in the
form

FIG. 11. Dependence of the quasienergy functionsAl
(s) on l , for

s51,2, . . . ,14,L51, v050, N51, anda50.495 ~solid curve!,
anda50.5 ~dashed curve!.
e
.
se

l
n-

g
a

e-

al ,l 8~t!5e2 i estAl
~s!~t!, ~4.12!

where Al
(s)(t) is the quasienergy eigenfunction, period

with period 2p/D̃. The functionsAl
(s)(t) provide a complete

and orthogonal set of eigenfunctions. The general solutio
Eq. ~4.10! can be expressed as superposition of particu
solutions of the form of Eq.~4.12! with time-independent
coefficientsSs

( l ) ,

al ,l 8~t!5(
s

e2 i estSs
~ l 8!Al

~s!~t!. ~4.13!

The difference between Eq.~4.13! and the analogous expres
sion ~3.29! for the case of an isolated QNR is that in E
~4.13! the eigenfunctionAl

(s)(t) depends on time periodi
cally @because the corresponding Hamiltonian~4.8! is time
periodic#. Nonetheless, we have the analogs of all the exp
sions~3.30!–~3.33!. Specifically, att50 we have

i l 8(
s

Ss
~ l 8!Al

~s!~0!5d l ,l 8 , Ss
~ l !5~2 i ! lAl

~s!~0!.

~4.14!

Finally, from Eqs.~3.21! and ~4.14! we obtain

al ,l 8~t!5(
s

~2 i ! l 8e2 i estAl 8
~s!Al

~s!~0!, ~4.15!

b̂l~t,k!5(
l 8

i l(
s

~2 i ! l 8e2estAl 8
~s!* ~0!Al

~s!~t!b̂l 8~k!.

~4.16!

By analogy to the case of an isolated QNR in Eq.~3.40!, we
obtain the expression for the expectation value of the ene
shift in the case of two interacting QNR’s to be

DE0~t![
1

2Nn*
@E~t!2E0#

5(
k,l

l H (
s,s8

ei ~es2es8 !tAl
~s!* ~t!Al

~s8!~t !

3(
l 8

Al 8
~s!

~0!Al 8
~s8!

~0!3^C0ub̂l 8
†

~k!b̂l 8~k!uC0&

2^C0ub̂l
†~k!b̂l~k!uC0&J . ~4.17!

As before, we denote the time average ofDE0(t) by DE0 .

FIG. 12. Dependence ofDE0 on a: L50.2, v050.2, andN
52.
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B. Numerical study of average energy shift for two QNR’s

Our numerical results for two interacting QNR’s are su
marized in Figs. 13–15. As in the case of an isolated QN
we assume that the number of electrons is odd,ne52Ne
11. Also, in the numerical calculations we have chos
vF5(v11v2)/2. Figures 13~a! and 13~b! demonstrate the
dependence ofDE0 on the AB flux a for a rather large
amplitudes of the ac field:L50.4 in Fig. 13~a! andL51 in
Fig. 13~b!. The resonance structure is highly complicated
these cases, and reflects the significant modifications in
structure of the quasienergy eigenfunctions whena is varied.
Figures 14 and 15 illustrate the modifications to the quas
ergy eigenfunctions asa is varied from a nonresonant valu

FIG. 13. Dependence ofDE0 on a for two interacting QNR’s:
~a! L50.4, D51, V50, andN51; ~b! the same as in~a!, but L
51.

FIG. 14. Dependence of the quasienergy functionsAl
(s) on l , for

s51,2, . . . ,11,L51, D51, V50, N51, anda50.2614.
-
,

n

he

n-

a50.2614 ~shown in Fig. 14! to a resonant one,a
50.25467~shown in Fig. 15!. In the resonant case, seve
unperturbed levels contribute to the structure of the eig
function with s58. This effect can be interpreted as a ‘‘d
localization’’ of the quasienergy eigenfunctions in the sy
tem when two QNR’s strongly interact. Usually, problem
connected with a delocalization of the quasienergy eig
functions at the transition to quantum chaos are investiga
in the quasiclassical region of parameters (dn@1).28,29,41,42

In our numerical calculations, we have chosenL in the in-
termediate range (L&3). For these values ofL, the charac-
teristic number of levels,dn&10. In this region, the problem
of delocalization of the quasienergy eigenfunctions at
transition to quantum chaos has not been developed. N
that the formal limitation on the parameterL, which follows
from the conditionl1,2!nF , is L!nF

2, which is easily sat-
isfied.

V. DISCUSSION AND CONCLUSION

We have established that the problem of AB oscillatio
in a mesoscopic ballistic ring threaded by both a const
magnetic flux and a time-dependent resonant magnetic
can be studied using the concept of ‘‘quantum nonlin
resonance’’~QNR!, provided that the frequency of the a
field, v, satisfiesv'vF , wherevF is the frequency corre-
sponding to transitions in the vicinity of the Fermi level,nF .

QNR is characterized by the number of levels,dn, of the
unperturbed Hamiltonian involved in the dynamics. Our n
merical calculations show that even forL5lnF&1, the
‘‘widest’’ quasienergy eigenfunctions involve in their stru
ture~and hence in the electron dynamics! a fairly small num-
ber of levels of the unperturbed Hamiltonian,dn&5. For an
external field with a single frequency, we derived a Sch¨-
dinger equation describing the slow dynamics of an isola
QNR, and showed that it corresponded to a system with
degree of freedom, whose classical and quantum dynam
are integrable and thus everywhere regular. When the ac
includes two frequencies which satisfy the conditionv1,2
;vF , two QNR’s occur, and a transition to quantum cha

FIG. 15. Dependence of the quasienergy functionsAl
(s) on l , for

s51,2, . . . ,11,L51, D51, V50, N51, anda50.254 67~reso-
nant value!.
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can take place. In the limitL&1, the number of levels in-
volved in the electrons dynamics is of orderdn&10. The
effective Hamiltonian describing two interacting QNR’s
time periodic, and corresponds to the system with 1.5
grees of freedom. This system is nonintegrable, and, in
classical limit, its dynamics is generally chaotic. Thus me
scopic semiconducting rings in time-dependent exter
fields provide an interesting solid-state system, quite dist
from the widely studied Rydberg atoms,31–37 in which to
study quantum chaos.

For both cases, that of an isolated QNR, and that for
interacting QNR’s, we calculated numerically the depe
dence of the ground-state energy shiftDE0(a,L) on the di-
mensionless magnetic fluxa, and on the amplitude~L! of the
ac magnetic field. The dependenceDE0 on a is periodic with
the period 1 ~as it should be from the genera
considerations43! and shows a characteristic resonant beh
ior.

For L!1, the two-level approximation allowed us to e
timate analytically the shape of the resonance and its lo
tion. In this case, the width of the resonance isda;L. The
resonances in the dependenceDE0(a,L) are located at the
values a r , where the quasidegeneracy of the unperturb
spectrum of the Hamiltonian describing the slow dynam
takes place. Numerical calculations show that in the vicin
of these pointsa r , a significant modification of the quasien
ergy eigenfunctions occurs. The resonance positionsa r de-
pend linearly on the value of the frequency detuning,v0
5v2vF , from the exact resonance (v050). Thus, this de-
pendence can be a subject for the experimental observat
The staircase dependence ofDE0 on L shown in Fig. 8, also
could be observed in experiments.

Our results extend previous studies of AB phenomena
time-dependent fields. For purposes of comparison, we
that in Ref. 19, this general problem was investigated usin
high-frequency~nonresonant! electromagnetic field with a
frequencyv@T0 /\. In this case, the influence of the exte
nal field is reduced to the appearance of an additional p
odic effective potential in the electron Hamiltonian, whic
slightly modifies the energy spectrum. The amplitude of
AB oscillations either remains effectively constant or prac
cally vanishes~indicating dielectric behavior! if the Fermi
level falls inside the forbidden miniband. Reference 18, st
ied the low-frequency limit of the conductance in a meta
ring influenced by an ac field, and showed that here the c
ductance is sensitive mainly to the static part of the magn
flux. Two previous works11,21 discussed possible resona
AB effects in metallic mesoscopic rings in ac fields, the fi
examining the influence of the resonant absorption of a
cular ac electric field on conductance oscillations,11 and the
second treating resonant oscillations of the absor
energy.21 These studies also found the resonance peaks in
amplitude of AB oscillations. However, the perturbati
methods exploited in their analytical calculations did not p
mit them to look into the most interesting case when
nonlinear effects play a significant role, and in particu
they did not discuss the possibility of quantum chaos.

To clarify the differences and similarities between QNR
and the quantum chaos expected in our present ‘‘solid-s
atoms’’ ~Ref. 17! and the more familiar Rydberg atom
case,31–37we should recall that for the microwave ionizatio
-
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of highly excited atoms QNR’s have the following chara
teristics.

~i! The motion of an excited electron in a hydrogen ato
takes place in the quasiclassical region (n0@1). Because the
unperturbed quantum energy spectrum is of the fo
21/2n2, the corresponding nonlinear classical dynamics
characterized by particular dependence of the frequencV
on the actionI 5\n ~energy! of the formV5V(I )51/I 3.

~ii ! The external microwave fieldF cosv0t, with v0
;10 GHz, creates a series of primary resonancesnV(I n)
5v0 at I n5(n/v0)1/3. Thus a single frequency creates se
eral resonances. These resonances are nonlinear, which
to their saturation under the action of the external microwa
resonant field.

~iii ! Below the critical amplitude of the external field,F
,Fcr , the resonances can be considered as isolated. U
the conditionF.Fcr , the resonances strongly interact, a
the transition to the dynamical chaos takes place.

For the mesoscopic ring problem, the unperturbed ene
spectrum has the formEn;(n2a)2. Consequently, the non
linear dependence of the frequency of electron’s oscillat
is V(I );I . In this case, an external field with a single fr
quency creates a single QNR, so the dynamics remains r
lar. To create two~or more! primary nonlinear resonances w
need to apply an external field with two~or more! distinct
frequenciesv1 andv2 , both in the rangevF , which for our
systems is roughlyvF;vF /R;12100 GHz. In this case
can we have resonance overlap and the transition to quan
chaos.

Concerning experimental confirmation of the effects
have predicted, it is important to note that initial experime
involving electrons in semiconducting mesoscopic rin
coupled to an electromagnetic resonator have very rece
been reported.44 Although the experimental configuratio
and details in that study are not appropriate for direct co
parison, nevertheless the work does indicate promising p
pects for a such a comparison in the near future. For
experimental parameters discussed in Sec. II—R
51024 cm, r 050.1 cm, nF51022103, knr8 ;2, and Hcr

52.5– 25 Oe—and forL&1, we find that the magnitude o
the resonance peaks in the average energy shift is

DE0;1024– 1023 eV, ~5.1!

which we believe will be detectable given the proper expe
mental configuration.

To conclude, let us mention a number of interesting op
questions that merit further investigation. One obvious i
portant theoretical issue is the effect of electron-electron
teractions on the nonlinear phenomena investigated h
Also, if the semiconductor ring is off centered in the cavi
then the perturbation terms in Eq.~2.10! should be modified
for some periodic functions inw. In this case, one still should
expect the resonant transitions initiated by the resonant
ity field. But the matrix elements of these transitions will b
different from those used in this paper. As a result, o
should not expect some qualitative modifications of the
sults discussed in this paper. At the same time, to investig
quantitatively the location of the modified resonances, o
needs to perform additional analytical and numerical inv
tigations. We are currently studying this question, within t
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framework of the Luttinger-liquid model. Modifications o
our considerations to multichannel semiconductor and me
lic mesoscopic systems~by including effects of dissipation
and of many channels! are also of interest. The inclusion o
impurities and a self-consistent magnetic field is also of
terest, in view of recent studies39 showing that AB oscilla-
tions can lead to the appearance of additional fluctuation
current in ultrasmall devices. Finally, the possibility that t
resonance phenomena we predict might be useful for de
tion of very weak magnetic radiation signal is also worthy
further study.
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APPENDIX: CLASSICAL AND QUANTUM NONLINEAR
RESONANCES

Summary of nonlinear resonance

The concept of ‘‘nonlinear resonance’’ plays a cruc
role in our understanding of Hamiltonian chaos in classi
mechanics~see, e.g., Ref. 45 for a clear introduction!. In an
integrable classical system, the entire phase space is fol
by invariant tori, and the motion is regular everywhere. A
though all one degree of freedom Hamiltonian systems
completely integrable, higher degree of freedom integra
systems are rare, and are isolated in the sense that a ge
perturbation around such a system destroys the integrab
The Kolmogorov-Arnold-Moser~KAM ! theorem proves
that, for a generic perturbation of an integrable, nonlin
~i.e., nonharmonic! system some~‘‘nonresonant’’! tori re-
main, so that there are still regions of regular motion. B
many ‘‘resonant’’ tori are destroyed and their images in
Poincare´ sections are replaced by chaotic trajectories. T
center of a ‘‘nonlinear resonance’’~henceforth, NR! is one of
the elliptic points arising from the destruction of a reson
torus. Around this elliptic point, there are stable oscillatio
corresponding to the ‘‘slow’’ dynamics referred to in th
text. Importantly, for an isolated NR, the slow dynamics c
respond to the dynamics of a single degree of freedom
hence are~locally! integrable. In a general, there are ma
NR’s in a perturbed integrable system. When there are
nearby but separated NR’s, each of them acts as a fast—
hence irrelevant and/or nonresonant—perturbation on
other, but, when they overlap in phase space, the two s
dynamics become strongly coupled, and one has the ‘‘C
ikov overlap criterion’’ for ~global! chaos.45,46

The extension of these ideas to quantum mechanics
first described in Ref. 25, in which the theory of QNR w
developed to describe the influence of a resonant exte
field on a quantum system with a nonequidistant spect
l-
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~corresponding to the assumption of anharmonicity in
classical analog!. The main parameters characterizing a QN
are the number of quasienergy levelsdn involved in the
resonance~the valuedn also characterizes the number
levels of the unperturbed Hamiltonian involved in the d
namics!, and the characteristic frequency of slow oscillatio
~phase oscillations!, Vph. QNR is perhaps mostly readily
understood in the quasiclassical regime, which correspo
to large amplitudeL of the external ac field. For example
this regime be realized in a region of parameters of a
called ‘‘moderate nonlinearity:’’45,46 L!g!1/L, whereg
is a dimensionless parameter describing the strength of
nonlinearity ~or anharmonicity! in the spectrum~e.g., g
;unrEnr

9 /Enr
u, whereEnr

9 is the second derivative of the en

ergy with respect to level number. In this case, the followi
conditions are satisfied:Vph;ALgv!v, dn;AL/g@1,
dn/nr!1, wherenr is a characteristic resonant level. In th
region of parameters, QNR is the direct quantum analog
the classical~NR! described above.

However, QNR is a very general phenomenon
quantum-dynamical systems with nonequidistant ene
spectra,26–29,36and indeed also occurs in the strongly qua
tum limit, which in our present study corresponds to rath
small amplitudeL of the external ac resonant field. In th
case, QNR reduces to the problem of a few-level quant
system influenced by ac resonant external field. For su
ciently small amplitudeL, QNR reduces to a two-level sys
tem in a resonant field. Then the characteristic frequency
small oscillationsVph5VR}L, whereVR is the Rabi fre-
quency~see, e.g., Ref. 47!. Thus asL decreases, there is
crossover in the behavior ofVph(L) and dn(L).37 In the
general situation, the number of levels involved in the QN
dynamics is typically of intermediate size (dn&10), and is
too small for the system to be considered quasiclassical~see,
for example, Refs. 28 and 37! but too large for the strongly
quantum, few-level limit to apply. In this ‘‘intermediat
quantum system’’ regime, which, as we have seen, applie
the systems we have considered in this paper, one must
erally resort to numerical studies to solve the QNR proble

Classical analogs of QNR effective Hamiltonians

The effective Hamiltonian for isolated QNR given by E
~3.25b! has a formal classical analog, which helps clarify t
dynamics. Using standard arguments, we introduce the
mensionless classical actionI by the substitution

2 i
]

]u
2a→I , ~A1!

from which it follows immediately that Eq.~3.25b! corre-
sponds to the classical Hamiltonian

Hr
~k!~u,I !5~k1NI2n* !21S 2n* 2

v

Nk D ~k1NI2n* !

1L cosu. ~A2!

In Eq. ~A2! the indexk corresponds to the classical actio
k→\k5I k , which is a continuous parameter varying in th
regionI kP@\n0 ,\(n01N21)#. The expression in Eq.~A2!
has the standard form of the Hamiltonian of classical non
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ear resonance,45,46and describes the slow resonant dynam
of the classical equivalent of system~2.1!, when the externa
ac field has one resonant frequencyv'vF . The correspond-
ing classical dynamics can be studied using Hamilto
equationsu̇5]Hr

(k)/]I , İ 52]Hr
(k)/]u. Since Hamiltonian

~A2! is time independent and describes a system with
degree of freedom, the classical dynamical system is i
grable in this case, and the dynamics is everywh
regular.45,46

In the case of two QNR’s, the corresponding classi
Hamiltonian is time-periodic and assumes the form
ys

v

w

.

N

s

s

e
e-
e

l

Hr
~k!~u,I !5~k1IN2@~v12D!/k# int!

212L cos~D̃t!cosu,
~A3!

where the indexk can take continuous values as discuss
above. The dynamical system described by the Hamilton
~A3! has one-and-a-half degrees of freedom,45,46 and is non-
integrable. In this case, the classical dynamics exhibits ch
in some regions of phase space. The corresponding quan
dynamics gives an example of quantum chaos. Spec
physical examples of such systems, apart from the one c
sider in this paper, can be found in Refs. 28, 29, 36, 42,
and 46~see also references therein!.
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18M. Büttiker, Phys. Rev. B32, 1846~1985!.
19I. E. Aronov, E. N. Bogachek, and I. V. Krive, Phys. Lett. A164,

331 ~1992!.
20I. E. Aronov, A. Grincwajg, M. Jonson, R. I. Shekhter, and E.

Bogachek, Solid State Commun.91, 75 ~1994!.
21G. M. Genkin and G. A. Vugalter, Phys. Lett. A189, 415~1994!.
22V. E. Kravtsov, Phys. Lett. A172, 452 ~1993!.
23V. E. Kravtsov and V. I. Yudson, Phys. Rev. Lett.70, 210~1993!.
24I. Golhirsch, D. Lubin, and Y. Gefen, Phys. Rev. Lett.67, 3582

~1991!; Y. Gefen, D. Lubin, and I. Golhirsch, Phys. Rev. B46,
7691 ~1992!; D. Lubin and I. Golhirsch,ibid. 46, 2617~1992!;
D. Lubin, ibid. 46, 4775~1992!.
.

.

.

25G. P. Berman and G. M. Zaslavsky, Phys. Lett. A61, 295~1977!.
26G. P. Berman, G. M. Zaslavsky, and A. R. Kolovsky, Zh. Eks

Teor. Fiz.81, 506 ~1981! @Sov. Phys. JETP54, 272 ~1981!#.
27G. P. Berman,Quantum Chaos of Interacting Nonlinear Res

nances, CHAOS, Soviet-American Perspectives on Nonlin
Science, edited by D. K. Campbell~AIP, New York, 1990!.

28G. P. Berman and A. R. Kolovsky, Usp. Fiz. Nauk162, 95 ~1992!
@Sov. Phys. Usp.35, 303 ~1992!#.

29G. P. Berman, O. F. Vlasova, and F. M. Izrailev, Zh. Eksp. Te
Fiz. 93, 470 ~1987! @Sov. Phys. JETP66, 269 ~1987!#.

30G. Casati, B. V. Chirikov, D. L. Shepelynsky, and I. Guarne
Phys. Rep.154, 77 ~1987!.

31J. E. Bayfield and P. M. Koch, Phys. Rev. Lett.33, 258 ~1974!.
32J. E. Bayfield, S.-Y. Luie, L. C. Perotti, and M. P. Skrzypkows

Physica D83, 46 ~1995!.
33J. E. Bayfield, S.-Y. Luie, L. C. Perotti, and M. P. Skrzyp

ovwski, Phys. Rev. A53, R12 ~1996!.
34P. M. Koch, Physica D83, 178 ~1994!.
35P. M. Koch and K. A. H. van Leeuwen, Phys. Rep.255, 289

~1995!.
36L. E. Reichl,The Transition to Chaos in Conservative Classic

Systems: Quantum Manifestations~Springer-Verlag, Berlin,
1992!.

37G. P. Berman, E. N. Bulgakov, and D. D. Holm, Physica D83, 55
~1995!.

38J. D. Jackson,Classical Electrodynamics~John Wiley, New
York, 1975!.

39D. K. Ferry, Y. Takagaki, and J.-R. Zhou, Jpn. J. Appl. Phys.33,
873 ~1994!.

40J.-R. Zhou and D. K. Ferry, IEEE Trans. Electron Devices39,
473 ~1992!.

41F. M. Izrailev, Phys. Rep.196, 299 ~1990!.
42G. Casati and B. V. Chirikov, in Quantum Chaos~Ref. 17!, p. 3.
43N. Byers and C. N. Yang, Phys. Rev. Lett.7, 46 ~1961!.
44B. Reulet, M. Ramin, H. Bouchiat, and D. Mailly, Phys. Re

Lett. 75, 124 ~1995!.
45B. V. Chirikov, Phys. Rep.52, 263 ~1979!.
46A. J. Lichtenberg and M. A. Liberman,Regular and Stochastic

Motion ~Springer-Verlag, New York, 1983!.
47L. D. Landau and E. M. Lifshitz,Quantum Mechanics~Perga-

mon, Oxford, 1977!.


