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Vortex lattice transitions in borocarbides
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Nonlocal corrections to the London model are used to describe vortex lattices inBu®Gli Within this
scheme in fields along theaxis, vortices should form a square latticetated 45° relative to the crystal axes
a and b) at large fields, should transform to a triangular one at a fildand to another triangular lattice at
a still lower fieldH,. We argue that the transition Bft, is of second order, whereasHyt it is of first order.

In tilted fields,H, is predicted to move to higher fields. Neutron-scattering data for BNC are discussed.
[S0163-18207)52414-3

The growth of large high-quality crystals of borocarbidesentg to describe the VL data taken at temperatures far from
(RE=Er,Y,Lu)Ni ,B,C has stimulated studies of vortex lat- T, and in fields well under the upper critical fiektl.,. Usu-
tices (VL) in these superconductors by small-angle neutrorally, for materials with a large GL parameter the L ap-
scattering(SANS), scanning tunneling microscop§8TM),  proach is quite adequate fars andH’s relevant for VL'’s.
and decoration experiments. For all of these highrateri-  In particular, this simple approach reproduces well the main
als, in magnetic fields alon@01], SANS show a square VL features of the coupling between VL’s and the underlying
with one side parallel t6110] at fields higher than 2 k@he ~ @nisotropic crystal structufé’ Still, there are many ex-

square rotated 45° relative to the crystaf the same VL is amples when the L model fails; cubic superconductors are
seen with STM on LUNiB,C.* As the field is reduced be- among them. Since both L and GL theories incorporate crys-

low a temperature and material-dependent vaise(in the tal anisotropy via the second-rank mass tensgr, within
0.3-1 kG ranggthis VL transforms into a near hexagonal thes_e approaches, the cubic crystals ShOUId. beha\_/e as .isotro—
lattice made of rhombic cells with diagonals aldig0] and pic, i.e., VL’s should be hexagonal for any field orientation.

. o . ; s ; This, however, is not the case as has been shown in SANS
[010]. This transition field increases with increasing tem- periments on cubic superconductbt&l! Thus, the idea
p_eratu_re. The transformati(_)n proceeds via a rhombphedr developing the nonlocal corrections.to the ’L theory for
d|stor_t|on of the square which preserves the orlentatlon_s o) escription of VL's aff<T, andH<H_, is more promising
the diagonals alonfl00] and[010] and, of course, the unit t

atiG han the similar one within GL.
cell area due to flux quantization. The corrections have recently been derived to address the

In this paper we study VL's in LUNIB,C in some detail proplem of lowT magnetization in highF, materialst2 The
as a representative of nonmagnetic borocarbides. We sholxgea was to take the general form @{k) (which is «x 2

that the London model amended with nonlocal corre_cuonsfor k—0 with A being the penetration deptand expand it
accounts for most of the observed features, among which the 2.2 ) .
the small parametek&;. The corrections were applied

conspicuous square-to-triangle transition is currently unde}” i o .
intensive experimental scrutiny. successfulll® to describe the data on VL's in cubic

. : . V,Silt
The idea that the nonlocality of the relation between the" 3 L . L )
y Having in mind application to the tetragonal Lu),C,

current density j and the vector potentialA in . TN
superconducto?é plays a role in forming VL's is not new. we start with the general form of these correctihs:

The nonlocality is caused by the finite sizg, of Cooper

pairs. Instead of local relations betweg¢nand A of the A 1

Ginzburg-LandauGL) or London(L) approaches, the mi- —iji=— —z(mi}l—)\znij,mhkm)aj. (1)
croscopic theory provides an integral equation with a kernel ¢ A

O extending to distances &o; in Fourier space this relation

is of the formj(k)=Q(k)A(k).® In the GL domain where Here,a=A+ ¢,V 6/2m, ¢ is the order-parameter phase, and
£(T)> &, or far from the vortex cores, the nonlocal correc- $o 'S the flux quantum. The inverse “mass tensor”
tions vanish. m;; "= (viv;)/(de{viv;))*® is defined so as det;=1; v is

It is hard to utilize the microscopic theory as it is formu- the Fermi velocity, and- - -) stands for the average over the
lated for the VL problem. It is also not easy to justify the Fermi surface. Furthei = (A \phc)'? is the average pen-
nonlocal contributions to the GL theoffigher-order gradi- etration depth and;=\+ym; with i=a,b,c. Summation is
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implied over repeated subscripts.

D=(v?)/3) we havé?

WX vivjuom _Agzﬁaz(ﬂ’)_g @
MimTTapaRE T TSR T

Here, B3=A2+#%w? Ay(T) is the energy gap,
ho=7mT(2n+1) with an integem, and the sums iry are
extended taw>0. Further,B’' = 8o+ /27 with 7 being the

Denoting
D=(de{viv;)*® (in the isotropic or cubic case
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n,=0.54%C, n,=0.070%,

n;=0.22%, n,=0.075T. (5)

For the material in the clean limit and~710 A we esti-

mateC~0.363. To fit the experimentally observed “square-

to-triangle” transition at~500 G, we needC~0.221, the

value to be employed in all data analyses on the Lu system.
We now apply Eq.(1) to a vortex along some direction

z. To find the field componerti, (the only one needed for

scattering time due to nonmagnetic impurities. Note that ten€valuating intervortex interactiothoh,/4), one has to in-

sorn is symmetric in all indices.

The quantity y(T,7) was evaluated in Ref. 12; in the

clean limit y=2/3 atT=0 and drops te=0.30 atT.. Scat-
tering suppresses; in the dirty limit y— (7Aq/%)2—0, i.e.,
nonlocal effects vanish. Thus,~£5/A?~ k2 in the clean
case and is of the ordev ¢/\)? for dirty materials.

vert Eg.(1) to isolatea, and use the flux quantization condi-
tion, curla=h— ¢,z5(r). To this end, we write Eq1) in the
form (4m\?/c)ji=—q;a; with g;=m;*=A?N;; and
Nij=nijimkikm. Since the correctio\®N;; is small, one
findsqﬁlz m;; + )\Zmismthst. After straightforward algebra
we have

With n=0, Eq. (1) is the standard anisotropic L
equation-* Being dependent on the shape of the Fermi sur-
face, the fourth-rank tensar couples supercurrents with the wheree, is the unit antisymmetric tensor. This reduces to
crystal even in cubic materials. For a tetragonal symmetry irthe anisotropic London equation when the nonlocal correc-
the crystal framed,b,c), mijl is diagonal with two different tions are absent ar(qrj1= m;; . The system of three equa-
eigenvaluesn_}=m,}=1/m, and m_}=1/m,, whereasn ~ tions _(6) can be solved foh;’s for a gene_ral vortex orienta-
has four independent componenis=nNaaqa, No=Naap,, 10N iNStead we focus below on two simple situations, the

N3=Ngcee, aNdNy=N,,cc. TO evaluatem andn one needs applied field along: anda. . .
Fermi-surface averages of products of Fermi velocities; The free-energy density of a VL directed alongs
therefore, one turns to the band structure of LyBjC.

The Fermi-surface averages for the relevant products of
velocities were evaluated using an accurate tight-bindify fit
to the first-principles linearized augmented plane-waveyhereB is the magnetic induction arid, is taken at wave
calculations'® To obtain the velocities, the Brillouin zone vectorsk=g forming a proper reciprocal lattice. The equi-
was divided into tetrahedrons and the energy eigenvalugg,rium VL at a givenH corresponds to the minimum of
were determined at each corner. Linear interpolation Wags — F — BH/4ar. Dealing with different sample shapes in a
usgd to obtain the Fermi surface in the 919 tetrahedronéiven applied field, one should define a proper potential
which had bands crossing the Fermi levelt of the total  hich is a minimum in equilibrium. We focus here on the
number of 153§ For those bands, the velocity at thoint 556 of the applied field perpendicular to a platelet sample
centered on each piece of Fermi surface was determined Ny q parallel to one of the principal crystal directions; equi-
merically, and added to obtain the appropriate averages: |iprium VL'’s are then given by the absolute minimumffat
a givenB.

We start withH along[001]; the vortex field has only one
componenth,. We choose the coordinates,y,z) coincid-
ing with the crystal framed,b,c). Then all tensors are eas-
ily evaluated, €.9.q,, =Ma(3,,+A5,N,,) where the greek
indices take only,y values. We obtain after simple algebra

hi+N2eis€knidix Knkshe = ¢oZi , (6)

F=B2Y, h,(g)/8mdy, @)
g

(v?)=5.12x 10" (cm/se¢?,
(v} =1.44x107° (cm/ses?,
(v202)=1.85< 10?® (cm/seg?,

4\ _
(vG)=585<10° (cmises”, a1+ AZgk2+ A&k + dk2KE)] = b,

(v202)=1.97x 10?® (cm/ses*. 3) d=2n,-6n,. @)
Besides, (v2)=1.87x10" (cm/seg?, which yields m,,  One can verify that in the isotropic cade=0; thusd#0 is
=m,=0.904 andn,.=m.=1.22 that agrees with a weak an- responsible for the anisotropy. We note that although the
isotropy ofH., seen in this materidi. fourth-order terms in E(8) make the sun(7) formally con-

Now one can evaluate providedAg,\, andr are given. ~ vergent, the L approactwith or without nonlocal correc-

Since none of these are known with sufficient accuracy, wéions fails in the vortex core, and one has to introduce a
combine them in one paramet&(T,7): cutoff atg~ 1/¢. Minimization of the energy for this case is

done by complementinh,(g) with a factor exptg?&?).12
n(v?)?y

(vivjvvm) _ In comparing energies for various VL's, we note that for
ADAIN? "

<02>2 d

With the average$3) we have

(4)  the case in question, the field and the crystal h@@®) and
(110 symmetry planes. We will look for VL's having one of
these symmetry elements. Thus, the general parallelogram of

Nijim=
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FIG. 1. The free-energl vs the apex angl@ of a rhombic unit ] ) o
cell in fields 200 Gthe lower curvg and 500 G(the upper curve FIG. 2. The apex anglg of rhorpblc unit cells vs applied fields.
parallel to ¢. For H<H,~480 G, two minima at@’'>60° and Two curves on the left are foH||c. The upper curve is for the
"<120° approach each other with increasing field and merge ai’ombus diagonals along,b [examples ofF(B) for this case are
H=H, to 8=90°. The square VL remains stable fdr>H,. given in Fig. 1. The lower-left curve is for rhombic VL's with a

diagonal along110]; these VL's are unstable fad>H; where
the VL unit cell is reduced to a rhombus with a diag- they are shown by crosses. The curve starting at the right is for
onal along[100] or [110]. We will minimize F for each  H|a; the structure shown is stable.
of these possibilities separately and choose the energeti-
cally favorable. We will see that whichever case wins de-tal and field ar¢010 or (001); the only rhombus compatible

y p
pends onH. The VL vectors for the first possibility are with these elements is one with diagonal$Gil] and[010];
ub;+vbowith integers u,» and b;=b(xsing;+ycoss,),  See Fig. 2. Proceeding as in the previous case we obtain
b,=b(—xsinB,+ycosB,); b is the side of the isosceles tri-
angle an_d B.=B ig thg apex angle:b=\/¢O/Bsin/3. hz[1+)\2K2+>\4(n4K4+dkiki)]=¢o, 9)
The reciprocal lattice is g;x=m(u—v)/bsinG;, iy
=m(u+v)/bcosB;. For the second possibilityj110] is
the rhombus diagonalg,,=2m(v cosB,—using,)/bsing, K2=m,k2+ mck§ ., d=ngm2+n;mZ—6n,m,m,.
9oy =2m(u COSB,— v sinBy)/bcosB, with B,= BI2— /4.

Examples ofF(p) are shown in Fig. 1. The anglg8  Results of minimization of the energy) with this h, are
obtained by minimizingF at different fields are shown in  snown in Fig. 2. A few points are to be noticed Due to
Fig. 2. At small fields, the minimum energy corresponds tohe anisotropy in thexy (or bc) plane, the high-field struc-
the rhombus with a diagonal alorig10]; this structure be-  yre js not a 45° rotated square but a rhombus with the apex
comes unstable at;~180 G. ForH>H;, the equilibrium  angje3~81.3° of the same orientation. The low-field VL is
rZhOTT]bUS has a dlatg_lonal an[t{))O], shlqwr&z;;[the left ﬁfd':'?- made of an isosceles triangles even in the liBit-0. (b)

- The transition aH, cannot be realized by a small defor- Unlike the caseH||f:, we have here only two competing

mation; 1.e., it Is of the first order. The situation near p,,pic v s in low fields. Still, we expect the low-field VL

H,~480 G is different: aH—H, from below, the angle ) -
B—90° while the orientation of the rhombus does noti" this case to be better ordered than Ffc. (c) The tran-

change. The transition &, to a square VL is therefore of sition between the fixed high-field structure and Ehdepen-
the second order. dent low-field VL occurs aH,=1.25 kG as compared to

It should be noted that due to the fourfold rotational sym-about 0.5 kG forH||c. The last feature might be interpreted

metry (©) for this field orientation, each structure mentioneddualitatively as follows: the high-field locked structure is
above can be rotated 90° without changing the energy. The2used by nonlocal effects with a range of the orglerThe
existence of structures with equal or close energies may reémaller this range, the weaker the nonlocal effect, and the
sult in domains of different VL's or cause disorder in actual!0Cking happens at shorter intervortex distances, i.e., at
vortex arrangements. higher fields. For anisotropic materials, the rolegég for

The treatment is more involved for an arbitrary field H||c goes to&,é, when H|a, so that the effective range

orientation, sincem and n have to be transformed from Shrinks €.<&,,) while the transition to a locked state
the crystal frame wher is diagonal andh is given by Eq. moves to higher fields. Since the nonlocality range slowly
(5), to the frame X,y,Z) with z along the vortex axes. To decreases with raisin@, one expects the transition field
avoid this formal complexity, we demonstrate the effect ofH2 to increase with temperature. The increasing transition

. ) . L - field qualitatively agrees with experiments on the Er and Lu
tilted fields for the simple situation dfi||a. We choose the a y ad P

systems, although the data are not yet accurate enough for a
axes so thax=c, y=Db, andz=a; then the needed compo- dﬁtailed compargi]son y g

nents of n are Mxxx=MNecee=N3s Nyyyy=Nbppp= N1, and The predictions we make on VL transitions for the Lu
Nyxyy™= Nccaa=™ Na- ForHl|a, the symmetry planes of the crys- compound are not yet properly verified since so far we do
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100 [ 1T T T Tt [T T T T[T T[T TTT T[T suggest the transition field, as=~900 G. This allows us to
[ ] reconstruct the low-field part of the cung{B) in a reason-
g o ] able agreement with data.
Thus, we have shown that the London model corrected for
nonlocal effects accounts well for the square VL’s seen in

. high fields parallel to the axis of borocarbides. The model
o ErNiB C ] explains the observed transition to triangular structures with
P ] the field reduction. More data are needed to verify evolution
of the VL structure in low fields.

Note addedRecently, formally similar conclusions about
P S S S T PR DT T possible VL structures id-wave materials were reported by

o o5 1 o225 8 35 I. Affleck, M. Franz, and M. Amin{Phys. Rev. B55, R705

B (kG) (1997)]. The authors derive L equations starting with the GL

free energy phenomenologically amended with higher-order

gradients. FoH||c, the single vortex field is given by an

. equation similar to Eq(8). For certain choices of the param-
circles are taken frond— 26 scans. The squares are taken from the t . ved. th inimizati ields th VL
location of the Bragg reflections on an area detector at the peak SLers Involved, the energy minimization yieids the square

the rocking curve. The scatter in the data accurately represents thl—’)h'Ch transforms tdH-dependent structures in low fields.
error bars. The solid line is calculated assumiihg=900 G.
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FIG. 3. The apex anglg of rhombic unit cells vs applied fields
parallel toc from the SANS data on ErNB,C atT=3.5 K. The
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