
ds

PHYSICAL REVIEW B 15 OCTOBER 1997-IIVOLUME 56, NUMBER 16
Kondo-lattice–like effects of hydrogen in transition metals

R. Eder, H. F. Pen, and G. A. Sawatzky
Department of Solid State Physics, Materials Science Centre, University of Groningen, 9747 AG Groningen, The Netherlan

~Received 9 April 1997!

We discuss the possibility of a Kondo-like effect associated with H in metals, resulting from the strong
dependence of the H 1s orbital radius on the occupation number. We demonstrate that such a strong breathing
property of the orbital radius, which translates directly into a strong occupation-dependent hopping, results in
the formation of local singletlike bound states involving one electron on H and one on the surrounding metal
orbitals. We also show that already at a mean-field level an occupation-dependent hopping integral leads to a
substantial potential-energy correction on hydrogen, and that the failure of band-structure methods to incor-
porate this correction is responsible for the incorrect prediction of a metallic ground state for the YH3

switchable mirror compounds.@S0163-1829~97!06739-8#
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I. INTRODUCTION

The recent discovery1 of the so called switchable mirro
compounds based on YH32x has renewed the interest in th
electronic structure of transition metal and rare earth
drides. These compounds undergo a metal to insulator t
sition asx changes from one to zero with the accompany
change from high optical reflectivity to optical transparen
for photon energies below about 2 eV. Local-density a
proximation~LDA ! band-structure calculations fail to repro
duce the semiconducting gap forx53 in the widely accepted
HoD3 structure or in the simpler cubic LaH3 structure. Al-
though a gap can be obtained for more complicated disto
structures,2 it is still much too small; and although such di
tortions are not excluded for YH3, they do not appear to
occur for LaH3, which has similar properties.

The failure to produce large enough band gaps in se
conductors by LDA is a well-known shortcoming which he
however seems to take quite dramatic forms: The vale
and conduction bands in LDA overlap by about 1 eV, so
total relative shift of about 3 eV is required to match t
experimental value. Such dramatic discrepancies are rem
cent of the strongly correlated systems like the transit
metal and rare earth oxides, and point perhaps to the im
tance of correlation effects. Since however the H 1s orbitals
are rather extended as compared to the 3d’s of the transition
metals, especially for the negative ion, they are expecte
form rather broad bands, and the on-site Coulomb inte
tions are strongly screened. Therefore the origin of the c
relation effects may be quite different. In this paper we a
dress this problem and come to the suggestion that
correlation effects are a consequence of the large chang
the H 1s orbital radius upon orbital occupation. Th
‘‘breathing’’ property of the hydrogen ion is shown to intro
duce a term in the mean-field treatment of the electro
structure of hydrides. This term results in an opening up
the band gap in a quite natural way, with the retention
large bandwidths and nearly one particle behavior of the
cited states. Using a model Hamiltonian to demonstrate
behavior we also show that for a range of parameter va
the system behaves like a Kondo lattice insulator similar
that suggested by Nget al.3
560163-1829/97/56~16!/10115~6!/$10.00
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II. THE BREATHING HYDROGEN ATOM

As is well known and referred to in most general che
istry text books, the so called effective radius of hydrogen
extremely strongly dependent on the charge state. The cry
radius of neutral H is 0.26 Å, whereas that of the negat
ion H2 is 1.54 Å.4 The values of the average 1s orbital
radiusA^r 2&, as obtained from free ion Hartree-Fock calc
lations, are 0.8 Å for H and 1.72 Å for H2.5 This very large
change is not unexpected since in H, with its low nucle
charge of 1, the screening of the nuclear Coulomb poten
by a seconds electron is very important and has a drama
effect on the orbital radius. This large effect causes the
fective hopping integrals or hybridizations with surroundi
ions to be strongly different for the fluctuations involving
to H1 as compared to those involving H to H2, as pictured
in Fig. 1. If these instantaneous changes in the hopping i
grals are larger than or comparable to other energy sca
like the orbital energy splittings, they must be treated exp
itly. They cannot be treated in a mean-field-like way~as is

FIG. 1. Schematic representation of a two-electron and sin
electron wave function with~left column! and without~right col-
umn! taking into account the expansion of the hydrogen wave fu
tion.
10 115 © 1997 The American Physical Society
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done in band theory!, taking an average orbital radius corr
sponding to the average occupation as determined from
consistent calculations.

To model the effect of the ‘‘breathing’’ hydrogen we in
troduce an occupation-dependent hopping integral~following
Hirsch6! between H and its nearest neighbors, in addition
the usual on-site Coulomb interaction of the Hubbard7 or
Anderson impurity8 models. We consider the Hamiltonian o
the form

H52D(
s

hs
†hs1Uh↑

†h↑h↓
†h↓2(

s
@~V1l s

†hshs̄
†
hs̄

1V2l s
†hshs̄hs̄

†
!1H.c.#, ~1!

which describes the hybridization of a single hydrogen at
with a single ligand orbital. Herehs

† ( l s
†) creates an electron

on the hydrogen~ligand!, there is a charge transfer energyD
between hydrogen and ligand~we assumeD.0) and a Cou-
lomb repulsionU between electrons on hydrogen.V1 andV2
are the occupation dependent hydrogen-ligand hopping i
grals. We discuss the first ionization energyE2 for photo-
emission on a single cell, consisting of a hydrogen atom
a ligand orbital, filled with two electrons. The minimum ion
ization energyE2 , together with the minimal electron affin
ity E1 , determine the excitation gapEgap5E22E1 . An
underestimation of the magnitude ofE2 thus may lead to a
too small gap energy, as seems to be the case in the L
calculation for YH3.

For simplicity we takeV250, so that the ground state o
a single electron just corresponds to the electron be
trapped in the collapsed hydrogen orbital, and has ene
2D. A straightforward calculation then gives the corr
sponding ionization energy as2E with

E5
U2D

2
2AS U2D

2 D 2

12V1
2.

Taking for simplicityU5D we obtainE52A2V1. The ion-
ization energy thus is predominantly due to the loss of
netic energy, because the single electron in the final s
cannot escape from the collapsed hydrogen orbital, so
the large gain in kinetic energy, which was possible for t
electrons, is no longer possible.

On the other hand, constructing a single-particle Ham
tonian with an averaged hopping integralVMF'^hs

†hs&V1

and an ‘‘effective’’ on-site energyDMF ~as it is done in an
LDA calculation!, the excitation energy would be simply th
energy of the occupied mean-field orbital, i.e.,

EMF52
DMF

2
2AS DMF

2 D 2

1VMF
2 .

If the occupation of hydrogen 1s is significantly smaller than
one per spin state, this way of calculation will miss a lar
part of the kinetic energy contribution to the excitation e
ergy, unless the ‘‘effective’’ on-site energy is corrected
take this effect into account.

In a mean-field treatment of this Hamiltonian, it will be
come apparent that the occupation dependent hopping g
rise to very peculiar physics. Breaking down the conditio
hopping terms into quadratic terms we obta
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l s
†hshs̄

†
hs̄→ l s

†hs^hs̄
†
hs̄&1^ l s

†hs&hs̄
†
hs̄ . The first of these

terms corresponds to weighting the ‘‘large’’ hybridizatio
integral by the occupation of the hydrogen orbital, which
what one might have expected; the second term, howeve
a correction to the on-site energy of hydrogen by a part of
kinetic energy. All in all we obtain

HMF5(
s

@2DMFhs
†hs1~VMFl s

†hs1H.c.!#,

VMF5V1nH1V2~12nH!,

2DMF52D1UnH1a^T&,

a5
V12V2

VMF
, ~2!

wherenH5^hs
†hs& and^T&5VMF^ l s

†hs1hs
† l 0& is the energy

of hybridization between hydrogen and ligand. We thus fi
the surprising result that in this approximation the expec
tion value of the kinetic energŷT& enters as an additiona
‘‘potential’’ on the hydrogen sites, and is in fact even e
hanced by the factora. In the limit V1@V2 we find
a→nH

21.1, so that the correction to the on-site potential
hydrogen becomes (V1 /VMF)^T&, i.e., the kinetic energy for
mixing with the hydrogen site, but calculated with the ho
ping integral for the ‘‘expanded’’ atom. This is clearly
huge energy, but it has a very clear physical interpretati
for two electrons in the cell, the hydrogen atom will oscilla
betweenH0 and H2, so as to take maximum advantage
the expansion of the wave function, and the hybridizat
energy will be large. Removing one electron, the remain
electron will essentially be trapped in the ‘‘collapsed’’ h
drogen orbital, and there is practically no more hybridizati
energy. In the mean-field wave function both electrons are
the lower molecular orbital, which@due to its strongly nega
tive effective on-site energy resulting from Eq.~2!# has pre-
dominantly hydrogen character. The ionization ener
which by Koopmans theorem should be given by the me
field eigenvalue, then contains almost the entire kinetic
ergy of the two-electron state, because this kinetic energy
been put into the on-site potential of the hydrogen atom.

To make this more quantitative, we have performed ex
diagonalization calculations for a one-dimensional~1D!
chain of a model with occupation-dependent hybridizat
between hydrogen and ligand. A schematic representatio
the model is given in Fig. 2. Computer memory and CP
time limitations prohibit to diagonalize chains of more th
six unit cells of this model, at least for the most interesti
densities near two electrons per unit cell. For the given

FIG. 2. Schematic representation of the 1D model used in
exact diagonalization.
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56 10 117KONDO-LATTICE–LIKE EFFECTS OF HYDROGEN IN . . .
rameters, the ground state of this system corresponds clo
to a state with two electrons in a local singlet state in e
unit cell, with one electron primarily on H and the oth
primarily on the neighboring ligands. Such a state is re
niscent of a Kondo-lattice insulator ground state. Figure
shows thek-resolved electron addition and removal spec
for the six-site chain at half filling. To get a feeling for th
dispersions of the different bands, we have combined spe
calculated with both periodic and antiperiodic boundary c
ditions. While there is no rigorous proof for this, inspecti
of Fig. 3 shows that in this way one obtains remarka
smooth ‘‘band structures.’’ Unlike spectra for, e.g., the Hu
bard model at half filling, the calculated spectra are surp
ingly ‘‘coherent,’’ with almost all of the spectral weight be
ing concentrated in just three well-defined ‘‘bands.’’
inverse photoemission there is a band of predominant m
character, with little dispersion. In photoemission, there i
strongly dispersive band of mixed hydrogen-metal charac
and a dispersionless low intensity band of practically p
hydrogen character. More detailed analysis shows, that
dispersionless band corresponds toH1 final states~i.e., it is
a kind of ‘‘lower Hubbard band’’!, whereas the dispersiv
band corresponds toH0-like final states. Next, Fig. 3 show
the spectral function for different values ofU. For compari-
son, the bands obtained by a mean-field solution of
model are also shown. Thereby the calculation has been d
both with and without the kinetic energy correctio

FIG. 3. Single particle spectral function of the 1D model w
six unit cells. The part to the right~left! of the thin vertical line
corresponds to electron addition~removal! from the half-filled
ground state~i.e., two electrons per unit cell!. The full line corre-
sponds to electron removal or addition on the ‘‘metal’’ sites, t
dashed line to hydrogen. Parameter values areV152 eV, V250.2
eV, t50.5 eV,D51 eV ~see Fig. 2!. The full ~dashed! dispersion
curve gives the mean-field bands calculated with~without! the cor-
rectionVT5a^T&.
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VT5a^T& to the hydrogen on-site potential. Quite obv
ously, the calculation withVT reproduces the exact ban
structure very well, whereas the bands withoutVT ~while
giving roughly the correct dispersion! substantially underes
timate the gap size. As explained above, we believe
LDA misses the kinetic energy correctionVT , so that the
LDA band structure rather corresponds to the bands with
VT . In a phenomenological way, this suggests a kind
‘‘scissors operator’’ approach to obtain the ‘‘correct’’ ban
structure of YH3 from the LDA result.

III. APPLICATION TO YH 3

We now use the above ideas for the case of YH3 and
attempt to obtain reasonable parameters and subsequen
timates of the band gap. The three 5d electrons of Y will in
the above scenario all be bound by the three H atoms pe
this would again result in an insulating ground state. Fi
we obtain good estimates for the average hopping integ
and on-site energies, using a tight-binding fit to an LD

FIG. 4. Band structures YH3 ~top! and metallic yttrium with the
lattice constants of YH3 ~bottom!. The Fermi energy is marked b
the dashed line.

FIG. 5. LDA band structure for YH3 ~full line! and tight-
binding fit ~dashed line!. Energies are in eV.
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10 118 56R. EDER, H. F. PEN, AND G. A. SAWATZKY
band structure calculated with the linear muffin tin orbi
method.9 The upper panel of Fig. 4 shows the band struct
calculated for YH3 in the LaH3 structure, which is practi-
cally identical to previous published results.10,11 In the lower
panel we show the result of a calculation for Y metal w
the lattice constants of YH3, in order to establish the contri
bution of the H 1s orbitals.

To begin with, the lowest two bands which have predom
nant 5sp character, are nearly identical in both solids. Ob
ously, these free-electron-like states are not significantly
fected by the insertion of hydrogen into the interstitial sit
In yttrium metal, the next group of states are the Y 4d bands,
which form a dense continuum with a width of;6 eV. The
Fermi energy cuts into the lower part of this complex ofd
bands. In YH3 the situation is very different: the lowest Y
4d band~which is still quite reminiscent of the third-lowes
band in metallic yttrium! is split off from the remainingd
bands by;4 eV, and in the resulting gap bands of predom
nantly hydrogen character are inserted. Although these
drogen bands do have an appreciable width, they ba
overlap with the lowermost of the followingd bands. In fact,
the band structure of YH3 already shows a very clear ‘‘gap’
between the top of the hydrogenlike valence band and th
4d-like conduction band throughout the entire Brillou
zone–YH3 thus is already ‘‘almost’’ a semiconductor. Th
Fermi energy cuts into the top of the hydrogenlike valen
band and the bottom of thed-like conduction band, so tha
LDA predicts YH3 to be a semimetal. The shift of the low
ermostd to considerably higher binding energy upon ins
tion of hydrogen, which is predicted by LDA, is in qualita
tive agreement with the photoemission data of Fujimori a
Schlapbach:12 For metallic yttrium, these authors found
high intensity structure at binding energies<2 eV, which
probably corresponds to the occupied part of the Y 4d bands.
For YH3 a similar structure occurs at a binding energy o
eV, indicating the shift of thed band away fromEF . It
should be noted, however, that the experimental shif
larger by;2 eV than that predicted by LDA. The pictur
thus is quite reminiscent of the well-known band-gap pro
lem in semiconductors, where LDA fails to give correct va
ues for the semiconducting gaps.

To extract additional information, we performed a tigh
binding fit to the LDA band structure. It turned out that b
using hybridization integrals only between nearest neighb
a surprisingly good fit of the first few valence and condu
tion bands could be obtained, as shown in Fig. 5. The ti
binding fit was obtained using the following Hamiltonian
a mean field way, as discussed below:

H5 (
k,n,s

en~k!dk,n,s
† dk,n,s1(

j ,s
ẽ jhj ,s

† hj ,s

1 (
i , j ,s

@~V~ i ,n!, j
~1! di ,n,s

† hj ,shj ,s̄
†

hj ,s̄

1V~ i ,n!, j
~2! di ,n,s

† hj ,shj ,s̄hj ,s̄
†

!1H.c.#

1U(
j

hj ,↑
† hj ,↑hj ,↓

† hj ,↓ . ~3!

Hereen(k) denotes the Y 4d bands, which we obtained from
the tight-binding fit.
l
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In a mean field treatment without the kinetic-energy c
rection,~3! would turn into

H5(
k,s

en~k!dk,n,s
† dk,n,s1(

j ,s
D jhj ,s

† hj ,s

1 (
i , j ,s

$@V~ i ,n!, j
~1! di ,n,s

† hj ,snj1V~ i ,n!, j
~2! di ,n,s

† hj ,s~12nj !#

1H.c.%, ~4!

with nj5^hj ,↑
† hj ,↑&5^hj ,↓

† hj ,↓& andD j5 ẽ j1Unj . We now
introduce the parameterl, which we assume independent
j , as l5V( i ,n), j

(2) /V( i ,n), j
(1) , i.e., the ratio of hopping integral

for the collapsed and expanded hydrogen atom. We then
timate the change as

V~ i ,n!, j
TB '@nj1l~12nj !#V~ i ,n!, j

~1! , ~5!

whereV( i ,n), j
TB is the hybridization integral extracted from th

tight-binding fit. Sincenj can be obtained from the tight
binding calculation as well, we can thus, for givenl, obtain
an estimate ofV( i ,n), j

(1) . Next, we estimate the ‘‘bare’’ on-site
energiese j of the hydrogen atoms from those of the tigh
binding fit, D j

TB , as follows:

e j5D j
TB2njU. ~6!

This introduces another unknown parameter: the on-
Coulomb repulsionU between two electrons on the hydro
gen site. While anab initio calculation ofU andl would be
highly desirable, this is outside the range of techniques av
able to us. We therefore will treat these quantities as impl
parameters, and consider the variation of possible res
whenU andl are varied within ‘‘reasonable bounds.’’

Using the parameters estimated in this way, we now p
ceed to an impuritylike calculation to determine the stab
zation energy of Kondo-like local singlets, formed on
single hydrogen atom in the lattice of Y 4d orbitals. In the

FIG. 6. Schematic representation of the stabilization energy
the local two-electron bound state.
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first step, we calculate the ground state energyE0
(2) of a

two-electron bound state from the ansatz,

uC~2!&5Fah↑
†h↓

†1
1

A2
(
n,k

bn~dk,n,↑
† h↓

†1h↑
†dk,n,↓

† !G uvac&.

Here summation overk andn refers to the Y 4d bands. The
dispersion of these bands and the hybridization matrix e
ments between the band states and the hydrogen atom
calculated using the parameters from the tight binding
whereby the hydrogen-yttrium hybridizations depend onl
and the hydrogen on-site energy onU. Then, we want to
know the stability of this state against decay into a state w
a single electron remaining in the hydrogen atom, and
second electron being in a free yttriumd-like state. The en-
ergyE0

(1) of the single electron in the hydrogen is calculate
from the ansatz,

uC~1!&5Fa8h↑
†1(

n,k
bn8dk,n,↑

† G uvac&,

and for the energy of thed-like electron we simply choose
the lower bound of thed-band complex,Eedge. We then
form the differenceDE5E0

(2)2(E0
(1)1Eedge) ~see Fig. 6!,

which obviously determines the stability of the two-electro
state against decay. This energy will be a function of t
unknown parametersU and l. The result then is shown in
Fig. 7.

One can see that for ‘‘reasonable’’ values ofU and not
very extreme values ofl the two-electron bound state attain
a stabilization energy of several electronvolts. Drawing
analogy with the situation in cuprate superconductors, wh
the Zhang-Rice singlet has a stabilization energy of appro
mately 1 eV, it seems quite reasonable to adopt the pictur
local bound states. Then, for YH3 one may expect that thes
bound states form a split-off band, with the Fermi ener

FIG. 7. Ionization energiesDE calculated with the impurity
model for the metal plane hydrogen~left panel! and the tetragonal
hydrogen~right panel!. Note that the other tight-binding paramete
depend on the values forU andl through Eqs.~5! and ~6!.
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lying in the gap between these states and the bottom of
4d band; the physics is similar to our exact result on the
cluster.

IV. DOPING DEPENDENCE OF THE ELECTRONIC
STRUCTURE

To simulate the physics of what happens as one remo
hydrogen from YH3, we resort to an exact calculation of
small cluster as done above, but we now remove one hy
gen site and one electron. In Fig. 8 we show the spec
function for electron removal and electron addition befo
and after removal of the hydrogen. In the top panel, one
clearly recognize the large gap between the hydrogenlike
lence band and the metal-like conduction band. Upon hyd
gen removal, as shown in the bottom panel, the Fermi ene
jumps into the metal band which implies that hydrogen b
haves like a H2 ion in that it binds two electrons. This i
consistent with the above discussion and also suggeste
Ng et al.3

In our previous discussion we came to the conclusion t
H actually binds two electrons: one localized on H, and
other on the nearest neighbor metal atoms. With the remo
of a H atom, which takes only one electron with it, anoth
‘‘lonely’’ electron is left behind, which must then be in th
conduction band. Removal of H from the trihydride insulat
should then transfer spectral weight for electron remo
from the top of the valence band to the bottom of the co
duction band, some 2 eV higher in energy. This kind
behavior upon doping is very similar to that predicted fo13

and observed14 in the highTc cuprates. Consistent with thi
are the observations by Petermanet al.,15 who found that in
hydrogen depleted trihydrides the Fermi energy falls into
‘‘band’’ with very weak spectral weight, which grows upo
further depletion.

FIG. 8. Single particlek-integrated spectral function for a thre
unit cell cluster of the 1D model with open boundary condition
The spectra are calculated at ‘‘half-filling’’~upper part! and with
one charge neutral hydrogen atom removed from the central
~lower part!. The parts of the spectra to the right~left! of the vertical
dashed-dotted line correspond to electron addition~removal!. Pa-
rameter values areD51 eV, U52 eV, t50.5 eV, V152 eV,
V250.2 eV.
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V. CONCLUSIONS

We have shown that hydrogen is an extreme exampl
an atom with a large orbital occupation dependence of
orbital radius, leading to large occupation-dependent h
ping integrals in hydrides. We argue that explicit inclusion
such terms in the Hamiltonian results in a ‘‘scisso
operator’’-like separation of the valence and conduct
ke

.

of
e

p-
f

n

bands and, consequently, the opening of a substantial
We argue that the insulating character of YH3 can be under-
stood in this way. Using reasonable parameters obtai
from tight-binding fits to the band structure, we find that t
ground state of YH3 corresponds closely to that of a Kond
insulator, with each H binding two electrons in a sing
state.
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