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Spontaneous polarization as a Berry phase of the Hartree-Fock wave function:
The case of KNbO3

Sergio Dall’Olio and Roberto Dovesi
Gruppo di Chimica Teorica, Universita` di Torino, via Pietro Giuria 7, I-10125 Torino, Italy

Raffaele Resta
INFM, Dipartimento di Fisica Teorica, Universita` di Trieste, Strada Costiera 11, I-34014 Trieste, Italy

~Received 2 May 1997!

We have investigated the ferroelectric polarization of the perovskite oxide KNbO3 within the self-consistent
Hartree-Fock~HF! method, where the crystalline orbitals are expanded over a set of localized functions.
According to the modern theory, macroscopic polarization is a geometric quantum phase: here we show
that—within the HF framework—polarization can be cast as a Berry phase of Slater determinants. We calcu-
late this observable for KNbO3 in its tetragonal phase. Besides polarization, we investigate several other
properties of the electronic ground state, including the broken-symmetry instability of the tetragonal structure.
We therefore assess the reliability and the predictive power of the HF approach when dealing with this
material, which is a paradigmatic case of intermediate ionic/covalent crystal.@S0163-1829~97!03739-9#
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I. INTRODUCTION

We implement here the Berry phase theory of mac
scopic polarization1,2 within the ab initio Hartree-Fock~HF!
scheme for crystalline solids, using the same general fra
work and the same computational techniques as in Re
Previous implementations were mostly performed at
level of density-functional theory4 ~DFT!; there is only one
published study of macroscopic polarization at the HF lev
dealing with a rather simple crystal, in a computational s
ting quite different from the present one.5 Other existing
implementations concern oversimplified tight-binding mo
els. The theory itself is available in a comprehensive rev
paper,2 whose presentation emphasizes the DFT viewpo
Though several features of the theory can be easily transl
from DFT to HF by means of a pure change of semant
there is an important conceptual difference: the HF sche
provides an explicit~single-determinant! many-body wave
function for the crystalline electrons. This fact allows us
present the Berry phase theory of polarization in a m
compact and elegant form than in the DFT-oriented lite
ture, as we are going to show in Sec. II of this paper.

We have chosen to investigate the spontaneous pola
tion of the ferroelectric perovskite KNbO3: this was in fact
the very first material where spontaneous polarization co
be theoretically accessed from a quantum-mechan
viewpoint.6 Since that pioneering work, several papers—
of them within DFT—have thoroughly investigated featur
related to macroscopic polarization7–10 and other structura
and electronic properties of this material.11–15A recent paper
studies the ferroelectric instability within a semiempirical H
method.16 It is also worth mentioning that KNbO3 has one of
the highest values of the spontaneous polarization meas
in nature.17 Because of the above reasons, the perovs
KNbO3 constitutes an ideal benchmark for our present
implementation of the modern theory of polarization.

Besides providing a study of macroscopic polarizatio
560163-1829/97/56~16!/10105~10!/$10.00
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we also provide here a comprehensive study of the struct
and electronic properties of KNbO3 within the HF scheme,
including an investigation of the ferroelectric structural i
stability. Our results will be compared with those previous
obtained by several authors within DFT.

The present implementation18 makes use of theCRYS-

TAL95 code19 and has been grafted on it. The HF crystalli
orbitals are expanded as a linear combination of Bloch fu
tions, and are evaluated over a regular three-dimensio
mesh in reciprocal space. We show in Sec. III how to co
with these two aspects of the numerical implementation.

In Sec. IV we present several results giving insight in
the electronic ground state of KNbO3 at the HF level, both
for the experimental ferroelectric geometry~in the tetragonal
phase! and for a parent centrosymmetric geometry. In Sec
we discuss the spontaneous symmetry breaking and
ferroelectric instabilty, whose theoretical description requi
some care in the choice of technical ingredients. In Sec.
we discuss our Berry phase calculations and we compare
resulting macroscopic polarization with the available expe
mental and theoretical data. Tests of numerical stability
also provided. In Sec. VII we draw our main conclusions

II. BERRY PHASE OF SLATER DETERMINANTS

Quite generally, we are interested in the differenceDP in
macroscopic polarization between two different structures
a crystalline solid. Typically one of the structures is ce
trosymmetric, such thatDP can be interpreted as the ‘‘spon
taneous polarization’’ of the low-symmetry structure. In t
Born-Oppenheimer approximation we can separate the e
tronic and ionic terms, and we focus on the former oneDPel
in the following; the classical ionic term is almost trivial2

We assume that one can continuously transform the cry
from one structure to the other by switching a parametel
~which controls the ionic coordinates! in the electronic
Hamiltonian. Since a polarization difference is equivalent
the time integral of an electric current, our viewpoint close
10 105 © 1997 The American Physical Society
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parallels the way spontaneous polarization is experiment
accessed: a typical measurement is in fact performed via
larization reversal, and its raw output is precisely the amo
of current flowing through the sample while the ions fl
from one structure to another.20

Without loss of generality we takel to be dimensionless
and assuming the values of 0 and 1 for the two structure

DPel5Pel~1!2Pel~0!5E
0

1

dl Pel8 ~l!. ~1!

Furthermore we assume that the crystal remains an i
lator for all values ofl ~i.e., the HF gap does not close!, and
that the macroscopic field vanishes along the transformat
This latter fact ensures that the Fock operator of the sys
is lattice periodic at anyl, and that the HF crystalline orbit
als have the Bloch form:

cs
~l!~r ,k!5eik•rus

~l!~r ,k!, ~2!

where theu’s are cell-periodic functions ofr . We assume the
c ’s and theu’s normalized to one over the crystal cell. It
furthermore convenient to choose the phases in such a
that cs

(l)(r ,k) is a periodic function ofk in the reciprocal
lattice: apart from that, the phases of the Bloch functions
differentk points are unrelated and completely arbitrary. O
phase choice implies for theu’s:

us
~l!~r ,k1G!5e2 iG•rus

~l!~r ,k!, ~3!

whereG is a translational reciprocal lattice vector.
Atomic Hartree units are adopted throughout. The Fo

operator is therefore

F ~l!52
1

2
¹21V~l!, ~4!

where the periodic potential isnonlocal, and depends onl,
both in its bare~electron-ion! and self-consistent~Coulomb
and exchange! terms. Taking advantage of translational sy
metry, this operator is usually diagonalized onek vector at a
time. Supposing there aren electrons per cell, only the low
est n/2 HF orbitals are relevant for electronic ground-sta
properties of a closed shell insulator. In any practical imp
mentation the Fock operator is diagonalized over a disc
k-point set: in the framework of the HF method, this heur
tic approach has some significance as a matter of princ
Suppose in fact we use a uniform mesh withN5N1N2N3
points along the primitiveGi reciprocal lattice vectors:

k j 1 , j 2 , j 3
5

j 1

N1
G11

j 2

N2
G21

j 3

N3
G3 , ~5!

where j i50, . . . ,Ni –1. A moment of reflection shows tha
the approach is completely equivalent to studying afinite
system ofN cells with periodic boundary conditions. At var
ance with DFT, the HF method provides the electro
ground state as an explicit many-body wave function—in
form of a single Slater determinant—for the large system
nN electrons. We may write this wave functionC in the
form of an antisymmetrized product ofN small determinants
of sizen, i.e.,
ly
o-
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C~l!}A )
j 1 , j 2 , j 3

uc1
~l!~k j 1 , j 2 , j 3

!c1
~l!~k j 1 , j 2 , j 3

!•••

3cn/2
~l!~k j 1 , j 2 , j 3

!cn/2
~l!~k j 1 , j 2 , j 3

!u, ~6!

whereA is the antisymmetrizer, and the electron coordina
are omitted from now on to simplify notations. The determ
nants of thec functions are simply related—through th
plane-wave factors of Eq.~2!—to determinants of theu’s.
These determinants are useful in order to arrive at a v
compact expression forDPel . We introduce a special nota
tion for them:

uF~l!~k!&5
1

An!
uu1

~l!~k! ū1
~l!~k! . . . un/2

~l!~k! ū n/2
~l!~k!u,

~7!

where theu’s are the periodic factors of then/2 lowest crys-
talline orbitals, Eq.~2!. The main formula of the Berry phas
theory, due to King-Smith and Vanderbilt,1 can then be cas
as

DPel52
i

~2p!3E dk@^F~1!~k!u¹kF
~1!~k!&

2^F~0!~k!u¹kF
~0!~k!&#, ~8!

where the integral is taken over the unit reciprocal cell.
Most of the expressions reported so far forDPel were

given in terms of the individualu orbitals.1,2 Within the HF
scheme, they are all equivalent to Eq.~8!, first proposed in
Ref. 5. The equivalence proof is rather simple, upon exp
sion of F (l)(k) back in terms of the orbitals. This will also
be clear from the discretized version of Eq.~8!, discussed in
the next section. Among other merits, the expression of
~8! provides the link between the HF theory of polarizati
presented here, and the one for correlated wave functi
due to Ortı´z and Martin.21

III. NUMERICAL IMPLEMENTATION

A. Discretization

In the present implementation we discretize t
reciprocal-cell integral of Eq.~8! with a finite sum over a
three-dimensional mesh similar to that used in the s
consistent electronic structure calculation, Eq.~5!. We start
performing a linear change of variables:

k5z1G11z2G21z3G3 . ~9!

The component ofDPel along sayG3 is then, from Eq.
~8!,

G3•DPel52
i

VE dz1dz2dz3F K F~1!~z!U ]

]z3
F~1!~z!L

2 K F~0!~z!U ]

]z3
F~0!~z!L G , ~10!

and the integral is performed over the unit cube in thez
variable, whoseN mesh points arezj 1 , j 2 , j 3

. A straightfor-
ward discretization would provide each of the two integr
in Eq. ~10! in the form:
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E dz1dz2dz3K F~l!~z!U ]

]z3
F~l!~z!L

.
1

N (
j 1 , j 2 , j 3

K F~l!~zj 1 , j 2 , j 3
!U ]

]z3
F~l!~zj 1 , j 2 , j 3

!L
.

1

N1N2
(

j 1 , j 2 , j 3

3@^F~l!~zj 1 , j 2 , j 3
!uF~l!~zj 1 , j 2 , j 311!&21#. ~11!

This naive expression cannot be used as such, since
eigenfunctions are obtained by numerical diagonalizati
and their phase at differentk points is chosen essentially a
random by the diagonalization routine. A different discre
zation algorithm must be used, in order to make such ph
arbitrariness harmless: the solution, explained, e.g., in Re
is to replace

2 i @^F~l!~zj 1 , j 2 , j 3
!uF~l!~zj 1 , j 2 , j 311!&21#

→Im ln ^F~l!~zj 1 , j 2 , j 3
!uF~l!~zj 1 , j 2 , j 311!&, ~12!

where Eq. ~3! must be enforced in expressin
F (l)(zj 1 , j 2 ,N3

) through F (l)(zj 1 , j 2,0). In other words, only

N3 independent diagonalization must be performed ove
given line,not N311. The discretized integral then reads

2 i E dz1dz2dz3K F~l!~z!U ]

]z3
F~l!~z!L

.
1

N1N2
Im ln )

j 1 , j 2 , j 3

^F~l!~zj 1 , j 2 , j 3
!uF~l!~zj 1 , j 2 , j 311!&.

~13!

We are left with the problem of evaluating the overl
between two Slater determinants, each built of an orthon
mal set of periodic spin orbitals, but where the two sets ov
lap. According to a well known theorem, the overlap b
tween the two determinants equals the determinant of
overlap matrix between the two sets of spin orbitals. T
latter is the square of the determinant of the overlap matrS
between the doubly occupied space orbitals:

^F~l!~z!uF~l!~z8!&5det2S~l!~z,z8!,

Ss,s8
~l!

~z,z8!5^us
~l!~z!uus8

~l!
~z8!&. ~14!

B. Expansion over a localized basis

The HF crystalline orbitals used in the previous expr
sions have been obtained from theCRYSTAL95 code,19 in
linear combination of atomic orbitals~LCAO! form: more
precisely they are expanded over a set of contracted Ga
ian functions wm(r ), centered at sitessm , where
m51, . . . ,M is a basis label in the primitive cell. IfRl is a
generic lattice translation, the occupied crystalline HF orb
als take the form
the
,
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cs
~l!~r ,k!5

1

AL
(
m51

M

am,s
~l! ~k!(

l 51

L

eik•Rlwm~r2sm2Rl !,

~15!

whereL is the infinite number of cells in the crystal and th
a coefficients are provided by the diagonalization routine
a givenk, with an arbitrary phase choice. A typical overla
matrix element is therefore

^us
~l!~k!uus8

~l!
~k8!&

5 (
m,m851

M

am,s
~l!* ~k!am8,s8

~l!
~k8!

3(
l 51

L

eik8•Rl^wm~r2sm!ue2 iDk•ruwm8~r2sm82Rl !&,

~16!

whereDk5k82k. The integral on the right-hand side of E
~16! does not depend onk or k8, but only on their difference
Dk. As thek-point mesh is regular andk8 is contiguous tok,
Dk can assume only the three valuesDk1, Dk2, and Dk3,
where

Dk15G1 /N1 ,

Dk25G2 /N2 ,

Dk35G3 /N3 .

~17!

Besides thea coefficients, the basic ingredients of E
~16! are therefore the matrix elements of suitable pla
waves over the localized basis. TheRl summation is trun-
cated when the overlap between thewm(r2sm) and the
wm8(r2sm82Rl) functions is smaller than a given thresho
T. WhenT51026 is used, the summation is fully converge
With this value ofT, and with the basis set described
Table I @case~b! of Table II#, about 43105 integrals have to
be calculated. The algorithm adopted for their evaluation
presented in the Appendix.

IV. ELECTRONIC STRUCTURE

The electronic properties of KNbO3 have been thor-
oughly investigated in the literature within DFT,11–15 but no
previous analysis exists at theab initio HF level. A detailed
study of the calculated HF properties of this material is the
fore in order as a preliminary work before dealing with ma
roscopic polarization. As a first step we have optimized
all-electron basis set. Then we have switched to a pseud
tential framework, using Hay-Wadt small cor
pseudopotentials22 for K and Nb ~and all electrons for
oxygen23!, optimizing the basis set again, and checking t
all ground-state properties—polarization included, as d
cussed in Sec. VI—remain stable. All of the results repor
in this section refer to the pseudopotential basis set descr
in Table I.

We have considered two structures, corresponding
l50 andl51, both illustrated in Fig. 1, and which shar
the same tetragonal unit cell. We have chosen the struct
parameters measured24 at 270 °C:a53.997 Å, andc54.063
Å. The l50 structure is centrosymmetric, and is the sa
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TABLE I. Exponents and coefficients of the contracted Gaussian basis set adopted in the present s
Nb and K, in conjunction with small core pseudopotentials~Ref. 22!. The coefficients multiply individually
normalized Gaussian type orbitals~GTO’s!.

Niobium Potassium

Shell exp.

Coeff.

exp.

Coeff.

s(d) p s(d) p

sp 3.5654 0.2637 -0.2001 7.5060 -0.0209 -0.0495
2.7049 -0.7566 0.1230 2.3710 -0.4292 0.0266
0.7705 1.1452 1.3226

sp 0.2328 1 1 0.9130 1 1
sp 0.3092 1 1
d 21.3176 -0.0138 0.4340 1

1.2386 2.8724
0.4222 4.3807

d 0.2060 1
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which was called ‘‘ideal’’ in Ref. 6. Thel51 structure is
the ferroelectric experimental one, where the atoms are
placed off center. We keep the origin fixed on Nb, and
remaining displacements are then,24 in units of c: 20.023
~K!, 20.040~OI), and20.042~OII), where ‘‘OI’’ refers to
top and bottom oxygen ions and ‘‘OII ’’ refers to the four
oxygen ions in the basal plane of the octahedron.

The electronic structure of this material has been so
what discussed in the past; it is now well assessed
KNbO3 is rather far from the extreme ionic limit, and
instead an intermediate ionic/covalent compound.9,25 Further
insight is provided—quite naturally within the prese
LCAO approach—by the Mulliken population analysis da
as usual, such analysis is not exempt from ambiguities, b
is very useful in order to investigate the overall bondi
features. The net Mulliken charges for thel50 (l51)
structure are10.99 (10.99), 13.23 (13.26), 21.39
(21.42), and21.42 (21.42) for K, Nb, OI , and OII , re-
spectively. These data show first of all that the ferroelec
distortion has an irrelevant effect on the~static! ionic
charges. Inspection of the figures show that the K atom
completely ionized, while the ionicity of both Nb and O
considerably weaker than the formal charge state of th
ions (15 and22, respectively!. The two Nbsp shells~see
Table I! contain about eight electrons (7.97), i.e., those
quired to fill the 4s and 4p orbitals. The 5s orbital is then
empty. The 1.77 electrons resulting from the difference
is-
e

e-
at

:
it

c

is

se

-

-

tween the formal charge (15) and the Nb net charge
(13.23) are allocated in the 4d orbitals (1.04 and 0.73ueu in
eg and t2g orbitals, respectively!. By considering the idea
ionic state as a reference, the most important modificatio
a back donation from oxygenp to Nb d levels. As Nbd
orbitals are quite diffuse~the exponent of the most diffus
function is 0.206 bohr22), an important overlap takes plac
between O 2p and Nb 4d (eg) orbitals, which favors back
donation. The Nb-O population is large and positive (0.
ueu for each Nb-O couple!, indicating that this bond has larg
covalent components. The Nb-K, K-O, and O-O bond pop
lation, on the contrary, are negligibly small~we recall that
covalent and ionic bonds are characterized by large and
small or null bond populations, respectively; short range
pulsions give rise to small negative terms!. The population of
the d polarization functions on oxygen in KNbO3 is ex-
tremely small (0.02ueu); these functions, however, play
fundamental role in the ferroelectric instability~see next sec-
tion!.

For comparison purposes, we quote the Mulliken popu
tion data of another perovskite compound, KNiF3.26 The net
charges are11.00 ~K!, 11.97 ~Ni!, 20.96 ~F!; the Ni-F
bond population~the equivalent of Nb-O in the presen
study!, as well as the K-F and F-F ones, are smaller,
absolute value, than 0.01ueu. These figures characteriz
KNiF 3 as much closer to the ideal ionic situation th
KNbO3: it is worth noting that KNiF3 is not ferroelectric.
neous
TABLE II. Basis set effect on the ferroelectric instability and on the calculated value of the sponta
polarizationDP. DE is the energy difference between thel51 and thel50 structures.DE is calculated
with the shrinking factorsN15N25N358, andDP with N15N252, N354.

Case Basis set

DE DP

~mHa/cell! ~Cm22)

~a! all electrons 23.138 0.3418
~b! pseudo 23.504 0.3419
~c! as ~b! but nod on K 23.357 0.3376
~d! as ~b! but 1d shell on Nb 21.602 0.3416
~e! as ~b! but nod on O 12.037 0.3376
~f! as ~b! plus ~c!, ~d!, ~e! modif. 12.116 0.3340
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The features emerging from the Mulliken analysis a
confirmed by the electronic total charge density maps, sho
in Fig. 2 as contour plots in the~110! plane~this is the same
plane which is shown as shaded in Fig. 1!. Both densities,
referring to the undistorted (l50) and distorted (l51) ge-
ometries, are quite different from a superposition of spher
densities; in order to enhance the deviation from the io
model, the differences between the crystalline charge and
superposition of the spherical charges of free ions are plo
in Fig. 3. The figures confirm, first of all, that K atoms in th
crystal are totally ionized, and virtually identical to free K1

ions. Nb and OI ions, as expected, are much different fro
their free shape, and display a conspicuous partly cova
bond, whose character is furthermore affected by the fe
electric distortion; a build up of charge takes place in
Nb-O-Nb direction, whereas in the nonbonding direction
depletion of charge is observed~in the large area betwee
vertical zero lines the difference function is negative!.

The HF band structures for bothl50 andl51 geom-
etries are given in Fig. 4, and can be compared with
corresponding DFT ones available in the literature.7,11 The
G-X and G-Z dispersions would be identical in the cub
structure: the asymmetry in the left panel is therefore a
gerprint of the tetrahedral macroscopic strain. On top of t
the low symmetry ferroelectric distortion induces splittin
and shifts in some of the highest valence bands~right panel!,
which indeed are important to the mechanism
ferroelectricity.9 As expected the HF gap~about 8.4 eV) is
much larger than experiment (3.3 eV), while the DFT o
(1.3 eV) is much smaller. The analog holds for the ove
bandwidth; the general appearance of the HF bands is h
ever quite similar to the DFT ones, and the ferroelectric d
tortion induces band splittings of comparable magnitu

FIG. 1. Tetragonal structure of KNbO3. The large black circle
in the cube center represents Nb, the small black ones in the co
represent K, and white circles represent O. Internal displacem
~indicated by arrows, and magnified by a factor 4! transform the
ideal structure into the experimental one at 270 °C. Top and bot
O ions will be called OI , while the four O ions in the basal plane o
the octahedron will be called OII . The shaded plane is the on
chosen below for displaying the electronic density.
n
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-
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@see, e.g., Fig. 1~a! in Ref. 9#.
The total and projected density of states~DOS! provide

additional information on the electronic structure. The hig
est occupied bands shown in Fig. 5 derive mostly from Op
atomic orbitals and the lowest empty bands from Nb 4d or-
bitals. The highest valence DOS presents two main pe
and Nb 4d AOs contribute mostly to the lowest shoulde
these qualitative features are very similar to those discus
in Refs. 6 and 11. We notice nonetheless that the prev
investigations relied on a somewhat arbitrary partition of
crystal cell into atomic spheres plus a~large! interstitial re-
gion, whereas the present analysis naturally exploits
local-basis expansion. The overall valence DOS structur
also in qualitative agreement with the PES spectrum.11 The
eg andt2g contributions to the Nbd DOS is shown in Fig. 6.
For simplicity reasons we have maintained the cubic symm
try symbols; in fact, although the degeneracies betweendz2

anddx22y2 in eg , and betweendxz ~or dyz) anddxy in t2g are
resolved in the tetragonal geometry, contributions to
DOS from functions belonging to the same group are
tremely similar to each other. The usual bonding-antibond
splitting appears for botheg and t2g orbitals, which is
sharper for the former as they are directed towards the o
gen atoms. The occupiedeg orbitals are much deeper in en
ergy than thet2g ones, because of the stabilizing interacti

ers
ts

m

FIG. 2. Contour plot of the crystalline~pseudo! charge density
in the ~110! plane, which passes through K, Nb, and OI atoms~see
Fig. 1!. Top panel: tetragonal centrosymmetricl50 structure; bot-
tom panel: ferroelectricl51 structure. The separation between tw
contiguous isodensity curves is 0.01 e/bohr3. The function is trun-
cated in the core region at 0.1 e/bohr3.
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10 110 56SERGIO DALL’OLIO, ROBERTO DOVESI, AND RAFFAELE RESTA
FIG. 3. Differences between the crystalline charge densitie
Fig. 2, and the corresponding superpositions of spherical free
densities~K 1, Nb51, O22) obtained with the same basis set
used for the bulk. The separation between two contiguous iso
sity curves is 0.008 e/bohr3. The function is truncated in the cor
region at 0.04 e/bohr3. Continuous, dashed, and dot-dashed lin
indicate positive, negative, and zero values, respectively.
ini-
with oxygen orbitals. Finally, Fig. 7 shows the contributio
of the two kinds of oxygen atoms to the undistorted a
distorted structures; the most evident feature is the stabil
tion of OI with respect to OII in passing from thel50 to the
l51 geometry, as a consequence of the reduced Nb-OI dis-
tance and increased covalent interaction with Nb.

V. FERROELECTRIC INSTABILITY

In Table II the energy differenceDE between thel50
and thel51 structures is reported, for several choices of
basis set. All results were generated using~i! a pseudopoten-
tial basis set for K and Nb~see Table I!, and an all-electron
basis set for oxygen;23 ~ii ! computational condition defined
as standard in theCRYSTAL95 manual;19 ~iii ! shrinking fac-
tors N15N25N358 in the SCF process. This choice pr
vides well converged values of total energy and density m
trix in all cases.

The most conspicuous message of Table II is that, in
der for the ferroelectric instability to occur,d polarization
functions have to be added to oxygen atoms. These b
functions allow the oxygen atom to develop a quadrupo
deformation, which is, in turn, the driving mechanism for t
off center displacement of the Nb atom. As a matter of fa
early model approaches to the ferroelectric instability inde
emphasized—many years ago—the role of anisotropic o
gen polarizability.27 The last column of Table II~better dis-
cussed in the forthcoming section! shows that, somewha
surprisingly, the samed polarization functions have little ef
fect on the calculated value of the spontaneous polarizat

The role of oxygend orbitals is also evident from Fig. 8
where the total energy versus Nb displacement~in units ofc)
is reported for basis sets~b! and ~e! of Table II. The mini-
mum at 0.05 is about 3.7 mhartree deep and disappears w
d orbitals on oxygen are removed. A similar but less inten
stabilization effect is due to the external diffused shell on
Nb @case~b! and ~d! in Table II#.

The actual calculated depth of the broken-symmetry m

of
n

n-

s

ic
ce
FIG. 4. Energy bands of KNbO3 in the tetragonal centrosymmetricl50 structure~left panel!, and in the corresponding ferroelectr
l51 structure~right panel!. The maximum of energy in the valence-band occurs atA; starting from the bottom, the three groups of valen
bands derive mostly from O 2s, K 3p, and O 2p atomic states, respectively. The zero of energy is arbitrary.
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mum has been discussed by some authors within DFT. T
depth is very sensitive to the volume at which the calculat
is performed, and none of the existing calculations is p
cisely comparable to ours. However, the figures reported
Ref. 12 indicate a depth of a few mRy when the experim
tal cell volume is used~as it is done here!: this compares
quite well to our finding of 3.7 mhartree.

VI. MACROSCOPIC POLARIZATION

As emphasized in the modern theory of polarization2 and
throughout this work,DPel is by definition the electronic
current which flows through the crystal during the ferroele
tric distortion. With reference to Fig. 2, we need to access
macroscopic current traversing the crystal cell while the io

FIG. 5. Valence~negative energies! and conduction density o
states~DOS! at the (l51) distorted experimental geometry, re
ferred to as an arbitrary energy zero. We show the total DOS~solid
line!, and also a partial DOS, where the projection over the Nbd
orbitals is subtracted from the total DOS~dashed line!.

FIG. 6. Nb 4d contribution to the total DOS. The full line is th
dz21dx22y2 contribution; the dashed line refers to the otherd or-
bitals.
is
n
-

in
-

-
e
s

are continuously~and adiabatically! displaced from the top-
panel geometry to the bottom one. Such integrated curre
evaluated as a Berry phase of the Slater determinant. C
trary to a widespread belief—shared by many textbook
there is no hope of recovering the value ofDPel from the
electronic charge density itself. This latter quantity in fa
only depends on the modulus of the wave function, wh
the relevant phase information is irretrievably deleted.

Spontaneous polarizationDP is a vector aligned to the
internal atomic displacements; with reference to Fig. 1, i
vertical and directed from bottom to top. SinceDP horizon-
tal components resulted to be numerically equal to zero in
of our calculations, from now on we indicate the spontan

FIG. 7. Apical~OI) and equatorial~OII) oxygen contribution to
the valence DOS. The upper and lower curves refer to the tetrag
undistorted (l50) and distorted (l51) geometries, respectively.

FIG. 8. Total energy versus@001# displacement of Nb~in units
of the c lattice parameter!, starting from thel50 tetragonal struc-
ture; K and O are kept fixed in their originall50 position. Open
and full circles refer to basis sets with and withoutd orbitals on
oxygen@cases~b! and~e! in Table II#. The energy difference at zer
Nb displacement is 0.015 hartree, and is due to the additional va
tional freedom provided byd functions on oxygen.
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TABLE III. Dependence of spontaneous polarization onN1, N2, andN3, the shrinking factors for the
reciprocal lattice vectorsG1, G2, andG3, respectively.DP% is the percentage difference in each set w
respect to the most accurate result.

N1 N2 N3 N5N1N2N3 DP (Cm22) DP%

2 2 2 8 0.3248 16.58
2 2 4 16 0.3419 11.65
2 2 8 32 0.3463 10.39
2 2 16 64 0.3474 10.08
2 2 32 128 0.3476

2 2 2 8 0.3248 22.43
4 4 2 32 0.3172 20.03
8 8 2 128 0.3171

4 4 8 128 0.3385
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ous polarization value only through its modulusDP. The
result obtained at the experimental distorted geometry
DP50.34 Cm22 ~see last entry in Table III!, which is very
close to the experimental value (0.37 Cm22, see Refs. 28, 29
and 10! and to previous theoretical results based on LD
methods (0.35, 0.33, and 0.40 Cm22 as reported in Refs. 6
10, and 8, respectively!.

Our result was generated using the same computati
conditions~i!–~iii ! given in the previous section~more se-
vere conditions do not alter the final result forDP), and a
128 k-point mesh (N15N254;N358) in the numerical
evaluation of the integral in Eq.~8!. The convergence ofDP
as a function of the number ofk points used to evaluate suc
an integral is documented in Table III. In the plane orthog
nal to the polarization direction, shrinking factorsN15N2

54 are sufficient to provide values very close to the co
verged one; in the polarization direction the convergenc
slower, and at leastN358 is required in order to reduce th
error to below 1%.

The effect of various variational basis sets onDP are
summarized in Table II. In a preliminary calculation, an a
electron basis set was used, consisting of 22, 32, and
AO’s for K, Nb, and O, respectively, grouped in 1s, 4 sp, 1
d ~K!, 1 s, 4 sp, 3 d ~Nb! and 1s, 3 sp, 1 d ~O! shells. The
most diffusesp functions were optimized individually in the
bulk; this basis set is of very high quality, but also qu
expensive; an equivalent pseudopotential basis set was
optimized for K and Nb, which is reported in Table
whereas for oxygen the all-electron basis set was maintai
The comparison of first and second lines of Table II sho
that the pseudopotential basis set reproduces quite accur
the all-electron data forDP; alsoDE is reproduced to within
10%. The other entries in the table show thatDP is very
stable with respect to simplifications of the basis set, suc
the removal ofd orbitals on K and O, or the reduction of th
basis for the Nb 4d electrons from twod shells~3-1 G con-
traction! to a singled shell ~3 G contraction!.

As a final point, we investigated the linearity of spont
neous polarization as a function of the ferroelectric dist
tion; DP was evaluated in the interval 0<l<2.5 and the
results are shown in Fig. 9. It turns out thatDP remains
approximately linear also for relatively high distortions;
is

al

-

-
is

18

en

d.
s
ely

as

-
-

second order correction becomes important only for the
physical valuel.1.5.

VII. DISCUSSION AND CONCLUSIONS

We have presented a thorough analysis of the electro
ground-state properties of KNbO3 within the ab initio HF
approach. The most important message emerging from
present study is that for this intermediate ionic-covale
compound the HF approach is very accurate, and basic
enjoys the same predictive power as DFT. The latter
proach, according to many published works, is well kno
to be extremely accurate in describing the electronic prop
ties of this benchmark material.

As quoted in Sec. I, the HF approach was used so far o
once in dealing with macroscopic polarization. The ca
study was ZnO, a simple~nonferroelectric! oxide.5 Despite
having a mixed ionic-covalent character, ZnOapparentlybe-
haves like a trivial ‘‘rigid-ion’’ material as far as polarizatio

FIG. 9. Spontaneous polarizationDP as a function of the mag-
nitude l of the ferroelectric distortion;l51 corresponds to the
experimental geometry of the ferroelectric structure at 270 °C. T
dashed straight line was obtained interpolating theDP values in the
interval 0<l<1.25.
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is concerned. The subtle reasons for this are thoroughly
cussed in Ref. 5, where it is also found that the DFT and
approaches provide similar and accurate values when the
larization induced by sublattice displacements is addres
However—as clearly stated in the conclusions of Ref. 5
such scheme independence was possiblynot expected for
other, more complex, materials.

In the present work we find that the calculated sponta
ous polarization of KNbO3 in its tetragonal ferroelectric
phase is in very good agreement with the experiment,
with the existing DFT calculations as well.7–10 This is not at
all a trivial finding. In fact, we presently understand9,25 the
large value of the polarization in this material as due to
strong interaction of the highest occupied states~mostly oxy-
gen 2p) with the lowest unoccupied ones~mostly Nb 4d).
One would naively expect that such mixing effects a
strongly affected by the energy position of the releva
bands. Given that the HF energy gap is very much lar
than the DFT one, a very similar value of the calculat
polarization could not be taken for granted beforehand. T
reasons for the substantial equivalence of the two sche
are difficult to assess: this would require a thorough comp
son of the wave functions~and notably of theirphase! within
an identical basis set. At present, we may only conject
that the unscreened exchange might enhance the intera
between the occupied states with the lowest unoccup
ones, which are energetically distant within HF; convers
within DFT the gap is smaller but the exchange is effectiv
screened.

The overall equivalence of HF and DFT when deali
with the spontaneous polarization of KNbO3 is therefore an
important and gratifying find. This fact, in addition to th
findings of Ref. 5, supports the idea that the two schem
provide a physical description of about the same quality
materials having a mixed ionic-covalent character.

Among several other properties investigated in the pres
work, a very important one is the ferroelectric instability, f
which our results are once more in overall agreement w
DFT ones. The energy gain of the broken-symmetry dis
tion is very tiny, and the mechanism can be easily disrup
by playing with the technical ingredients. In Ref. 9 a certain
fake potential was added to the Hamiltonian: this modifi
tion suppresses at the same time the structural instabilityand
the large value of the spontaneous polarization. Within
present localized-basis calculation, we are able to supp
the structural instability by simply removing from the bas
set some important functions: namely,d orbitals centered on
oxygen atoms. But, somewhat surprisingly, this same
moval does not affect the calculated polarization at all.

Finally, we wish to discuss the issue of the linearity of t
calculated polarization as a function of the magnitude of
ferroelectric distortion. In agreement with Ref. 6, we find
extremely good linearity: this is a nontrivial fact, given th
ferroelectricity is essentially a nonlinear phenomenon. V
recently, Wanget al.10 have investigated the linearity issu
in much detail within DFT and have found rather importa
nonlinearities. They do not consider our case of a tetrago
‘‘collective’’ displacement ~where the whole ferroelectric
distortion is scaled!, while they address the polarization in
duced byindividual sublattice displacements. The linearit
nonlinearity issue remains an interesting and intriguing o
is-
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The study of the polarization induced by individual subla
tice displacements, and in particular its nonlinearity with
HF, is cleary beyond the scope of the present paper and
be addressed in a subsequent study.
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APPENDIX

The atomic orbitals~AO’s! wm(r )[w l
m(r ) are normalized

to one and are linear combinations of Gaussian type orb
~GTO’s! gnlm(r ):

w l
m~r !5(

n
cnlgnlm~r !. ~A1!

The GTO’s are defined as

gnlm~r !5Nl
m~anl!Xl

m~r !e2anlr
2
, ~A2!

where

Nl
m~anl!5S ~22dm0!~ l 2umu!!

~ l 1umu!! D 1/2

3S ~anl!
l22l~2l 11!

~2l 11!!! D 1/2S 2anl

p D 3/4

~A3!

is a normalization factor.Xl
m(r ) is a real solid spherical har

monic, which can be expressed as

Xl
m~r !5 (

t,u,v

~ t1u1v5 l !

Dl
m~ t,u,v !xtyuzv, ~A4!

where the coefficientsDl
m(t,u,v) are easily generated

through recursion relations.3,30

By using Eq.~A1!, ~A2!, and ~A4!, the integral which
appears on the right-hand side of Eq.~16! can be written as

^wm~r2sm!ue2 iDki•ruwm8~r2sm82Rl !&

5 (
n,n8

cnlcn8 l 8Nl
m~anl!Nl 8

m8~an8 l 8!

3 (
t,u,v

~ t1u1v5 l !

(
t8,u8,v8

~ t81u81v85 l 8!

Dl
m~ t,u,v !Dl 8

m8~ t8,u8,v8!

3I xI yI z , ~A5!

whereI x can be cast as~the notation has been simplified a
follows: s15sm ; s25sm81Rl ; a i5anl ; a j5an8 l 8)

I x5E dx ~x2s1x!
t~x2s2x!

t8

3e2a i ~x2s1x!2
e2a j ~x2s2x!2

e2 iDkixx. ~A6!
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By using the Gaussian product theorem,31 and after some
algebraic manipulations,18 the integralI x reduces to

I x5e2v i j ~s1x2s2x!2
e2 iDkixhx(

n50

t

(
l 50

t8 S t

nD S t8

l D
3~21! t1t82n2 ls1x

t2ns2x
t82 l (

m50

n1 l S n1 l

m D hx
n1 l 2m

3E dx xme2a i j x
2
e2 iDkixx, ~A7!

where

a i j 5a i1a j ; v i j 5
a ia j

a i1a j
; h5

a is11a js2

a i1a j
. ~A8!
.

hy

.

tt.

n

el
The integral in Eq.~A7! is related to theHm Hermite
polynomials,31 so that finally one gets

I x5S p

a i j
D 1/2

e2v i j ~s1x2s2x!2
e2Dkix

2 /4a i j e2 iDkixhx

3 (
n50

t

(
l 50

t8 S t

nD S t8

l D ~21! t1t82n2 ls1x
t2ns2x

t82 l

3 (
m50

n1 l

i mS n1 l

m D hx
n1 l 2mS 1

2a i j
1/2D m

HmS 2
Dkix

2a i j
1/2D .

~A9!

Substitution of Eq.~A9!, and similar expressions forI y
andI z , into Eq.~A5! provides the expression adopted for t
evaluation of the general integral.18
,

, J.

lia,
-

ev.

C

C.

m-
1R. Resta, Ferroelectrics136, 51 ~1992!: R.D. King-Smith and D.
Vanderbilt, Phys. Rev. B47, 1651~1993!; R. Resta, Europhys
Lett. 22, 133 ~1993!.

2R. Resta, Rev. Mod. Phys.66, 809 ~1994!.
3C. Pisani, R. Dovesi, and C. Roetti,Hartree-Fock Ab Initio Treat-

ment of Crystalline Systems, Lecture Notes in Chemistry Vol. 48
~Springer, Berlin, 1988!.

4Theory of the Inhomogeneous Electron Gas, edited by S. Lun-
dqvist and N.H. March~Plenum, New York, 1983!.

5S. Massidda, R. Resta, M. Posternak, and A. Baldereschi, P
Rev. B52, R16 977~1995!.

6R. Resta, M. Posternak, and A. Baldereschi, Phys. Rev. Lett.70,
1010 ~1993!.

7R. Resta, M. Posternak, and A. Baldereschi, inMaterials Theory
and Modelling, edited by J. Broughton, P.D. Bristowe, and J. M
Newsam, MRS Symposia Proceedings No. 291~Materials Re-
search Society, Pittsburgh, 1993!, p. 647.

8W. Zhong, R.D. King-Smith, and D. Vanderbilt, Phys. Rev. Le
72, 3618~1994!.

9M. Posternak, R. Resta, and A. Baldereschi, Phys. Rev. B50,
8911 ~1994!.

10C.Z. Wang, R. Yu, and H. Krakauer, Phys. Rev. B54, 11 161
~1996!.

11T. Neumann, G. Borstel, C. Scharfschwerdt, and M. Neuma
Phys. Rev. B46, 10 623~1992!.

12A.V. Postnikov, T. Neumann, G. Borstel, and M. Methfess
Phys. Rev. B48, 5910~1993!.

13R.D. King-Smith and D. Vanderbilt, Phys. Rev. B49, 5828
~1994!.

14A.V. Postnikov, T. Neumann, and G. Borstel, Phys. Rev. B50,
758 ~1994!.

15R. Yu and H. Krakauer, Phys. Rev. Lett.74, 4067~1995!.
s.

n,

,

16R.I. Eglitis, A.V. Postnikov, and G. Borstel, Phys. Rev. B54,
2421 ~1996!.

17S.C. Abrahams and E.T. Keeve, Ferroelectrics2, 129 ~1971!.
18S. Dall’Olio, thesis, University of Torino, Torino, 1996.
19R. Dovesi, V.R. Saunders, C. Roetti, M. Causa`, N.M. Harrison,

R. Orlando, and E. Apra`, CRYSTAL95 User’s Manual~University
of Torino, Torino, 1996!.

20M.E. Lines and A.M. Glass,Principles and Applications of Fer-
roelectrics and Related Materials~Clarendon Press, Oxford
1977!.

21G. Ortı́z and R.M. Martin, Phys. Rev. B49, 14 202~1994!.
22P.J. Hay and W.R. Wadt, J. Chem. Phys.82, 270~1985!; 82, 284

~1985!; 82, 299 ~1985!.
23Ph. D’Arco, F. Freyria Fava, R. Dovesi, and V.R. Saunders

Phys.: Condens. Matter8, 8815~1996!.
24A.W. Hewat, J. Phys. C6, 1074~1973!.
25Materials Theory, Simulations, and Parallel Algorithms, edited

by E. Kaxiras, J. Joannopolos, P. Vashista, and R. K. Ka
MRS Symposia Proceedings No. 408~Materials Research Soci
ety, Pittsburgh, 1996!, p. 9.

26J.M. Ricart, R. Dovesi, C. Roetti, and V.R. Saunders, Phys. R
B 52, 2381~1995!.

27R. Migoni, H. Bilz, and D. Bau¨erle, Phys. Rev. Lett.37, 1155
~1976!.

28W. Kleemann, F.J. Scha¨fer, and M.D. Fontana, Phys. Rev. B30,
1148 ~1984!.

29M.D. Fontana, G. Me´trat, J.L. Servoin, and F. Gervais, J. Phys.
6, 1074~1973!.

30V.R. Saunders, C. Freyria Fava, R. Dovesi, L. Salasco, and
Roetti, Mol. Phys.77, 629 ~1992!.

31V.R. Saunders, inComputational Techniques in Quantum Che
istry and Molecular Physics, edited by G.H.F.D. Diercksen
et al. ~Reidel, Dordrecht, 1975!, p. 347.


