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We consider Aharonov-Bohm oscillations in a mesoscopic semiconductor ring threaded by both a constant
magnetic flux and a time-dependent, resonant magnetic field with one or two frequencies. Working in the
ballistic regime, we establish that the theory of “quantum nonlinear resonance” applies, and thus that this
system represents a possible solid-state realization of “quantum nonlinear resonance” and “quantum chaos.”
In particular, we investigate the behavior of the time-averaged electron energy at zero temperature in the
regimes of(i) an isolated quantum nonlinear resonance @ndhe transition to quantum chaos, when two
qguantum nonlinear resonances overlap. The time-averaged energy exhibits sharp resonant behavior as a func-
tion of the applied constant magnetic flux, and has a staircase dependence on the amplitude of the external
time-dependent field. In the chaotic regime, the resonant behavior exhibits complex structure as a function of
flux and frequency. We compare and contrast the quantum chaos expected in these mesoscopic “solid-state
atoms” with that observed in Rydberg atoms in microwave fields, and discuss the prospects for experimental
observation of the effects we predif80163-18207)09539-9

I. INTRODUCTION flux dependence of the free enerdpy, at finite temperatupe
leads, via the relationlo(®)=—cdEy/d® [or I(P)=

Over the past two decades, advances in nanoscale fabri-cdFdd at finite temperature to a persistent current of
cation, experimental techniques, and theoretical understang+derlo~eve/L.
ing have produced whole new classes of mesoscopic systems Persistent currents have been observed experimentally in
in which the consequences of the Aharonov-BokAB)  both metalli¢:® and semiconductirigquas)-1D rings. In the
effect can be observed and interpreted. Although they diffeccase of metallic rings, theelatively) large number of impu-
widely in many respects, the common crucial feature of thes&lties means that the effects of disorder must be included, and
systems is that their characteristic linear dimensioris ~ ballistic transport is not expected. Further, because of the

smaller than the length , over which the electron wave relatively large value okg for metals, even thin metallic

function maintains its phase coherence, so that the quantulf°PS contain manytransversg channels(n~Wkg, where

interference that underlies the AB effect is not destroyed. I’V IS the width of the loop and coupling among these chan-

. e Is means that the strictly 1D approaches cannot be
this limit, both the transportnon-equilibrium (Ref. 2 and nels X Y . .
thermodynamic{equilibriupm)r([(Ref. g) properrtr)ie(s of tf?e hon- applied® In contrast, in semiconductors the relatively high

simply connected mesoscopic systems are periodic functio urity of the materials and the relatively low value kf
Py pic Sy p which renders the single channel idealization more accurate
of the (constant AB flux ® [and hence, for fixed geometry,

. S . . mean that the idealized 1D ballistic theory sketched above is
of the (constant applied magnetic fieldwith period ®o oy ected to apply. Indeed, recent measurefiasitthe pe-
=2mhcle, wheree is the electron chargd, is the Planck  yioq and amplitude of the zero-temperature persistent current
constant, and is the velocity of light. The amplitude of the i, 5 Gg_,Al,As/GaAs heterojunction found good agree-
periodic oscillations is a decreasing function of the systeninent with detailed theoretical predictiéris based on treat-
size, and vanishes in the thermodynamic{=) limit.>®  ing the electron motion as ballistic within a noninteracting
For instance, in an idealized strictly one-dimensio(idD) electron-gas model.
ballistic ring of lengthL, the ground-state energsy(P) The basic agreement between theory and experiment on
will exhibit oscillations of periodd, with an amplitude of persistent currents in semiconductor heterostructures means
order 2rfive /L, wherevg is the Fermi velocity. The flux that one can begin to investigate more complex AB-like
dependence of the ground state engimythe corresponding quantum interference effects in these systems. One of the
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most natural extensions is an investigation of the influence odletail. We derive a general expression for the time-averaged
a time-periodicexternal magnetic field, leading to a time- shift of the ground-state energyE, as a function of the
periodic component of the flux. This line of investigation is amplitude of the AB flux, and the amplitude and frequency
also suggested by a number of prior studies of the influencef the resonant external field. We evaluatg, analytically
of periodic external fields on mesoscopic systems, including the weak-field limit, and then study the case for general
investigations of electron transport through the time-field strength numerically. Our results show the presence of a
modulated resonant tunneling devited® and harmonic  Sharp resonant enhancement, as a function of the cavity field
generation in semiconductor superlattiéédndeed, there fréquency and/or AB flux, of thamplitudeof the AB oscil-
have been previous theoretical studies of the effect of periltions in the ground-state energy and hence in the persistent
odic external fields on various manifestations of the AB ef—CLgErent- In Sec. IV, we examine explicitly the case when
fect in mesoscopic systerhs®-2*We also would like to A" (#t) contains two frequencies, establishing that two
mention the papef where the nonlinear response of the QNRS are formed and that their interactiGioverlap™) can
Aharonov-Bohm rings to time dependent fluxes has beelf@d to “quantum chaos” and a complex resonant structure
studied in the context of Zener tunneling and localization infor Eo(®) and for the persistent current. We examine nu-
energy space. merically the conditions for resonance overlap, and the tran-
In the present paper we study a 1D, single-channel, bafition to quantum chaos and discuss in detail the nature of
listic mesoscopic ring threaded by a constant magnetic flufhe resonance structure iiE, in this regime. Finally, in
and located in a resonant cavity to create an additional spa2€C- V we summarize our results, comparing and contrasting
tially inhomogeneous, time-periodic magnetic fieldnd them both with other studies of time-dependent AB effects in
hence fluy. The electrons in the ring interact resonantly with Mesoscopic systems and with other systénatably the Ry-
the cavity ac magnetic field—described by a vector potentiaf€rg atomsin which manifestations of quantum chaos have
ARESp,t)—and with the constant Aharonov-Bohm vector P€en observed. We provide estimates of the relevant ranges
potential (\*B). The presence 0AREYo,t) changes signifi- Of parameters in which experimental verification of our re-
cantly the electron energy spectrum—turning it into aSults should be sought, and discuss open problems for further
quasienergyspectrum, since the effective Hamiltonian is 'éS€arch. For purposes of completeness, in an Appendix we
time periodic—anda priori, can be expected to have strong provide some essential background on the quantum nonlinear
effects on the AB oscillations in the observables of the mefésonance approach and its relation to the more familiar clas-
soscopic system. We show that these effects can be intefical nonlinear resonance theory.
preted within a suitable generalization of the “quantum non-
linear resonance’{QNR) theory first proposed by Berman Il. EFFECTIVE HAMILTONIAN
and Zaslavsk"y" (see also Refs. 26—29n particular, we find FOR QUANTUM NONLINEAR RESONANCE
that whenAREX(x,t) contains a single frequency, a single

ONR occurs, whereas WhehRES(x t) contains two fre- In this section we derive the effective Hamiltonian de-

I§cribing the dynamics of the noninteracting electrons in the

guencies, two QNR’s are formed, and their interactions ca N : o
lead to “quantum chaos.” Thus time-dependent AB effectseXtemal magnetic fields relevant to the physical situation we
: wish to study. Consider a small ballistic ring of the radiis

in mesoscopic rings can provide a novel experimental sys- : o

tem, distinct from the widely studied problem of “Rydberg placed in the K,Y) plane at the center of a cyllndr|cal reso-

atoms” (Refs. 30—3¥—i.e., the microwave ionization of hy- nato_r of the radius,. Assume t_hat the_ eIe_ctrons in the ring

drogen atoms prepared in highly excitaatincipal quantum are mfluence(_j by an e_xt_ernal field which is described by the

numberny>1) states—in which to study the quantum non- vector potentialA cansisting of two parts,

linear resonant phenomena and quantum chaos. In this re- _ ~AB . ARE

gard, our results provide an explicit illustration of the utility A=A+ ATERY), 21

of viewing mesoscopic systems with discrete spetan-  where the Aharonov-Bohm potential is

tum dots and small quantum ringss “solid-state atoms.™’

Note that, in recent experiments with mesoscopic systems

influenced by the time-periodic fields, a quasienergy spec- A*B=(0,0A%%), AﬁB:m, (2.2

trum exhibits itself as well-known Rabi oscillations, Stark

oscillations, harmonic generatigsee, for example, Ref. 17 where® is the corresponding magnetic flux. The vector po-

etc. tential AREX(t) in Eq. (2.1) describes the magnetic field cre-
In the remainder of the paper, we present the details ohted by the resonator’s eigenmodes. The solution fonthe

our investigation. In Sec. Il, we formulate the general prob-eigenmode of the cylindrical resonator can be written in the

lem, specify the details of the vector potentials, and derive dorm?3®

many-body Hamiltonian describing the dynamics of the elec-

trons in the mesoscopic ring in the presence of the external A§ES: 0, (2.3

fields. We then introduce a “resonant representation” which

allows us to write an effective Hamiltonian that separates the H

slow (resonantand fast dynamics and generalizes the origi- ArREsz - n(T)sin(ngo)Jn(kr)cos( wt—Kk,2),

nal QNR approacti?®?8to the many-body case appropriate k*r

foFEE()S(LJr problem. In Sec. lll, we prove that the case in which H

A" ¢,t) contains a single frequency that corresponds to a RES_ _ ' / _

single QNR, and we study the resulting resonant dynamics in ¢k C0LN)J5(X) |- rCOL wt—ks2),
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where J,(x) is the Bessel function and’(x)=dJ(x)/dx. field are small on the scale of:: \; ;<ng. We provide

The frequency of this mode is explicit estimates of the relevant physical parameters at the
end of this section.
w?=c?(k*+K?2). (2.9 To first order in\,/ng, from Eq.(2.7) we derive the

The cavity boundary conditions imply that the wave veétor one-glectron dimensionless Hamiltoniag,

in Eg. (2.4) is quantized - 2mR? - 9 2 9
K He:_hZ_ H=~ %—Q) —Z[Kl(t)SIH(NQD) %
k= r—”r (2.5) 5

° FAo(VSINM ) |, (2.10

wherek],, is therth zero of the functiod/(x). For example, 1o
where
ki,;=1.84, k;,=5.33, k;3=8.54,
7\1’2('[)57\1’20081)12'[. (211)
ko;=3.83, Kkg,=7.01. (2.6)  In deriving Eq.(2.10, we have used the commutation rela-

The wave vectok, in Eqg. (2.4) is determined by the bound- tion
ary conditions along the axis. If the resonator is infinite in 9
the z direction, the value ok, is arbitrary. In our geometry, |& ,Sin(ne) |=—1n cogneg), (2.12

the termk,z in Eq. (2.3) merely adds a constant phase to the
argument of cosft—k,2), and, without loss of generality, we as well as the conditiond,M <n~ng, reflecting our inter-
can choose it equal to zero. In Eg.3), the constanH gives  est in considering resonances near the Fermi surface. Hence-
the order of magnitude of the magnetic field inside the resoforth, we shall usé:le of Eq. (2.10 to describe the electron
nator. dynamics in the external fields.

The most general case necessary for our later consider- From Eq.(2.10 we have, for the matrix elements of the
ations involves a resonant potential having two frequenciesjamiltonianH,
which means that we need to consider two eigenmodes in the

resonator, having eigenfrequencies and w,. The other (n||:le|n>=(n—a)2, (n+ N||:Ie|n>=i)\1(t)n,
parameters of these eigenmodes will be specified shortly. In

the absence of any vector potential, the electron’s Hamil- (n—N|I3|e|>=—i)\1(t)n, <n+M|I:|e|n)=i)\2(t)n,
tonian is just the kinetic-energy term restricted to the ring, so

that making the usual substitutigm— (p—eA/c), leads to a (n— M|I:|e|n>= —iNy(t)n. (2.13

one-electron Hamiltonian of the form ) )
These matrix elements define completely the one-electron

N J Hamiltonian(2.10).
H=> = ( —a—N\;SIN(Ng)cosw;t Since we are actually dealing with a many-electron prob-
lem, we must take into account the Pauli exclusion principle.
. 2 Hence we introduce creation and annihilation operaigrs
_)‘2S'r‘(M¢)C°S‘”2t) , (27 andg, for electrons in thenth energy leveh, which satisfy
the usual anticommutation relationc, ,é;,}+= Sant s
{cn,c }.=0,{c,,C,},.=0. In terms of these operators the
Hamiltonian(2.10 takes the form

wherem is the effective electron mass anrdis the angle
around the ring. Herex is the dimensionless AB flux, and
N1, are the amplitudes of the resonant cavity modes:

® 27R H He=> (n—a)2Eig,+ing () > nel, &
a= -, )\12:_ 12 (klzR) (28) © ; ( ) n=n 1( ); n+N-n
CDO ' CD kl
The periodic boundary conditions appropriate for our ring —iNg(D) D nel_\Catiky(t) D NE L yCn
n n

geometry imply that the wave function of an electron is pe-
riodic in angle ¢ with the period 2r: ¥(¢+2m,t)

=V (¢,t). It is thus convenient to choose the functions —iXy(t) >, nel_ G- (2.149
n
B 1 ine PO In view of our focus on resonance effects in AB oscillations
In)= N e, n=0x1=x2... (29 (an isolated quantum nonlinear resonareed on the transi-

tion to quantum chaos, we have chosen to consider only the
as a basis set. In essence, the resonance phenomena we @#se of spinless electrons, since for these phenomena spin is
lyze occur because of transitions induced by the cavity fieldan inessential complication.
among the electron levels of the ring. We are interested pri- We are interested in dynamical processes taking place in
marily in resonant processes near the Fermi leyel where  the vicinity of a level with quantum number, >1. In this
the values ofn are rather largen~ng>1. In addition, we case, we can approximate the Hamiltonknby the expres-
assume that the dimensionless amplitudes of the externalon
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ﬁe”? (n_a)zégen'l'i/\l(t); 6rﬁ+N6n
—IALD 2 & nEntiAAD 2 s
—iAz(t)En) e utn, (2.19
where
AqAt)=N\y N, COw4 4. (2.16

A further simplification of the Hamiltoniarf2.15 follows
from measuring the levels with respectniQ . Introducing
the notations

I, (n—a)?=(-a)®+n2+2n,(I-a),

(2.17)

n—n,

af_at  —at A& _a
Ch= Cn +1=C,  Ch=Cq +1=Cp,

we can reexpress EqR.15 as

|3|e~2| [(1—a)?+2n, (I-a)]8/E
+iA1<t>2| c“:.KNf:l—iAl(t)EI HNS
Fid(0 2 i —iA(02 E .

(2.18
In Egs.(2.18 we dropped a term proportional ni which

merely adds a constant to the energy of the whole system.

Although it is not immediately evident, the Hamiltonian
in Egs.(2.18 includes both slowly oscillating terms describ-
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To isolate the resonant, we write the operait(rt) in the
form

0=expl' —ivt>, n&lén], (2.23

where the frequency is at present an arbitrary parameter
which we will later choose to remove the fast oscillations.
Let

¢ ()=U%¢,. 0. (2.24

Differentiating Eq.(2.24) and using the commutation rela-
tions, we derive the explicit time dependence of the operator

En,(t) as

Co(t)=e"tg,, (2.25
Similarly, we have, for the operat@:ri,(t),
cht= UTC ,U=gi"'tgt o (2.26
Finally, we need the operator equality
U
(9—=—|v2 nch Chs (2.27

which follows directly from definition(2.23. Taking H
= (h*2mR?)H, and using Eqgs(2.23—(2.26), we find that
the HamiltonianH %, Eq. (2.22), can be written in the di-
mensionless form

R 2mR . .
HeﬁET Heff:Z 2n, — —— v|1[&f¢

mRz)
fi

[(l—a)z—l-

FiA (DN &\ —iA (e "N &G
ing the interesting “resonant” dynamics and the rapidly os- ! !
cillating terms. Thus our next step is to separate explicitly
the slow and fast dynamics by introducing a “resonant rep-

resentation.”
We begin with the Schdinger equation for an arbitrary
HamiltonianH,

5 | (1)) =I:||‘If(t)>,

(2.19

and introduce a unitary operat&(t) defining a wave func-
tion |W(t)) via

[W(1))=U()[¥(D)). (2.20
The wave functiorﬁf(t)) satisfies the Schroinger equation
_PM) o~
ih = =Herl (1), (2.29
with the effective Hamiltonian
A §
Heﬁ=UTHU—|hUTE (2.22

+iA (t)e'VMtE ¢ mbi— iA(He MY G-
T

(2.28

In deriving Eq.(2.28, we omitted the constant2n, (n,

+ ), which does not depend dn and thus only adds an
additional phase to the wave function. This phase vanishes
when calculating the expectation values. Below we shall use
the HamiltoniariHey, Eq.(2.28), as the starting point for the
calculation of the evolution of the wave functi¢W(t)) in

Eq. (2.27).

To place the above formal manipulations in a more physi-
cal context, let us provide some estimates of the typical ex-
perimental values of the parametersHi;;. From Ref. 9, we
find that the typical electron(sheet density is n~4
X 10" cm™?, the electron mobility u~10° cn?/V's, the
Fermi velocity vp~3%x10° cms'!, and the Fermi wave-
length N\g~4x10"° cm. _The requirement thah<ng,
which we used in derivin@{, can be expressed in the form

7Tr0RH
D ke,

~8X10°r RH/K, <ng,  (2.293
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where ®,~4x 10"’ Oe cnf and all parameters are mea- Choosing
sured in cgs units. Ik, =kj,;=~1.84, condition(2.293 takes
the form v=ow/N (3.6

_ removes the time dependence from half the terms in Eq.
A=4.3X10°rRH<ng, (2.299 (3.5, and causes the remainder to oscillate at high frequency.
with H expressed in Oe arfd andr, expressed in cm. This Neglecting these high frequency terms—the so-called

translates into an upper limit on the strength of the resonariftting wave approximation'(RWA), which is standard in
field in Oe, discussions of QNRRef. 25—implies that

Nekp,
8x10°rgR

which for typ|ca| parameter Va|ue€{R: 10_4 cm, rO Hence within the RWA the Hamiltoniaﬁieﬁ, Eq (34), is
=0.1cm, anchg=10°—1C, andk/,~2 is H,=2.5-25 Oe. time independent and assumes the form
The conditionL =27R<ly, wherel, is the elastic mean A
free path, is easily satisfied by micrometer-sized rings, since 7y o= 2 E|C| Ci+i = z (A3|T+Né|—i — z al’f_Nel ,
at low temperaturé,, can be of the order of several tens of ' 2 7

A +ivN7t/k A 3
H<Hq= Oe, (2.299 (m)e ~5- 3.7

micrometers for high-electron-mobility Ga,Al,As/GaAs (3.9

heterojunction structurés:’-3940 where

lll. AN ISOLATED QUANTUM NONLINEAR RESONANCE Ei=(I-a)®+(2n, —w/Nk)l, (I=n—-n,). (3.9
A. Effective Hamiltonian for an isolated QNR If we now assume that the frequeneyof the external field is

esonant with the transitions between the levels with num-
ersn and N+n of the system in the absence of the time-
dependent field, then the resonant condition can be written in
the form

An isolated QNR occurs when the resonant external fiel
has only a single eigenmode with frequeney=w. Thus in
our general expressiof2.28 for the resonant Hamiltonian
we should set

EO) _ g0
A()=A(1), A,(t)=0. (3.1 %
n=n

Introducing a dimensionless time variable via r

=K[N2+2N(n—a)]|n:nr=w,

(3.10

P I (32 whereE( is the eigenvalue of the unperturbed Hamiltonian
2mR2)’ ' 0
we can write the Schrdinger equation for the wave function ) 52 9 2 52
kG PR £(0)— (n—a)?
(7)) as " 2mR \ide T T 2mR '
~ 3.1
() - | | (31
oo = Hei V(7)) (3.3 The solution of Eq(3.10 definesthe resonant leveh=n,

R (the center of an isolated QNRs
where forH.; we have, from Eq(2.28), using Eqs(3.1) and

(3.2, N, =[a+ o/2Nx—N/2], (3.12
where[ x]in: is the integer part ok. Note that Eq(3.10 for
ﬁeﬁ: 2 [(I1—a)?+(2n, — v/x)]éfrfq n, coincides with the equation
1
(Ent1—EDl1=0=0, (3.13
+iA(7)E'VN”K§|: ¢l whereE, is defined in Eq(3.9).

The resonance couples only levels differing Kyunits,
) LN At and thus the expression for the Hamiltonié8) can be
—iA(n)e Z Cl-NCi - (34 significantly simplified by introducingN subsequences of
levels. Formally, we replace the indexby k+IN according
Consider the time-dependent term in E8.4). From defini-  to the rule
tions (2.11) and(2.16), we find ~
A 6n—>6k+|NEb|(k), k:no,...,no+N_1,
A(T)etIVNT/KZE (eIwT/K_i_e*Ia)T/K)eiIVNT/K |:0,i1,i2, L (314)
with whereng is an arbitrary numbenBelow, we shall assume
that np~n, ~ng>1.) With this substitution, we can reex-
A=Nin, . (3.5  press the Hamiltonian in a form that makes explicit its de-
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composition intoN independent terms that reflect the cou- These equations must be solved with the initial conditions
plings among the separate towers of states. We find

ng+N-1 al,l’(TZO):i_ll5|,|r- (3.23
He= > Her(K), (3.19 To relate the system of equatiof®22) to the canonical
k=no form of the “quantum nonlinear resonance” equatiéné®
where we introduce the function
~ “ A : ,
Heﬁ(k)=2I &1 kbl (Kb (k) +i = 5 2 b, ,(K)by(k) D(0,0,7)=2 a (e I=D(0+27,¢+2m,1),
11’
A (3.29
—i > > E,l’f_l(k)fjl(k) (3.16  where the coefficien_ta|,|,_(7-) satisfy_ Egs(3.22. ® is actu-
' ally the wave function, in the action-angle representation,
and describing the slow dynamics in the vicinity of the QNR.
Specifically, from Eq(3.22), we find thatd (4, ¢, 7) satisfies
g1 =(k+IN—n, —a)?+(2n, —w/Nk)(k+IN—n,). the Schrdinger equation
(3.17 0(13 A 9
The Hamiltonian(3.15 can be used for calculation of all Hﬁk)<9,—| —|®, (3.253
observables in our system. ar a9

where the Hamiltoniam® is of the form

o—i L=zl -i Z k
1 gg)=e T g

According to Eq.(3.17), the unperturbed part of the Hamil-

B. Expression for the expectation value of the energy shift

The expression for the time-dependent expectation value H(k>

+A cosd. (3.25h
of the energy of the system is

E(n)=(¥(7)|> (n—a)?ee, | (7)) tonian(3.25h is given by the expression
B i 2 k)— k—iN — (2 ‘")
=(V(7)|0TY (n—a)%!e,0[W (7)) TR e T T
d
(M2 (n-a) e | W (). (3.19 k=N ﬁ_n*)' (329

The Schrdinger equation(3.253 with the Hamiltonian
We shall evaluate this expression in the Heisenberg reprgs 25p has the canonical form of the equation for an isolated
sentation. Then, according to E@.21), the operator equa- QNR (see, e.g., Refs. 25—p8&nd describes a slow resonant
tion for an arbitrary operatof has the form dynamics of the system in a vector potential of the f¢1)

« with one resonant frequency of the external ac field. In the
of - Appendix, we also show how this equation provides insight
a_T_I[Heﬁ’f]’ (319 into the corresponding “classical limit” and the classical

A ] ) ) theory of nonlinear resonances.

where the HamiltoniarH, is defined in Eq(3.15. Using For our present purposes, it is most useful to solve Eq.
[Ch€n.Ek]=— cmCn and the definition¢3.14, we can de-  (3.22 directly. Substituting

rive immediately the Heisenberg equations of motion for the

operators, (k): a(n=e"A ) (3.27
&6.(k) A A A into I_Eq. (3.22 [eads to a set of eigenvalue equations for the
o= —ig) by (K)+ > b,_ (k) — 5 by, 1(K). quasienergy eigenfunctions
(3.20

A
. . . X EA =& A + = (A r+A r) (32&
We seek a solution to this equation in the form of an expan- g LI -y 'y

sion in the operators at the initial time=0, We denote the eigenvalues of E.28 by e,, and the

corresponding eigenfunctions B, with the indexo la-
(7' K)= 2 i'ay i ( b|,(k) (3.21 beling the distinct eigenfunctions, ahd n—n, defining the
Ith component of the eigenfunction in the unperturbed basis
where thea, |,(7) are time-dependemtnumber coefficients. (2.9). The matrixA, ,, in Eq.(3.28 is symmetric and has real
Substituting Eq(3.21) into Eq. (3.20, we find a system of coefficients, so that the eigenfunctioA$”) can be chosen
equations for the coefficients | (7): real. The general solution of E(B.22 can then be written as

. A A —ie. T ! o
ia|‘|/:8|yka|'|/+§a|,1y|r+Ea|+l‘|r. (322 al,l’(T):z e ' SE)I' )AI( )! (329



10 344
where the expansion coefficier§ ) satisfy the equation
(3.30

i|,2 S(;,)AFU)Z(SLV .

Using the orthogonality properties of the eigenfunctions

Al

X ATAT =0, 2 ATAT =6, (33D

we find that the expansion coefficier88 can be written as
Sy =(—i)'A{7. (3.32
Substituting Eq(3.32) into Egs.(3.21) and(3.28), we obtain

a (1= 2 e TAVA( (3.33
<A A Dy (K).

(3.39

bi(rk)=i'> > (—i)e
1’ o

Combining the various transformations, we find that in

terms of the operatorb (7,k), b 1(7,k) Eg. (3.18 for the
time-dependent average energy takes the form

E(=(¥ X X (k+IN = )b} (7,k)by(7,K)[ W),
(3.35

Here,|¥,> is the ground state of the unperturbed system

with all levels up tong occupied by electrons.
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can be simplified by expanding the unperturbed spectrum in
the vicinity of the large numben,

(n—a)?>=(n, +n—n, — a)?
=nZ+(n—n,—a)?+2n,(n—n, —a).
(3.39

The n2 term in Eq.(3.39 does not influence the depen-
dence of the energy shift, and can be ignored for our consid-
erations. Further, we can neglect the term proportional to
(n—n, —a)?, as it gives a small contribution to the average
energy shift in the relevant limin*>|n—n* —a|. With
these approximations, elementary algebra leads from Eg.
(3.37 to the final expression for the expectation value of the
energy shift induced by the ac external field:

AEq(7)= [E(T) Eo]

2Nn,
— ; |[ ZI el(€s™ e;)rAl(U)AI((r’); A|(fr)A|(fr,)
! 0,0

><<‘I’o|b K)by (k)| W)

—(Wo|bf(k |(k)|‘1’o>} (3.40

In deriving this equation we have neglected terms indepen-
dent ofl (which are proportional to the constatsn, , and

a), as these terms do not contributeA&,(7). Note that the
dependence on the flux in Eq. (3.40 is contained in the
’eigenfunctionsﬁ\f") and in the eigenvalues, . The function

It is easily seen that only the diagonal part of (¥olb/(K)bi(K)[Wo) in Eq.(3.40 has the simple form

bi(7,k)b,(7,K) contributes taE(7), namely,

b (7.K)by(m.k)— 3 el A(DAl"

!
a0

x; AYAYBT (k)b (K). (3.36
Using Eq.(3.36, from Eg.(3.35 we derive
1= (k+IN=a)2 3 elc o A(?A(")
k1 =
X2 AT (b by ()W) (3:37

In the absence of the ac external fiel€0), the expecta-
tion value of the energy is

Eozg, (k+IN—a)%(W|bf (k)b (k)| W), (3.39
and of course coincides with the ground-state energy.
From the translation invariance of the sums whens
shifted by an integer, one can see tB4t) andE, are pe-
riodic functions of the magnetic flux, with the period 1(the

1 if kK+IN=ng

<q;0|b|’f(k)b|(k)|\lf0)=[o if k+IN>ng.

(3.41

To exhibit the resonance structure most simply, we can
study the time average of the expectation value of the
ground-state energy shift,

1T
AEOETIITL? fOAEO(T)dT

P> <Af">>2; (A7) W o[b), (K)by (K)| W o)

— (Wb (K)by(K)|[Wo) . (3.42

In Secs. lll C and Il D, we study the dependence\d,,
on the AB flux(a) and on the amplitudéA) and frequency
o of the ac external field, first analytically in the weak-field
limit, and then numerically in general. For definiteness in our
calculations, we shall assume that the number of spinless
electrons in the ring is odd),=2N.+ 1. (We shall discuss
the case of even, briefly later) For oddn,, at «=0, the
population of electrons in the ground state is symmetric, for

fundamental period,). Hence we can consider these func- positive and negative momenta, The relation between the

tions only in the region & a<1. The expression foE(7)

Fermi levelng and the Fermi frequencyg is
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Using EQgs.(3.48, we obtain from Eq(3.42 the expression

Wg
Ine(@=0)|= Ne=5x (343  for AE,,
where, as in Eq(3.2), k=%/(2mR?). Let us also introduce - (A/2)*
the dimensionless detuning in frequency frarp via 0 (81— 20) o192 [A)\2 2NINE:
1 2 > | "\2) | T\2
©O= 5N (w— wg). (3.449
(A12)?
There is a simple symmetry which enables one to reduce the B (e1— &) e—en\2 [A\212 [A\2)P
summation over momenth, in Eq. (3.42) to positive values { o RO \/( ! 0) +(_ I ]
only: namely, 2 2 2 2

4
AES (@)=AE{"(1—a), «+#0.5, (349

i i N B In deriving this equation, we used
where we have introduced the notatis?lE(")(AE(™)) to

indicate the sum over positivenegative values ofl only. . 1 if 1=0
Using this relation the expression fArEy(«) in Eq. (3.42 <\If0|b|Tb||\I'o>=[0 it =1 (3.50
can be written in the form '
The width of the resonancé in this approximation satisfies
AEo(a)=AE{(a) +AE{(1-a), a#0.5. da~A. In Sec. Il D we shall compare these analytic pre-
(3.49 dictions with our full numerical simulations in the limit
This result was used to simplify the numerical calculations. <1 L )
For the caser= 0.5, for reasons discussed below, the contri- O_ur two-level calculation |IIustra'Fes an important feature
of this resonance phenomenon, which will later emerge from

butions toAEy(«) from positive and negativewere calcu- X d be sianif f . L ob
lated separately. Before presenting our detailed numericgU" NUmerics and may be significant for experimental obser-
vations: namely, one can observe the resonagitteer by

results oMAE, in the general case, we provide some analyticf_ ing th f i the f fixi
insight into the behavior in the weak-field limit. ixing the AB flux a and tuning the frequenay, or by fixing
the frequencyw and sweeping through values af To see

this in the present case, note that the energy alf in Eq.

(3.49 depends on the value;—¢e,. From Eqg.(3.17 and
The resonant dependence of the functibB, on « for definitions(3.2), (3.43, and(3.44), we have

small A can be studied analytically using a “two-level ap-

proximation,” because, for ani, whenA <1, only the two g1—&g9=1-2a— 2wy, (3.5)

levels nearestg (corresponding tb=0 andl = 1) give lead-

ing contributions tAAE,. In this case, Eq(3.28 become

C. Analytic results in the weak-field limit

where we have choseN=1, k=ny=n,=ng. From Eq.
(3.49, we see that the center of the resonance is located at
A g1—¢9=0, which, according to Eq3.51), is equivalent to
eAi=g A1+ 5 Ao, the conditiona+ wy=0.5. If wy=0, the center of the reso-
(3.4 nance occurs at=0.5. At =0, the center of the resonance
depends on the frequency of detuning, and occurs gt

€Ay= oAy + A A, =0.5. Hence sweeping through either variable with the other
2 fixed will yield the resonance structure.
whereA=(Aj,A,) is the quasienergy eigenfunctidim this ) . .
cases=1,2 in Eq.(3.29]. The corresponding quasienergies D. Numerical studies of an isolated QNR
are given by the explicit expressions We preface the discussion of our numerical simulations

with several clarifying comments. For.>1, the resonant
_&e1teg 1 —M_ 20 2+ AZ/A. (3.47 g::sgtéogzggngézcgein the vicinity of thg Fermi surfac_e, and _
parately for positive and negative mo
mental. In this case, it is convenient to introduce the Fermi
Ievelsn(Fi) , corresponding to positive and negative_et us
write the fluxa as a sum of two parts, an integer pajtand
a fractional part¢,

In Eq. (3.47) the unperturbed energy leveds and g, are
defined by Eq(3.17). To calculate the expressiaE, from
Eq. (3.42, we need the following components of the
guasienergy eigenfunctions:

AL a=n,+¢&,, (3.52
(1) — .
Ay J(e1—e)2+(A12)2 wheren,=[aliy, é,={a}fac, (0<£&,<1). Then, the posi-
v (3.48  tion of Fermi level forl >0 can be written in the form
A2 Al2 n,+N,  if £<05

ntH= (3.53

! “ln,+No+1 if £,>005.

i)+ (A2
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To exclude large numbers~ng~10°—10" in the numerical A
experiment, it is convenient to use the system of reference— 5
namely, the resonant leval=n,—introduced in Eq(3.12. /\ RN
This level defines the center of an isolated QNR, where the 4 —_—- >
dominant dynamical effects occur. We express the layél -~
Eq. (3.12 in the form 3 PN AN
[ e N N \ TN
n, a+m—5- e+na+ §a+wo—5. . .
int int PN
(3.59 1 NG
We can now specify the levels, andng which were intro- o .
duced above in Eq$2.17) and(3.14). Specifically, we set 5 4 -3 2 41 0 1 2 3 4 5§
N =ne=n (3.55 FIG. 1. Dependence of the quasienergy functiAA,‘l@ onl: o
* 10T s ' =1,2,3,4; A=0.001; wy=0; and a=0.5 (solid curve; and «
and for convenience introduce the variables =0.495(dashed curve
3 .
T ) () — B order én~(n—n,—a)°/n,, and in our case r(, ~ng
k=k=n;, ng”=ng’—n. (ke[ON-1]). a5 ~10°-10" can be estimated to be of ordepn
(356 104102
Then, from Eq.(3.53 we find To remove these quasidegeneracies in our numerics we
can either add the small symmetry-breaking tefm~(n
—+)_ | “[€atwo= N2y if £,<0.5 3 —n,—a)3n,, or we can add a random number of order
Ng "= 1-[&,+ wo—N/2)iy if &,>0.5. (3.57) sn~10"2-10* to the unperturbed spectrum. The results of

our numerical calculations do not depend on the procedure
we use to avoid this quasidegeneracy.

We begin the discussion of our numerical results with the
case of a resonant field with= wg (wy=0) and small am-
plitude. In this case, the dynamics should be described by the
two-level approximation examined analytically in Sec. Il C.
Figure 1 provides numerical evidence justifying this approxi-
mation: for A=103, Fig. 1 demonstrates that only two
€ =(—¢,)2 quasienergy level&vith o= 1,2) are involved in the electron

’ “ dynamics, and respond significantly to small variation of the
This equation illustrates a very important subtlety that musAB flux « in the vicinity of =0.5. Moreover, for small
be properly finessed in the numerics: namely, at certaigleviations of the AB flux(e.g., «=0.495 the quasienergy
points there can bdegeneraciesn the spectrum which can eigenfunctions witho=1,2 already include only one level of
cause problems in evaluating quantities such as time avethe unperturbed Hamiltonian. This means that no real dy-
ages. Examining Eq3.59 shows that at the point§,=0  namics happens in the system in this latter case. At the same
and £,=0.5 the unperturbed spectrum of the Hamiltonian intime, whena=0.5, and the resonant condition is satisfied,
Eg. (3.25 becomes degeneraftthis degeneracy also occurs two levels of the unperturbed Hamiltonian contribute to the
in the general casé.59 for some values ot,]. This de- eigenfunctions withr=1,2, and this results in a very narrow
generacy results in very small differences of quasienergietesonance iMAEq(ux=0.5); this is shown in Fig. 2. The
A€ for some quasienergy eigenfunctions, and time-averagguasienergy levels witlr= 3,4 include only one level of the
energy(3.42 becomes ill defined at these valueségf. Spe-  unperturbed Hamiltonian, and actually do not change their
cifically, the quasidegenerate symmetric and antisymmetri®ehavior(but only interchange rol¢svhen the magnetic flux
eigenfunctions give a contribution tbEy(«), Eq.(3.42, in  is varied in the vicinity of the resonance @t 0.5. From the
this case. Some of these functions describe nearly freddlowup in Fig. 2b), we see that the resonance is quite sharp
electron dynamics and hence describe large energy motiori8 @, with s~ 1073, Comparing to our analytic results in
(~ng). Actually, this phenomenon leads to exponentially Sec. Il C, we find that the two-level approximation is quite
large times of electron tunneling in the region of large ener-accurate. For instance, expressi¢B.49 gives da~A
gies and is not observable in the types of systems we con=10"3, which is in good agreement with the results of nu-

In this notation the spectrum ,, Eq.(3.17), is

€ k= (K+IN)2+2(k+IN)([é,+ @o— N/2]jn— wo+ £,).

(3.58
If, for example, we putwy=0, N=1, spectrum3.58 takes
the simple form

(3.59

sider here. To exclude these “dangerous” poifis=0 and
0.5, we should include some additional termshich would

merical calculations. Further, the peak amplitude of the reso-
nance inAE, is 0.5, which agrees precisely with the numeri-

arise from some small additional interactions that split thecal result in Fig. 2b.

degeneracyin the unperturbed spectru(3.59 and in Eq.

As A increases, additional structure appearab,. Al-

(3.58, so that the symmetry of the eigenvalue problem forthough Fig. 3 A =0.003) appears quite similar to Fig. 2, the
system(3.25) is broken and the quasidegeneracy destroyediesonance atr=0.5 is much broader, and there is a new
In real physical systems, these small terms always exist angsonancea=0 (mod 1. The detailed structure of these
can be connected, for example, with crystal-field effects. Intesonances is shown in Fig. 4, for slightly largar (A
deed, it is easy to show that these additional terms are of the 10~ 2). A “double resonance’(DR) phenomenon appears
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AL, AL
a
a 05 | i
05
00 ) ] 0 48 0.50 “
0.0 0.5 1.0 : . 0.52
Al AL
’ : K 2
b b
05 | i
1 4
a 0 - a
00495 0497 0500 0502 0505 0.00000 0.00025 0.00050

FIG. 2. Dependence of the average energy shift of the system FIG. 4. Dependence afE, on « in the vicinity of a=0.5, A
AEq on «; (8 A=0.001, wo=0, andN=1; (b) the same, but =0.01,0,=0, andN=1 (a), anda=0 (b).
scaled in the vicinity of the resonant peakaat 0.5.

From our analytic results on the two-level approximation,
for A=0.05 and atw=0.5, as shown in Fig. 5. Figured e expect that cr_\gnging the frequency of the external field
illustrates the strong, sharp second resonance of the DFéhanges the positions of the resonances as functions of
From Fig. 8b), we see that the second resonance also ha@nd,_ in addition, modifies thel_r sh_apes. This expect_anon is
substructure corresponding to a double peak. A similar DREONfirmed by the data shown in Fig. 9. The change in loca-
phenomenon is demonstrated in Fig. 6 for-0.2. In this  tion of the resonances that occurs when pgrametersdgke
case one also observes the substructure of resonances afOf N) are varied results from the changes in the valuer of
—0 [Fig. 6(c)]. A partial explanation of the results in Figs. 5 (OF &) at which the unperturbed spectru17) [or (3.58 ]
and 6 follows from Fig. 7, which shows that a greater num-Nas degeneracies.
ber of levels of the unperturbed Hamiltonian contribute to
the resonances shown in Fig. 6, and hence one expects a
greater number of individual resonant frequencies. In par- @
ticular, Fig. 7 shows that the quasienergy eigenfunction with 2f
o= 2 actually includes four levels of the unperturbed Hamil-
tonian.

In Fig. 8 we indicate the dependence &dE, on A for 1t
fixed w and = 0.5 [Fig. 8a)], and fora=0.45[Fig. 8b)].
The sharp “staircase” behavior observed at the resonant

value «=0.5 washes out rather quickly off resonance. 0 L . a
0.0 0.5 1.0

ALy

ARy

0.5

a

0.0 004993 0 5600
0.0 0.5 1.0 ’ )

FIG. 3. Dependence of the average energy shift of the system FIG. 5. Dependence afE, on «a: (8) A=0.05, wy=0, andN
AEj on a for A=0.003,wy=0, andN=1. =1; (b) the same as i), but scaled in the vicinity ofr=0.5.
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0
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AE,

05

0.500

0.505

(s 4

0
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0.0001

AP
10

9

s o~ AL

1

l
o 5 3 =

FIG. 7. Dependence of the quasienergy functiAﬁ‘:) onl, for
0=1,2,...,9,A=0.2, wy=0, N=1, anda=0.495(solid curvs,
and a=0.5 (dashed curve

IV. INTERACTION OF TWO QUANTUM NONLINEAR
RESONANCES: OVERLAP AND QUANTUM
CHAQOS

A. Effective Hamiltonian for two QNR'’s

When a resonant field with two frequencigs; and w,)

acts on the electrons in the mesocopic ring, two QNR'’s are
formed. In this subsection, we derive the effective resonant
Hamiltonian describing the slow dynamics of their interac-

tion. We show that this dynamics is time dependent and, in
the classical limit, corresponds to a “one-and-a-half” degree
of freedom, nonintegrable system, which is expected to ex-
hibit chaotic behavior in some regions of classical phase

FIG. 6. Dependence dhE, on a: (@) A=0.2, wy=0, andN
=1; (b) scaled in the vicinity ofe=0.5; (c) scaled in the vicinity
of a=0.

Figure 10 demonstrates the resonant behavidf as a
function of flux for A=1. The characteristic quasienergy
eigenfunctions involved in the resonances are shown in Fig.
11; for instance, we see that six unperturbed levels contribute
to the quasienergy eigenfunction with=5. Finally, Fig. 12
demonstrates the resonant structure in the dependence
AEq(a) when spatial dependence of the external ac field
involves the second harmonic of the angldN=2). In this
example, the frequency of the external fieldis detuned
from resonance with the Fermi frequeney (wy=0.2). As
in Fig. 9 (for the caseN=1), the resonances are shifted from
the pointa=0.5, but they also have considerably different
structure.

Thus far we have assumed that the number of electrons is
odd,n.=2N.+1. It is possible to show that for even number
of electrons,n,=2N,, we can still apply expressiof8.42
but with the following substitution forr and wg:

AELY (a,w0) = AELY (a—1/2.wy+1/2). (3.60

Al
20

0

0

1

2

3

A

Hence there is no need to present separate calculations for FIG. 8. Dependence ohE, on A; (@ a=0.5, wy=0, andN

the case of even,.

=1, (b) the same as iffa), but «=0.45.
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AE,
10
a
§
00A0 0:5 1A0a 0 : a
0.0 0.5 1.0
FIG. 9. Dependence oAE; on . A=0.2, wo=0.2, andN
=1. AF,
10
space. In the quantum problem, when QNR’s interact b
strongly (i.e., overlap, a transition to quantum chaos can
occur.
Our formulation of the effective Hamiltonian in Sec. I 5t
was deliberately chosen to be sufficiently general to include
the case of two QNR’s corresponding to two distinct fre-
guencies in the resonator field. Hence we may start our ex- o
plicit calculations directly from Eq(2.28), in which the two [P 7550 9505
frequencies iPARES are denoted bw, # w,# 0. For simplic-
ity, we shall takeN=M in Eq. (2.28); this is possible, even AFE,
though the frequencies are distinct, because ofztdegree 10 c
of freedom in the resonatdcf. Eq. (2.4)].
Recalling the methodology of Sec. lll, we see that our L
task is to choose the parametein Eq. (2.23 so as to sepa-
rate the fast and slow dynamics. In the present case, we 5r
choose the parameterto be
1 a
N (@1=4), 4.0 30000 0.0001

FIG. 10. Dependence dfE, on a: (8) A=1, wg=0, andN
=1; (b) scaled in the vicinity ofa=0.5; (c) scaled in the vicinity
of a=0.

whereA is some slow frequencyA/ w, ,<1) which we take
to be

A= 22 4.2 A

2 ' Zzz. (4.5)
Then the free parameteris completely defined as _ ] )
As in Sec. lll, focusing on the diagonal part of Ed.4),

neglecting irrelevant constants, and choosiggto be

w;t+ wy
v= (4.3
2N .
_ (w01—A) 4.6
Neglecting the high-frequency oscillating terms, from Eq. * 2N« im' ’

(2.28 we derive the approximate Hamiltonian
we find that the reduced Hamiltonian describing the slow

o dynamics of two interacting QNR’s becomes
Heotr= E [(n—n, —a)?+2n,(n—n, —a)—nv/k)] ¢

i _ i ' Heﬁ_z (N=[(w1=A)/2Nk Jin— a)zégén
ts A gL \E - > A€M &g
T T
_ +iA coATY, &, (& —iA coATY, & &
+ A e'AtE ¢l mti— 'ME ¢mti, | |
(4.7

@4 The Hamiltonian off IN EQ. (4.7) can be significantly sim-
where A, ,=n,\,. For simplicity, we assume below that Plified by the same relabeling of states shown in &g14.

A;=A,=A. We next introduce the dimensionless variables:As in Sec. llI, this relabeling leads to a decomposition of
7as in Eq.(3.2) and frequency Heﬁ into a sum of individual termﬂeﬁ(k) with



10 350

A(ﬂ)

{

15

14 N -
13 AN =

7N

12 -
11 -~ -
10 ~- <

9 0 =

8 = <<

7 e .

5 — <

5 A

4

3

2

1

0 l

15 -10 -5 0 5 10 15

FIG. 11. Dependence of the quasienergy functiaff3 on|, for
0=1,2,...,14A=1, wy=0, N=1, and«=0.495 (solid curve,
and a=0.5 (dashed curve

ffef«k):El &1 07 (K)by(K) +i A cos?&rEI bl 1(K)by(k)

—iA co&EI bl ,(K)by(K) |, (4.9

where

8|'k={k+|N—a—[(wl—A)/K]im}z. (49)
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AL,

PPN

0
0.0 0.5 1.0

FIG. 12. Dependence ddE, on a: A=0.2, wy=0.2, andN
=2.

a (1) =e"1%TA{7(7),

(4.12

where Af")(a-) is the quasienergy eigenfunction, periodic
with period 27/A. The functionsAf”)(r) provide a complete
and orthogonal set of eigenfunctions. The general solution of
Eqg. (4.10 can be expressed as superposition of particular
solutions of the form of Eq(4.12 with time-independent
coefficientss!

(o

a (1=, e SIIAl (7). (4.13
The difference between E(.13 and the analogous expres-
sion (3.29 for the case of an isolated QNR is that in Eq.
(4.13 the eigenfunctiorA,(”)(T) depends on time periodi-
cally [because the corresponding Hamiltoni@n8) is time
periodid. Nonetheless, we have the analogs of all the expres-

In distinction to the case of an isolated QNR, here thesions(3.30—(3.33. Specifically, atr=0 we have
effective Hamiltonian contains explicit time dependence.
Nonetheless, we can proceed exactly as in the previous case

1k ("A@)= (N —(_iyIal0)
< i S AT (0)=6,, S)/)=(—1)A"(0).
to write the operator equations fbyf(k), to expand the so- ; s ATO)=a, 7 = (ZDAT(O)

lution of this equation in terms of the operators at the initial (4.149
time, and to derive equations for the dynamics of the expan-.. .
sion coefficientsa, /() in Eq. (3.21). We find Finally, from Egs.(3.21) and(4.14 we obtain

ia) =€ @, +A cofAr)a_y; + A cogAn)a .y, a(n=2 (—)'e " AVAP(0), (4.19

(4.10
with the initial conditions for equation$4.10 being the A A
same as in Eq3.23. bi(r k=2 i'X (=)'e" < A (0)A[” (Db (K).
Equations(4.10 can be written in the forn3.253, with Ir .16

the resonant Hamiltonians
By analogy to the case of an isolated QNR in E2j40, we

. d . d ~
0,—i (9_9>_£(_| a—e,k +2A cogAT)cos,

(4.10)

o a d ’
8(—| ﬁ,k)=(k—l _N_a_[(wl_A)/K]int) .

k
H

shift in the case of two interacting QNR'’s to be

AEo( T)E

1
N 2 [EC)E)
:; |{ 2 ei(ea_s‘,’)TAfU)*(T)Al(gl)(’i')

’
o0

The Schrdinger equation(3.253 with the Hamiltonians
(4.11) describe the interaction of two QNR*%&:?° As dis-
cussed in more detail in the Appendix, the corresponding
classical Hamiltonian is time-dependent and describes a
(nonintegrablg system having “one-and-a-half” degrees of
freedom and hence capable of exhibiting chaos in some re-
gions of phase space.

We can write a particular solution of E¢4.10 in the
form

x> ALD(0)AL(0) X (W |y, (K)by (K)|Wo)
|I
—<\Ifo|6|*<k>6|<k>|\lfo>]. (4.17

As before, we denote the time averageAdy(7) by AE,.

obtain the expression for the expectation value of the energy
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FIG. 15. Dependence of the quasienergy functibﬁ’é onl, for
o=12,...,11A=1,A=1,0=0,N=1, ande=0.254 67(reso-
2 nant valug.

o4

a=0.2614 (shown in Fig. 14 to a resonant onega

=0.25467(shown in Fig. 15. In the resonant case, seven
FIG. 13. Dependence afE, on « for two interacting QNR’s:  unperturbed levels contribute to the structure of the eigen-

(@ A=0.4,A=1,0=0, andN=1; (b) the same as iifa), but A function with c=8. This effect can be interpreted as a “de-

0
0.0 0.5 1.0

=1 localization” of the quasienergy eigenfunctions in the sys-
tem when two QNR’s strongly interact. Usually, problems
B. Numerical study of average energy shift for two QNR’s connected with a delocalization of the quasienergy eigen-

functions at the transition to quantum chaos are investigated

Our numerical results for two interacting QNR’s are sum-, . . :
gQ in the quasiclassical region of parametesfn 1).28:2941:42

marized in Figs. 13—15. As in the case of an isolated QNR ) , 4 ,
In our numerical calculations, we have choserin the in-

we assume that the number of electrons is augds 2N, .
+1. Also, in the numerical calculations we have choserfcrMediate rangeX=3). For these values df, the charac-

we=(w1+ wy)/2. Figures 18) and 13b) demonstrate the teristic nur_nbe_r of Ievels@nsw_. In this re_gion, the_problem
dependence oAE, on the AB flux « for a rather large of de_Ipcallzanon of the quasienergy eigenfunctions at the
amplitudes of the ac field\ = 0.4 in Fig. 13a) andA =1 in transition to quantum chaos has not been developed. Note
Fig. 13b). The resonance structure is highly complicated inthat the forma! !|m|tat|on on _the pargmet@r W.h'Ch fqllows
these cases, and reflects the significant modifications in thféo,m the condition\; »<ng, is A<ng, which is easily sat-
structure of the quasienergy eigenfunctions whesa varied.  'Sfied-
Figures 14 and 15 illustrate the modifications to the quasien-

ergy eigenfunctions as is varied from a nonresonant value V. DISCUSSION AND CONCLUSION

We have established that the problem of AB oscillations
AE"’ in a mesoscopic ballistic ring threaded by both a constant
12 magnetic flux and a time-dependent resonant magnetic field
1" can be studied using the concept of “quantum nonlinear
resonance”(QNR), provided that the frequency of the ac
field, w, satisfiesw~ wg, Wherewg is the frequency corre-
— S~ sponding to transitions in the vicinity of the Fermi leve}, .

QNR is characterized by the number of levelg, of the
unperturbed Hamiltonian involved in the dynamics. Our nu-
merical calculations show that even fak=Ang<1, the
_——— — “widest” quasienergy eigenfunctions involve in their struc-
ture (and hence in the electron dynamiesfairly small num-
ber of levels of the unperturbed Hamiltoniatn=<5. For an
external field with a single frequency, we derived a Sehro
dinger equation describing the slow dynamics of an isolated
QNR, and showed that it corresponded to a system with one
0 { degree of freedom, whose classical and quantum dynamics

0 1 2 3 4 5 6 7 8 9 10 11 12 . .
are integrable and thus everywhere regular. When the ac field

FIG. 14. Dependence of the quasienergy functiaffd onl, for  includes two frequencies which satisfy the condition ,
0=12,...,11A=1,A=1,Q0=0,N=1, anda=0.2614. ~wg, two QNR’s occur, and a transition to quantum chaos

o

nNw e 0 N ®

-




10 352 BERMAN, BULGAKOV, CAMPBELL, AND KRIVE 56

can take place. In the limid <1, the number of levels in- of highly excited atoms QNR’s have the following charac-
volved in the electrons dynamics is of ordén<10. The teristics.

effective Hamiltonian describing two interacting QNR’s is (i) The motion of an excited electron in a hydrogen atom
time periodic, and corresponds to the system with 1.5 detakes place in the quasiclassical regiogx 1). Because the
grees of freedom. This system is nonintegrable, and, in thenperturbed quantum energy spectrum is of the form
classical limit, its dynamics is generally chaotic. Thus meso-— 1/2n%, the corresponding nonlinear classical dynamics is
scopic semiconducting rings in time-dependent externafharacterized by particular dependence of the frequéncy
fields provide an interesting solid-state system, quite distinc@n the action =7in (energy of the formQ=0Q(1)=1/°.

from the widely studied Rydberg ators;®’ in which to (i) The external microwave field cosawgt, with wg
study quantum chaos. ~10 GHz, creates a series of primary resonant€gl )

For both cases, that of an isolated QNR, and that for two= wo atl,=(n/we)*. Thus a single frequency creates sev-
interacting QNR’s, we calculated numerically the depen-eral resonances. These resonances are nonlinear, which leads
dence of the ground-state energy shiff,(«,A) on the di-  to their saturation under the action of the external microwave
mensionless magnetic flux and on the amplitude\) of the ~ resonant field.
ac magnetic field. The dependenkE, on « is periodic with (ii ) Below the critical amplitude of the external field,
the period 1 (as it should be from the general <F, the resonances can be considered as isolated. Under
consideratiorf§) and shows a characteristic resonant behavthe conditionF>F,, the resonances strongly interact, and
ior. the transition to the dynamical chaos takes place.

For A<1, the two-level approximation allowed us to es-  For the mesoscopic ring problem, the unperturbed energy
timate analytically the shape of the resonance and its locespectrum has the forf,~(n—a)?. Consequently, the non-
tion. In this case, the width of the resonancedis~A. The linear dependence of the frequency of electron’s oscillation
resonances in the dependentEy(a,A) are located at the IS ((1)~I. In this case, an external field with a single fre-
values o, , where the quasidegeneracy of the unperturbediuency creates a single QNR, so the dynamics remains regu-
spectrum of the Hamiltonian describing the slow dynamicgar. To create tw@or morg primary nonlinear resonances we
takes place. Numerical calculations show that in the vicinityneed to apply an external field with tw@r more distinct
of these pointsy, , a significant modification of the quasien- frequencies»; andw,, both in the rangeg , which for our
ergy eigenfunctions occurs. The resonance positignde- ~ Systems is roughlywg~vg/R~1-100 GHz. In this case
pend linearly on the value of the frequency detuning, canwe have resonance overlap and the transition to quantum
= w—wg, from the exact resonance§=0). Thus, this de- chaos.
pendence can be a subject for the experimental observations. Concerning experimental confirmation of the effects we
The staircase dependenceAf, on A shown in Fig. 8, also have predicted, it is important to note that initial experiments
could be observed in experiments. involving electrons in semiconducting mesoscopic rings

Our results extend previous studies of AB phenomena irfoupled to an electromagnetic resonator have very recently
time-dependent fields. For purposes of comparison, we noteeen reportef’ Although the experimental configuration
that in Ref. 19, this general problem was investigated using &nd details in that study are not appropriate for direct com-
high-frequency(nonresonant electromagnetic field with a Parison, nevertheless the work does indicate promising pros-
frequencywsTo/#. In this case, the influence of the exter- Pects for a such a comparison in the near future. For the
nal field is reduced to the appearance of an additional perXperimental parameters discussed in Sec. Rl—
odic effective potential in the electron Hamiltonian, which =10"* cm, ro=0.1cm, ng=10°—10°, k;,~2, and H,
slightly modifies the energy spectrum. The amplitude of the=2.5—-25 Oe—and foA <1, we find that the magnitude of
AB oscillations either remains effectively constant or practi-the resonance peaks in the average energy shift is
cally vanishes(indicating dielectric behavigrif the Fermi
level falls inside the forbidden miniband. Reference 18, stud- AEo~10"4-10"3 eV, (5.0
ied the low-frequency limit of the conductance in a metallic
ring influenced by an ac field, and showed that here the conwhich we believe will be detectable given the proper experi-
ductance is sensitive mainly to the static part of the magnetimental configuration.
flux. Two previous works"?! discussed possible resonant  To conclude, let us mention a number of interesting open
AB effects in metallic mesoscopic rings in ac fields, the firstquestions that merit further investigation. One obvious im-
examining the influence of the resonant absorption of a cirportant theoretical issue is the effect of electron-electron in-
cular ac electric field on conductance oscillatibhand the  teractions on the nonlinear phenomena investigated here.
second ftreating resonant oscillations of the absorbedlso, if the semiconductor ring is off centered in the cavity,
energy?! These studies also found the resonance peaks in théen the perturbation terms in E@.10 should be modified
amplitude of AB oscillations. However, the perturbative for some periodic functions ig. In this case, one still should
methods exploited in their analytical calculations did not per-expect the resonant transitions initiated by the resonant cav-
mit them to look into the most interesting case when thety field. But the matrix elements of these transitions will be
nonlinear effects play a significant role, and in particulardifferent from those used in this paper. As a result, one
they did not discuss the possibility of quantum chaos. should not expect some qualitative modifications of the re-

To clarify the differences and similarities between QNR’ssults discussed in this paper. At the same time, to investigate
and the quantum chaos expected in our present “solid-statguantitatively the location of the modified resonances, one
atoms” (Ref. 17 and the more familiar Rydberg atom needs to perform additional analytical and numerical inves-
case>l~3"we should recall that for the microwave ionization tigations. We are currently studying this question, within the
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framework of the Luttinger-liquid model. Modifications of (corresponding to the assumption of anharmonicity in the
our considerations to multichannel semiconductor and metaklassical analgg The main parameters characterizing a QNR
lic mesoscopic system@y including effects of dissipation are the number of quasienergy leveis involved in the
and of many channelsre also of interest. The inclusion of resonancethe valueén also characterizes the number of
impurities and a self-consistent magnetic field is also of indevels of the unperturbed Hamiltonian involved in the dy-
terest, in view of recent studi€sshowing that AB oscilla- namicg, and the characteristic frequency of slow oscillations
tions can lead to the appearance of additional fluctuations dfphase oscillations Q,. QNR is perhaps mostly readily
current in ultrasmall devices. Finally, the possibility that theunderstood in the quasiclassical regime, which corresponds
resonance phenomena we predict might be useful for detete large amplitudeA of the external ac field. For example,
tion of very weak magnetic radiation signal is also worthy ofthis regime be realized in a region of parameters of a so-
further study. called “moderate nonlinearity:*>*® A<y<1/A, wherey

is a dimensionless parameter describing the strength of the
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at Los Alamos was partly supported by the Defense Ad'tum limit, which in our present study corresponds to rather

vanced Research Projects Agency. small amplitudeA of the external ac resonant field. In this
case, QNR reduces to the problem of a few-level quantum
APPENDIX: CLASSICAL AND QUANTUM NONLINEAR system influenced by ac resonant external field. For suffi-
RESONANCES ciently small amplitude\, QNR reduces to a two-level sys-
tem in a resonant field. Then the characteristic frequency of
small oscillations() ;= Qgx A, where()y is the Rabi fre-
The concept of “nonlinear resonance” plays a crucial quency(see, e.g., Ref. 47 Thus asA decreases, there is a
role in our understanding of Hamiltonian chaos in classicaktrossover in the behavior dR,,(A) and on(A).%" In the
mechanicgsee, e.g., Ref. 45 for a clear introductioin an  general situation, the number of levels involved in the QNR
integrable classical system, the entire phase space is foliatetynamics is typically of intermediate sizér{<10), and is
by invariant tori, and the motion is regular everywhere. Al-too small for the system to be considered quasiclas&ies,
though all one degree of freedom Hamiltonian systems aréor example, Refs. 28 and Bbut too large for the strongly
completely integrable, higher degree of freedom integrablguantum, few-level limit to apply. In this “intermediate
systems are rare, and are isolated in the sense that a genegigantum system” regime, which, as we have seen, applies to
perturbation around such a system destroys the integrabilitthe systems we have considered in this paper, one must gen-
The Kolmogorov-Arnold-Moser(KAM) theorem proves erally resort to numerical studies to solve the QNR problem.
that, for a generic perturbation of an integrable, nonlinear
(i.e., nonharmonic system some“nonresonant’) tori re- Classical analogs of QNR effective Hamiltonians

main, so that there are still regions of regular motion. But _ o . )
many “resonant” tori are destroyed and their images in the _ 1 he effective Hamiltonian for isolated QNR given by Eg.
Poincafesections are replaced by chaotic trajectories. Thé3-25D has a formal classical analog, which helps clarify the
center of a “nonlinear resonanceéhenceforth, NRis one of ~ dynamics. Using standard arguments, we introduce the di-
the elliptic points arising from the destruction of a resonantMeénsionless classical actiorby the substitution
torus. Around this elliptic point, there are stable oscillations
corresponding to the “slow” dynamics referred to in the —ij i_ a—s| (A1)
text. Importantly, for an isolated NR, the slow dynamics cor- a0 ’
respond to the dynamics of a single degree of freedom an
hence ardlocally) integrable. In a general, there are many
NR’s in a perturbed integrable system. When there are twi
nearby but separated NR’s, each of them acts as a fast—and o
hence irrelevant and/or nonresonant—perturbation on the Hﬁk)(e,l):(k+Nl—n*)2+(2n*——
other, but, when they overlap in phase space, the two slow N«
dynamics become strongly coupled, and one has the “Chir- + A co. (A2)
ikov overlap criterion” for(global) chaos*®#®

The extension of these ideas to quantum mechanics wds Eq. (A2) the indexk corresponds to the classical action
first described in Ref. 25, in which the theory of QNR wask—#k=1,, which is a continuous parameter varying in the
developed to describe the influence of a resonant externatgionl,e[7%ng,%(ng+N—1)]. The expression in EGA2)
field on a quantum system with a nonequidistant spectrunhas the standard form of the Hamiltonian of classical nonlin-

Summary of nonlinear resonance

Hom which it follows immediately that Eq(3.250 corre-
gponds to the classical Hamiltonian

(k+NI—=n,)
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ear resonanc ;46an_d describes the slow resonant dynamics H®(6,1)=(k+IN=[(w3—A) k]in) 2+ 2A cog Ar)coss,
of the classical equivalent of systgid 1), when the external (A3)

ﬁ\cgﬁillggsailia(ljndeyrri:r%ri]c?sm;;qubeemztﬁfie. dThui%(;rrﬁgr?]ﬂ?o-n’sWhere the indexk can take continuon_Js values as diS(_:uss_ed
T ) SR : o above. The dynamical system described by the I-!amﬂtoman
equationsd=dH;”/dl, | =—a9H;”/36. Since Hamiltonian (A3) has one-and-a-half degrees of freedtr#f and is non-
(A2) is time independent and describes a system with ongytegrable. In this case, the classical dynamics exhibits chaos
degree of freedom, the classical dynamical system is intein some regions of phase space. The corresponding quantum
grable in this case, and the dynamics is everywherglynamics gives an example of quantum chaos. Specific

regular?®4®

physical examples of such systems, apart from the one con-

In the case of two QNR’s, the corresponding classicakider in this paper, can be found in Refs. 28, 29, 36, 42, 45,

Hamiltonian is time-periodic and assumes the form

and 46(see also references thergin
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