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Differences between statistical mechanics and thermodynamics on the mesoscopic scale
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We present a systematic expansion in the ratio between the level spacing and temperature and employ it to
evaluate differences between statistical mechanics and thermodynamics in finite disordered systems. These
differences are related to spectral correlations in those systems. They are fairly robust and are suppressed at
temperatures much higher than the level spadi8§163-182807)04527-X]

One of the major results that emerged from the work inEq. (1). In that case a canonical system characterized by a
the field of mesoscopic physics was the understanding thdixed number of particles\, is replaced by a grandcanonical
physical quantities may vargualitatively depending on the system whose expectation value of the number of electrons is
averaging procedure employed, with a particular emphasibl (at any given value ok). According to this picture differ-
on differences between the canoni¢@lE) and the grand ences between the CE and the GCE are again due to
canonical(GCE) ensembles. This observation became parquenched disordetbut may depend on temperaturédhe
ticularly apparent in the study of persistent currents in norstarting point here is the TD relation
mal rings?> and has been extended to other
thermodynamit > and transpoft® properties. A peculiarity
of mesoscopic systems is the existence of an enBgggs-
sociated with spectral correlations on scales larger than the = ) ] _
mean level spacingy. Earlier work$~*2have addressed dif- (F(’ is the free energy leading to the identity
ferences between the ensembles at enefgieemperatures
comparable withA. Here we shall study differences between gFM
the CE and GCE which persist up to energy scales much X
larger thanA. The term “canonical” deserves elaboration.

One considers an ensemble of finite systdtgpically con-

ducting, which aremacroscopicallysimilar but differ from  whereN is related tou(’(x) through Eq.(1). We should
each other by their impurity configurations, details of therecall, though, that the TD relations, Eq®) and (3), are
boundaries, etc. We now assigtf) electrons to theéth  only approximatgsee Eq.(6) below] when it comes to sta-
member of the ensembl®&(!) is selected arbitrarily, and is tistical mechanic$SM). It is the latter which should be em-
uncorrelated with the energy spectrum of the system. Moreployed to calculate expectation values of equilibrium observ-
over, it is unchanged as we vary some external parameteaples.F) should be derived microscopically, ambt by

x (representing, e.g., an Aharonov-Bohm fluba particular, calculating Q) microscopically and then employing Egs.
one may seledN®=N= const for alli. (1), (2). To understand what is missing in the procedure de-

The idea introduced in Ref. 2 was to represent each menscribed above, one may take as an example a system of non-
ber of the canonical ensemble as a grand canonical systeimteracting electrons: the occupation probability for a canoni-
with aneffectivechemical potentialy()(x), which is sample  cal system isot given by the Fermi-Dirac function with an
specific and depends on the parameteA canonically av-  effective u.>®!!2 Differences between canonically and
eraged quantity can be obtained by expanding around grand canonically averaged quantities should reflect two el-
“wrong,” average, chemical potentialy (which is indepen- ements:(i) sample-to-sample fluctuations due to quenched
dent ofi andx), and then calculating the expansion termsdisorder;(ii) the deviation of SM from TD resulting from the
(taken atu, i.e., performed grand canonicallyThis proce- fact that the probability of finding the system in a given
dure, leading to remarkable differences between CE anguantum state differs between the GCE and the CE. The
GCE averages, is clearly warranted at zero temperaturdatter element, manifested in corrections to E@$.and(3),
T=0. In that case differences between the CE and the GCEccurs in finite systeni$and only at finiteT.
are solely due to averaging over quenched disorder: each The purpose of the present work is to elucidate some ba-
system individually can be equally described by eitNeor ~ Sic questions concerning the thermodynamics of finite sys-

FONX)=Q0(,x)+ uN )

Pl

N X

, ()

w(x)

#(x), such that® tems. We report on a systematic study of differences between
_ the CE and the GCE, yielding both the contributions due to

aQ® i quenched disorder and due to differences between SM and
- W M(”(X)EN(M (x))=N. D TD. we specifically consider noninteracting electrons mov-

' ing in a diffusive disorder af>A. We demonstrate our

HereQ (M (u,x) is the(sample specificthermodynami¢TD)  approach by evaluating both the persistent current and the
potential. The procedure alluded to above has also been erheat capacity. We indicate how both types of contributions
ployed atT>0, defining the sample specifi¢'(x) through reflect spectral correlations in the system. Our analysis also
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points out how the thermodynamic limfivhere differences
between SM and TD vanighis approached. Our general O‘W@ QW@NONV@
scheme should allow for the study of other regimes of disor-
der (e.g., the dirty ballisti; other types of averaginge.g.,
over energy, and the inclusion of electron-electron interac- QMNO/W»O
tions.
The canonical partition function is given by
FIG. 1. Thew=0 family of skeleton canonical diagrams with
Z(i)(N) = Tr{ 5(|§| _ N)e—/sﬁ(”} k=1,2,3. The zigzag lines are “statistical Iinz_as;” full Iine_s — glec-
tron propagators; black dots — scalar vertices. The first diagram
1 imT upon averaging over disorder yields an Altshuler-Shklovskii result.

- =BV () +uN]
2aT) . 0Me ’ @

to identify contributing diagrams and to evaluate combina-
where hatted quantites are operatorse #®  tional factors. Each propagator is then represented by a “sta-
_ Tr{e*ﬁ(H*“N)} and = 1/ksT. Since the eigenvalues of tistical line” and Qach factoW,, correspon_ds to anth or_der
A ] TR vertex, representing an electron loop withscalar vertices.
N are integers, thé function is, in fact, a Kronecker func- Examples of connected diagrams contributing8(N) are

tion. We note that the evaluation 93%*}3 integral in B4 spown in Figs. 1, 2. These are skeleton diagrams which are
within the saddle point approximation,™ leads to the TD  yet 1o be dressed by impurity lines, interaction lines, etc.

relation Eq.(2). The saddle poinu®(x) is sample specific. The following set of rules applies for the calculation of
Instead we expand around a constamt defined by the skeleton diagramgl) Consider a connected diagram
(NO())=N, where () denotes averaging over realiza- COnSisting ofp loops withn,, ... ,n, scalar vertices, respec-

tively. We require=P_,n;= 2k, with k being the number of
statistical linesk=p—1. (2) Each statistical line carries a
factor (—A). (3) Each n-vertex loop carries a factor

A o 1n!(a" Y au"1) SN[~ (4) Each diagram carries a factor

ZO(N)= \/ 5—=e Al (w+uN] T wherew=k—p+1=0. (5) A factor of 1im! should be

27T assigned to any subsetmfloops having the same number of
STE dr vertices.(6) Each diagram should be multiplied by a combi-
% J' e’z’zex;{ > vl (5 national factor reflecting the number of different ways to

—m T8 27 n=1 interconnect vertices by lines, which result in the very same

_ diagram.
Here SN (u,x)=—a0"/au[,~N is the sample specific \?Ve now divide the skeleton diagrams into families, char-
deviation from the mean number of electrons. BIT<1  acterized by the indew. Examples are depicted in Figs. 1, 2.
we may replace the integration limits in E(p) by *.  |tis understood that disorder averaging has to be carried out
Expanding the term exp,V!)7"], we obtain a diagrammatic subsequently. Let us first consider tiie-0 family, Fig. 1. It
expansion where thg/{"} play the role ofnth order vertices turns out that these are the contributiddescribing differ-
(see below. We stress that the expansion aroynds nota ~ €nces between the CE and the G(btained when Eqg2)

standard onex does not represent the sample specific sadqidnd(3) are assumed to hold and each member of the canoni-
. . T EE e o Cal ensemble is assigned an effective sample specific chemi-
point. This expansion is justified posteriori (see below.

- . . cal potential: thev= 0 family represents contributions due to
Employing linked cluster diagrammatic expansi8ihe free : ;
energy may be written guenched disorder, butot due to differences between SM

and TD. (It is the only contribution which survives at

tions of the disorder. Definifg w—u=iJATr and
VO=(nIT) (= AT)"25" 26N/t we obtain

%)

T T T=0.) After some algebra one obtaifibereafter we sup-
FON)=[QD(u)+ uN]+ E|n T) press index i) and consider only ensemble averaged quan-
tities]
—{all connected diagrarh$. (6) AN !
. . . g . <5F _ >:_2 __ <5Nk+1>. (7)
The first term in Eq(6) yields sample specific grand canoni- w=0 =1 (k+1)! &,uk‘l

cal observables. The second term due to Gaussian fluctua-
tions around the expansion point a; is a T-dependent EXactly the same result may be obtained by the direct solu-
sample-independent contribution. tion of Egs.(1) and(2).!° The first k=1) term in the sum

We next consider the diagrammatic expansion of
F((N). This expansion involves integrals over. In e 3O
a somewhat artificial, but convenient, analogy with standard @ @M@ Qmp
perturbation  theory, we refer to the term
(2m) Y[ drexp{—/2}7?=1 as a contraction or a “free

propagator,” symbolically (77). Similarly a factor %

(27) " Y2[ drexp{— 7?12} 7*=3 involves three different ways @M@W@ @N@’WO

of contraction(r777)=3. Our “propagators,” orstatistical

lines carry neither energy nor momentum, and are employed FIG. 2. Skeleton diagrams of thve=1 family (up tok=3).
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corresponds to the two-loop diagram in Fig. 1. Upon averagwhereg=E./A>1 is the dimensionless conductan¢e, (s
ing over (diffusive) disorder, it yields the Altshuler- the Thouless correlation enepgyand ¢o=hc/e. Only
Shklovskii term?® which has been employed in Ref. 2. The even harmonics appear in Ed12). Expanding {l)ce
k=2 terms are given by complete derivatives with respect to= S;_4lpsin 4mpl ¢, we find that the quenched disorder
«, and are negligible upon averagirigeing small in the contribution i$

parameter\/x). This provides us with aa posteriorijusti-

fication of the diagrammatic expansion: sample specific

terms in this expansion are not necessarily small, but the Al = A<T<E,/p?

ensemble average is well behaved. |g‘5=_ (13
We next include thev=1 families too. These yield con- bo pzle‘ VTR T>E_/p?

tributions due to deviations of SM from TD. It can be shown E. ' e

that for the regime where we employ our expansiom,A,
the leading ternfin A/T) of each family is represented by a while the leading SM vs TD correction is given by
two-loop diagramgcf. Figs. 1 and 2 Evaluation of these

diagrams(neglecting full derivatives with respect o) re- 15\27¢(5/2) E.
sults in A1l e PNT A<T<E./p?
smrp_ 2 2 ™
A o (AT)Y [ [3"sN)\? P 09| 1 T o )
(OF tworoop = 7 WEO m< (W : (8) 6P ES , T>E./p?

14

The w=0 term is the Altshuler-Shklovskii quenched disor- (19

der contributior®® w=1 is the leading SM vs TD The dependence of the SM-TD contribution on temperature

contribution?* and flux is significantly different from the contribution due to
To evaluate these terms we define the correldtand its  quenched disorddiEg. (13)], which has been found previ-

Fourier transfornK (see Ref. 22 for a recent review of spec- ously. The former shows that differences between SM and

tral correlations in disordered systems TD decrease slowlyalgebraically with a temperature up to
T~E.>A, and then are suppressed exponentially.
K(e—€e)=A[{v(e)v(e))y—(v(e)){v(e))] The average canonichkat capacity((C)cg) is given by
1 (im (Chee= — B25%(B(F))/9B? and is written as a sum of con-
E_J dtK(t)elt(e <A (9)  tributions[cf. Eq.(6)]:
277 — ’
where v(e) is the sample specific density of states arid (C)ce=(C)gcet (SCEY +(5CH9) +(SCMTP),
the dimensionless timén units of #i/A). We can write (15
VSN 2 g +odede’ _ The first term is the grand canonical contribution, which
— == —fle—n) for a degenerate gas of noninteracting electrons is
A" auW op™) J-w A . : .
M MoK (w213)(T/A). The term due to Gaussian fluctuations yields
— , — 2. This contribution can be reinterpreted as a shift of the
Xf(e'—u' )K(e— =y, 10 2 .
(€' = pK(e= ey (10 grand canonical temperaturd ¥ A) towards a lower tem-

wheref is the Fermi-Dirac function. Changing variables to perature, T—T— (3/2w?)A forced by the canonical con-
é=e—¢€',p=(e+€')/2, performing the integral ovey, and  straints. A similar shift has been found in Ref. 9. The next

Fourier transforming with respect  we obtain terms in Eq.(15) are evaluated employing E¢L1). We are
. interested in energies larger than hencet<1. The time
7T 1 A\ (= 2% _[ A correlator has two interesting regimgandom matrix theory
(8F two-toop) = Twzo W+l T fo At g T and Altshuler-Shklovski? respectively.
11 .
Equations(6) and(11) form the basis for the analysis of the K(t)= ﬂ Log <d;t2<1 L (16)
various corrections to the GCE averages, and depict the de- b | (4mglt) %%, Are<t<g

pendence of these corrections on spectral correlations. We

study two examples comparing the=0 (quenched disorder whereb=1,2,4 for the orthogonal, unitary, and symplectic

contribution andw=1 (leading contribution due to differ- ensembles, respectively. Hetg, is the elastic mean free

ences between SM and 7D time. Equation(16) does not account for the crossover re-
The averag@ersistent currenin the canonical ensemble, gimes. This leads to

(I)ce, is obtained by deriving(F) with respect to the

Aharonov-Bohm fluxg. The flux dependent part of the time

correlator for quasi-one-dimensional rings is given by 1Al 20 A<T<E,
disy,— _— =
= It] 1 < (p2/4g]t]) e b T ( T)dlz T>E o
= — - e y >
Kt)=— 47rg|t|p21 e cosdrpdl ¢y, (12) 7l £ c
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and in the leading order iA/T (Ref. 23, spectrurd® lead us to conclude that thess rigid the
spectrum the slower the decay with temperature.
3¢(3) In summary, we have presented a systematic expansion in
1 /a2 Tam A<T<E, A/T describing di.fferenqe.s between statistical mechanics
<5C3M-TD>:_( _) (18 and thermodynamics of finite systems. These differences, re-
b\ T T)\9%2 lated to spectral correlations, are found to be fairly robust
7d E_c , T>E. and slowly suppressed witfi. The thermodynamic limit

where they are suppressed is attained at temperatures much

In this example the SM-TD contribution is parametrically higher than the level spacing.

smaller than the contribution due to quenched disorder. Here \ye have benefited from discussions with Y. Imry, A.
too, differences between SM and TD decay slowly overschmid, and A. D. Stone. This research was supported by the
scales larger thah: as a power law, at least over energy German-Israel FoundatioiGIF), the U.S.—Israel Binational

up to #/7g. The results depicted in Eq$l7) and (18,  Science FoundatiofBSP), and the Israel Academy of Sci-
as well as an evaluation ofSCS™P) for a Poissonian ences.

*Present address: Institute for Theoretical Physics, University of namical fluctuations due to an exchange of particles between the
California at Santa Barbara, Santa Barbara, CA 93106-4030. system and the reservoir.
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