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Differences between statistical mechanics and thermodynamics on the mesoscopic scale

Alex Kamenev* and Yuval Gefen
Department of Condensed Matter Physics, The Weizmann Institute of Science, Rehovot 76100, Israel

~Received 17 March 1997!

We present a systematic expansion in the ratio between the level spacing and temperature and employ it to
evaluate differences between statistical mechanics and thermodynamics in finite disordered systems. These
differences are related to spectral correlations in those systems. They are fairly robust and are suppressed at
temperatures much higher than the level spacing.@S0163-1829~97!04527-X#
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One of the major results that emerged from the work
the field of mesoscopic physics was the understanding
physical quantities may varyqualitativelydepending on the
averaging procedure employed, with a particular empha
on differences between the canonical~CE! and the grand
canonical~GCE! ensembles. This observation became p
ticularly apparent in the study of persistent currents in n
mal rings1,2 and has been extended to oth
thermodynamic3–5 and transport6–8 properties. A peculiarity
of mesoscopic systems is the existence of an energyEc as-
sociated with spectral correlations on scales larger than
mean level spacing,D. Earlier works9–12have addressed dif
ferences between the ensembles at energies~or temperatures!
comparable withD. Here we shall study differences betwee
the CE and GCE which persist up to energy scales m
larger thanD. The term ‘‘canonical’’ deserves elaboration
One considers an ensemble of finite systems~typically con-
ducting!, which aremacroscopicallysimilar but differ from
each other by their impurity configurations, details of t
boundaries, etc. We now assignN( i ) electrons to thei th
member of the ensemble;N( i ) is selected arbitrarily, and is
uncorrelated with the energy spectrum of the system. Mo
over, it is unchanged as we vary some external parame
x ~representing, e.g., an Aharonov-Bohm flux!. In particular,
one may selectN( i )5N5 const for alli .

The idea introduced in Ref. 2 was to represent each m
ber of the canonical ensemble as a grand canonical sys
with aneffectivechemical potential,m ( i )(x), which is sample
specific and depends on the parameterx. A canonically av-
eraged quantity can be obtained by expanding aroun
‘‘wrong,’’ average, chemical potential,m ~which is indepen-
dent of i and x), and then calculating the expansion term
~taken atm, i.e., performed grand canonically!. This proce-
dure, leading to remarkable differences between CE
GCE averages, is clearly warranted at zero temperat
T50. In that case differences between the CE and the G
are solely due to averaging over quenched disorder: e
system individually can be equally described by eitherN or
m ( i )(x), such that13

2
]V~ i !

]m U
m~ i !~x!

[N„m i~x!…5N. ~1!

HereV ( i )(m,x) is the~sample specific! thermodynamic~TD!
potential. The procedure alluded to above has also been
ployed atT.0, defining the sample specificm i(x) through
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Eq. ~1!. In that case a canonical system characterized by
fixed number of particles,N, is replaced by a grandcanonical
system whose expectation value of the number of electrons
N ~at any given value ofx). According to this picture differ-
ences between the CE and the GCE are again due
quenched disorder~but may depend on temperature!. The
starting point here is the TD relation

F ~ i !~N,x!5V~ i !~m,x!1mN ~2!

(F ( i ) is the free energy!, leading to the identity

]F ~ i !

]x U
N

5
]V~ i !

]x U
m~ i !~x!

, ~3!

whereN is related tom ( i )(x) through Eq.~1!. We should
recall, though, that the TD relations, Eqs.~2! and ~3!, are
only approximate@see Eq.~6! below# when it comes to sta-
tistical mechanics~SM!. It is the latter which should be em-
ployed to calculate expectation values of equilibrium obser
ables.F ( i ) should be derived microscopically, andnot by
calculatingV ( i ) microscopically and then employing Eqs.
~1!, ~2!. To understand what is missing in the procedure de
scribed above, one may take as an example a system of n
interacting electrons: the occupation probability for a canon
cal system isnot given by the Fermi-Dirac function with an
effective m.5,9,11,12 Differences between canonically and
grand canonically averaged quantities should reflect two e
ements:~i! sample-to-sample fluctuations due to quenche
disorder;~ii ! the deviation of SM from TD resulting from the
fact that the probability of finding the system in a given
quantum state differs between the GCE and the CE. T
latter element, manifested in corrections to Eqs.~2! and ~3!,
occurs in finite systems14 and only at finiteT.

The purpose of the present work is to elucidate some b
sic questions concerning the thermodynamics of finite sy
tems. We report on a systematic study of differences betwe
the CE and the GCE, yielding both the contributions due t
quenched disorder and due to differences between SM a
TD. We specifically consider noninteracting electrons mov
ing in a diffusive disorder atT.D. We demonstrate our
approach by evaluating both the persistent current and t
heat capacity. We indicate how both types of contribution
reflect spectral correlations in the system. Our analysis al
1025 © 1997 The American Physical Society
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points out how the thermodynamic limit~where differences
between SM and TD vanish! is approached. Our genera
scheme should allow for the study of other regimes of dis
der ~e.g., the dirty ballistic!, other types of averaging~e.g.,
over energy!, and the inclusion of electron-electron intera
tions.

The canonical partition function is given by

Z~ i !~N!5 Tr$d~N̂2N!e2bĤ~ i !
%

5
1

2pTE2 ipT

ipT

dme2b[V~ i !~m!1mN] , ~4!

where hatted quantities are operators,e2bV

[ Tr$e2b(Ĥ2mN̂)% and b51/kBT. Since the eigenvalues o
N̂ are integers, thed function is, in fact, a Kronecker func
tion. We note that the evaluation of the integral in Eq.~4!
within the saddle point approximation,15,16 leads to the TD
relation Eq.~2!. The saddle pointm̄ ( i )(x) is sample specific.
Instead we expand around a constantm̄, defined by

^N( i )(m̄)&5N, where ^ & denotes averaging over realiz
tions of the disorder. Defining17 m2m̄[ iADTt and
Vn
( i )[(n!T)21(2DT)n/2]n21dN( i )/]m̄n21 we obtain

Z~ i !~N!5A D

2pT
e2b[V~ i !~ m̄ !1m̄N]

3E
2pAT/D

pAT/D dt

A2p
e2t2/2expF (

n51

`

Vn
~ i !tnG . ~5!

Here dN( i )(m̄,x)[2]V ( i )/]mum̄2N is the sample specific
deviation from the mean number of electrons. ForD/T!1
we may replace the integration limits in Eq.~5! by 6`.
Expanding the term exp@(nVn

(i)tn#, we obtain a diagrammatic
expansion where the$Vn

( i )% play the role ofnth order vertices

~see below!. We stress that the expansion aroundm̄ is not a
standard one:m̄ does not represent the sample specific sad
point. This expansion is justifieda posteriori ~see below!.
Employing linked cluster diagrammatic expansion,18 the free
energy may be written

F ~ i !~N!5@V~ i !~ m̄ !1m̄N#1
T

2
lnS 2pT

D D
2$all connected diagrams%~ i !. ~6!

The first term in Eq.~6! yields sample specific grand canon
cal observables. The second term due to Gaussian fluc
tions around the expansion point atm̄, is a T-dependent
sample-independent contribution.

We next consider the diagrammatic expansion
F ( i )(N). This expansion involves integrals overt. In
a somewhat artificial, but convenient, analogy with stand
perturbation theory, we refer to the ter
(2p)21/2*dtexp$2t2/2%t251 as a contraction or a ‘‘free
propagator,’’ symbolically ^tt&. Similarly a factor
(2p)21/2*dtexp$2t2/2%t453 involves three different ways
of contraction,̂ tttt&53. Our ‘‘propagators,’’ orstatistical
lines, carry neither energy nor momentum, and are emplo
l
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to identify contributing diagrams and to evaluate combina-
tional factors. Each propagator is then represented by a ‘‘sta
tistical line’’ and each factorVn corresponds to annth order
vertex, representing an electron loop withn scalar vertices.
Examples of connected diagrams contributing toF ( i )(N) are
shown in Figs. 1, 2. These are skeleton diagrams which are
yet to be dressed by impurity lines, interaction lines, etc.

The following set of rules applies for the calculation of
the skeleton diagrams.~1! Consider a connected diagram
consisting ofp loops withn1 , . . . ,np scalar vertices, respec-
tively. We require( i51

p ni52k, with k being the number of
statistical lines,k>p21. ~2! Each statistical line carries a
factor (2D). ~3! Each n-vertex loop carries a factor
1/n!( ]n21/]m̄n21)dNum̄ . ~4! Each diagram carries a factor
Tw, wherew[k2p11>0. ~5! A factor of 1/m! should be
assigned to any subset ofm loops having the same number of
vertices.~6! Each diagram should be multiplied by a combi-
national factor reflecting the number of different ways to
interconnect vertices by lines, which result in the very same
diagram.

We now divide the skeleton diagrams into families, char-
acterized by the indexw. Examples are depicted in Figs. 1, 2.
It is understood that disorder averaging has to be carried ou
subsequently. Let us first consider thew50 family, Fig. 1. It
turns out that these are the contributions~describing differ-
ences between the CE and the GCE!, obtained when Eqs.~2!
and~3! are assumed to hold and each member of the canoni
cal ensemble is assigned an effective sample specific chem
cal potential: thew50 family represents contributions due to
quenched disorder, butnot due to differences between SM
and TD. ~It is the only contribution which survives at
T50.! After some algebra one obtains@hereafter we sup-
press index (i ) and consider only ensemble averaged quan-
tities#

^dFw50&52 (
k51

`
~2D!k

~k11!!

]k21

]m̄k21
^dNk11&. ~7!

Exactly the same result may be obtained by the direct solu-
tion of Eqs.~1! and ~2!.19 The first (k51) term in the sum

FIG. 1. Thew50 family of skeleton canonical diagrams with
k51,2,3. The zigzag lines are ‘‘statistical lines;’’ full lines — elec-
tron propagators; black dots — scalar vertices. The first diagram
upon averaging over disorder yields an Altshuler-Shklovskii result.

FIG. 2. Skeleton diagrams of thew51 family ~up to k53).
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corresponds to the two-loop diagram in Fig. 1. Upon aver
ing over ~diffusive! disorder, it yields the Altshuler-
Shklovskii term,20 which has been employed in Ref. 2. Th
k>2 terms are given by complete derivatives with respec
m̄, and are negligible upon averaging~being small in the
parameterD/m̄). This provides us with ana posteriori justi-
fication of the diagrammatic expansion: sample spec
terms in this expansion are not necessarily small, but
ensemble average is well behaved.

We next include thew>1 families too. These yield con
tributions due to deviations of SM from TD. It can be show
that for the regime where we employ our expansion,T.D,
the leading term~in D/T) of each family is represented by
two-loop diagrams~cf. Figs. 1 and 2!. Evaluation of these
diagrams~neglecting full derivatives with respect tom̄) re-
sults in

^dF two-loop&5
D

2 (
w50

`
~DT!w

~w11!! K S ]wdN

]m̄w D 2L . ~8!

Thew50 term is the Altshuler-Shklovskii quenched diso
der contribution;20 w51 is the leading SM vs TD
contribution.21

To evaluate these terms we define the correlatorK and its
Fourier transformK̃ ~see Ref. 22 for a recent review of spe
tral correlations in disordered systems!:

K~e2e8![D2@^n~e!n~e8!&2^n~e!&^n~e8!&#

[
1

2pE2`

1`

dtK̃~ t !eit ~e2e8!/D, ~9!

wheren(e) is the sample specific density of states andt is
the dimensionless time~in units of\/D). We can write

K S ]wdN

]m̄w D 2L 5
]w

]m̄w

]w

]m̄8w
E E

2`

1`dede8

D2 f ~e2m̄ !

3 f ~e82m̄8!K~e2e8!um85m , ~10!

where f is the Fermi-Dirac function. Changing variables
j[e2e8,h[(e1e8)/2, performing the integral overh, and
Fourier transforming with respect toj, we obtain

^dF two-loop&5
pT

2 (
w50

`
1

~w11!! S D

T D wE
0

`

dt
t2w

sinh2pt
K̃S t D

T D .
~11!

Equations~6! and~11! form the basis for the analysis of th
various corrections to the GCE averages, and depict the
pendence of these corrections on spectral correlations.
study two examples comparing thew50 ~quenched disorder
contribution! andw51 ~leading contribution due to differ-
ences between SM and TD!.

The averagepersistent currentin the canonical ensemble
^I &CE, is obtained by derivinĝ F& with respect to the
Aharonov-Bohm flux,f. The flux dependent part of the tim
correlator for quasi-one-dimensional rings is given by

K̃~ t !5
utu
p
A 1

4pgutu (p51

`

e2~p2/4gutu!cos4ppf/f0 , ~12!
g-
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whereg5Ec /D@1 is the dimensionless conductance (Ec is
the Thouless correlation energy! and f05hc/e. Only
even harmonics appear in Eq.~12!. Expanding ^I &CE
5(p51

` I psin 4ppf/f0, we find that the quenched disorder
contribution is2

I p
dis5

D

f0H 2

p
, D,T,Ec /p

2

p2
T

Ec
e2A~2pT/Ec!p, T.Ec /p

2,

~13!

while the leading SM vs TD correction is given by

I p
SM-TD5

D

f0

1

gH 15A2pz~5/2!

64p3 pAEc

T
, D,T,Ec /p

2

1

16p
p4

T

Ec
e2A~2pT/Ec!p, T.Ec /p

2.

~14!

The dependence of the SM-TD contribution on temperatur
and flux is significantly different from the contribution due to
quenched disorder@Eq. ~13!#, which has been found previ-
ously. The former shows that differences between SM an
TD decrease slowly~algebraically! with a temperature up to
T;Ec@D, and then are suppressed exponentially.

The average canonicalheat capacity(^C&CE) is given by
^C&CE52b2]2(b^F&)/]b2 and is written as a sum of con-
tributions @cf. Eq. ~6!#:

^C&CE5^C&GCE1^dCGauss&1^dCdis&1^dCSM-TD&.
~15!

The first term is the grand canonical contribution, which
for a degenerate gas of noninteracting electrons i
(p2/3)(T/D). The term due to Gaussian fluctuations yields
2 1

2. This contribution can be reinterpreted as a shift of the
grand canonical temperature (T.D) towards a lower tem-
perature,T→T2(3/2p2)D forced by the canonical con-
straints. A similar shift has been found in Ref. 9. The next
terms in Eq.~15! are evaluated employing Eq.~11!. We are
interested in energies larger thanD, hencet,1. The time
correlator has two interesting regimes~random matrix theory
and Altshuler-Shklovskii,20 respectively!:

K̃~ t !5
utu
bpH 1, g21,t,1

~4pgutu!2d/2, Dtel,t,g21,
~16!

whereb51,2,4 for the orthogonal, unitary, and symplectic
ensembles, respectively. Heretel is the elastic mean free
time. Equation~16! does not account for the crossover re-
gimes. This leads to

^dCdis&5
1

bp

D

TH 1

2p
, D,T,Ec

gdS TEc
D d/2, T.Ec

~17!
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and in the leading order inD/T ~Ref. 23!,

^dCSM-TD&5
1

bpS D

T D 2H 3z~3!

4p
, D,T,Ec

hdS TEc
D d/2, T.Ec .

~18!

In this example the SM-TD contribution is parametricall
smaller than the contribution due to quenched disorder. H
too, differences between SM and TD decay slowly ov
scales larger thanD: as a power law, at least over energ
up to \/tel . The results depicted in Eqs.~17! and ~18!,
as well as an evaluation of̂dCSM-TD& for a Poissonian
e
s

y
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r

y
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y

spectrum24 lead us to conclude that theless rigid the
spectrum the slower the decay with temperature.

In summary, we have presented a systematic expansion
D/T describing differences between statistical mechani
and thermodynamics of finite systems. These differences,
lated to spectral correlations, are found to be fairly robu
and slowly suppressed withT. The thermodynamic limit
where they are suppressed is attained at temperatures m
higher than the level spacing.
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