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Nonlocal corrections to the London model are used to describe vortex lattices in LuNi2B2C. Within this
scheme in fields along thec axis, vortices should form a square lattice~rotated 45° relative to the crystal axes
a and b) at large fields, should transform to a triangular one at a fieldH2, and to another triangular lattice at
a still lower fieldH1. We argue that the transition atH2 is of second order, whereas atH1 it is of first order.
In tilted fields,H2 is predicted to move to higher fields. Neutron-scattering data for ErNi2B2C are discussed.
@S0163-1829~97!52414-3#

The growth of large high-quality crystals of borocarbides
~RE5Er,Y,Lu!Ni 2B2C has stimulated studies of vortex lat-
tices ~VL ! in these superconductors by small-angle neutron
scattering~SANS!, scanning tunneling microscopy~STM!,
and decoration experiments. For all of these high-k materi-
als, in magnetic fields along@001#, SANS show a square VL
with one side parallel to@110# at fields higher than 2 kG~the
square rotated 45° relative to the crystal!;1–3 the same VL is
seen with STM on LuNi2B2C.

4 As the field is reduced be-
low a temperature and material-dependent valueH2 ~in the
0.3–1 kG range! this VL transforms into a near hexagonal
lattice made of rhombic cells with diagonals along@100# and
@010#. This transition field increases with increasing tem-
perature. The transformation proceeds via a rhombohedral
distortion of the square which preserves the orientations of
the diagonals along@100# and @010# and, of course, the unit
cell area due to flux quantization.2

In this paper we study VL’s in LuNi2B2C in some detail
as a representative of nonmagnetic borocarbides. We show
that the London model amended with nonlocal corrections
accounts for most of the observed features, among which the
conspicuous square-to-triangle transition is currently under
intensive experimental scrutiny.

The idea that the nonlocality of the relation between the
current density j and the vector potentialA in
superconductors5,6 plays a role in forming VL’s is not new.7

The nonlocality is caused by the finite size,j0, of Cooper
pairs. Instead of local relations betweenj and A of the
Ginzburg-Landau~GL! or London ~L! approaches, the mi-
croscopic theory provides an integral equation with a kernel
Q̂ extending to distances;j0; in Fourier space this relation
is of the form j (k)5Q̂(k)A(k).6 In the GL domain where
j(T)@j0, or far from the vortex cores, the nonlocal correc-
tions vanish.

It is hard to utilize the microscopic theory as it is formu-
lated for the VL problem. It is also not easy to justify the
nonlocal contributions to the GL theory~higher-order gradi-

ents! to describe the VL data taken at temperatures far from
Tc and in fields well under the upper critical fieldHc2. Usu-
ally, for materials with a large GL parameterk, the L ap-
proach is quite adequate forT’s andH ’s relevant for VL’s.
In particular, this simple approach reproduces well the main
features of the coupling between VL’s and the underlying
anisotropic crystal structure.8,9 Still, there are many ex-
amples when the L model fails; cubic superconductors are
among them. Since both L and GL theories incorporate crys-
tal anisotropy via the second-rank mass tensormik , within
these approaches, the cubic crystals should behave as isotro-
pic, i.e., VL’s should be hexagonal for any field orientation.
This, however, is not the case as has been shown in SANS
experiments on cubic superconductors.7,10,11 Thus, the idea
of developing the nonlocal corrections to the L theory for
description of VL’s atT!Tc andH,Hc2 is more promising
than the similar one within GL.

The corrections have recently been derived to address the
problem of low-T magnetization in high-Tc materials.

12 The
idea was to take the general form ofQ̂(k) ~which is}l22

for k→0 with l being the penetration depth! and expand it
in the small parameterk2j0

2. The corrections were applied
successfully13 to describe the data on VL’s in cubic
V3Si.

11

Having in mind application to the tetragonal LuNi2B2C,
we start with the general form of these corrections:12

4p

c
j i52

1

l2 ~mi j
212l2ni j lmklkm!aj . ~1!

Here,a5A1f0¹u/2p, u is the order-parameter phase, and
f0 is the flux quantum. The inverse ‘‘mass tensor’’
mi j

215^v iv j&/(det̂ v iv j&)
1/3 is defined so as detmi j51; v is

the Fermi velocity, and̂•••& stands for the average over the
Fermi surface. Further,l5(lalblc)

1/3 is the average pen-
etration depth andl i5lAmi with i5a,b,c. Summation is
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implied over repeated subscripts. Denoting
D5(det̂ v iv j&)

1/3 ~in the isotropic or cubic case
D5^v2&/3) we have12

ni j lm5
\2^v iv jv lvm&
4DD0

2l2 g, g5
D0
2(b0

22~b8!23

(b0
22~b8!21 . ~2!

Here, b0
25D0

21\2v2, D0(T) is the energy gap,
\v5pT(2n11) with an integern, and the sums ing are
extended tov.0. Further,b85b01\/2t with t being the
scattering time due to nonmagnetic impurities. Note that ten-
sor n̂ is symmetric in all indices.

The quantityg(T,t) was evaluated in Ref. 12; in the
clean limitg52/3 atT50 and drops to'0.30 atTc . Scat-
tering suppressesg; in the dirty limit g→(tD0 /\)

2→0, i.e.,
nonlocal effects vanish. Thus,n;j0

2/l2;k22 in the clean
case and is of the order (vt/l)2 for dirty materials.

With n̂50, Eq. ~1! is the standard anisotropic L
equation.14 Being dependent on the shape of the Fermi sur-
face, the fourth-rank tensorn̂ couples supercurrents with the
crystal even in cubic materials. For a tetragonal symmetry in
the crystal frame (a,b,c),mi j

21 is diagonal with two different

eigenvaluesmaa
215mbb

2151/ma andmcc
2151/mc, whereasn̂

has four independent componentsn15naaaa, n25naabb,
n35ncccc, andn45naacc. To evaluatem̂ and n̂ one needs
Fermi-surface averages of products of Fermi velocities;
therefore, one turns to the band structure of LuNi2B2C.

The Fermi-surface averages for the relevant products of
velocities were evaluated using an accurate tight-binding fit15

to the first-principles linearized augmented plane-wave
calculations.16 To obtain the velocities, the Brillouin zone
was divided into tetrahedrons and the energy eigenvalues
were determined at each corner. Linear interpolation was
used to obtain the Fermi surface in the 919 tetrahedrons
which had bands crossing the Fermi level~out of the total
number of 1536!. For those bands, the velocity at thek point
centered on each piece of Fermi surface was determined nu-
merically, and added to obtain the appropriate averages:

^v2&55.1231014 ~cm/sec!2,

^va
4&51.4431029 ~cm/sec!4,

^va
2vb

2&51.8531028 ~cm/sec!4,

^vc
4&55.8531028 ~cm/sec!4,

^va
2vc

2&51.9731028 ~cm/sec!4. ~3!

Besides, ^va
2&51.8731014 ~cm/sec! 2, which yields maa

[ma50.904 andmcc[mc51.22 that agrees with a weak an-
isotropy ofHc2 seen in this material.17

Now one can evaluaten̂ providedD0 ,l, andt are given.
Since none of these are known with sufficient accuracy, we
combine them in one parameterC(T,t):

ni j lm5C
^v iv jv lvm&

^v2&2
, C5

\2^v2&2g

4DD0
2l2 . ~4!

With the averages~3! we have

n150.549C, n250.0705C,

n350.223C, n450.0751C. ~5!

For the material in the clean limit andl'710 Å,18 we esti-
mateC'0.363. To fit the experimentally observed ‘‘square-
to-triangle’’ transition at'500 G, we needC'0.221, the
value to be employed in all data analyses on the Lu system.

We now apply Eq.~1! to a vortex along some direction
z. To find the field componenthz ~the only one needed for
evaluating intervortex interactionf0hz/4p), one has to in-
vert Eq.~1! to isolatea, and use the flux quantization condi-
tion, curla5h2f0ẑd(r ). To this end, we write Eq.~1! in the
form (4pl2/c) j i52qi j aj with qi j5mi j

212l2Ni j and
Ni j5ni j lmklkm . Since the correctionl2Ni j is small, one
findsqi j

215mi j1l2mismjtNst . After straightforward algebra
we have

hi1l2elstekniqlk
21knksht5f0ẑi , ~6!

whereeikl is the unit antisymmetric tensor. This reduces to
the anisotropic London equation when the nonlocal correc-
tions are absent andqi j

215mi j .
14 The system of three equa-

tions ~6! can be solved forhi ’s for a general vortex orienta-
tion; instead we focus below on two simple situations, the
applied field alongc anda.

The free-energy density of a VL directed alongz is

F5B2(
g
hz~g!/8pf0 , ~7!

whereB is the magnetic induction andhz is taken at wave
vectorsk5g forming a proper reciprocal lattice. The equi-
librium VL at a givenH corresponds to the minimum of
G5F2BH/4p. Dealing with different sample shapes in a
given applied field, one should define a proper potential
which is a minimum in equilibrium. We focus here on the
case of the applied field perpendicular to a platelet sample
and parallel to one of the principal crystal directions; equi-
librium VL’s are then given by the absolute minimum ofF at
a givenB.

We start withH along@001#; the vortex field has only one
componenthz . We choose the coordinates (x,y,z) coincid-
ing with the crystal frame (a,b,c). Then all tensors are eas-
ily evaluated, e.g.,qmn

215ma(dmn1lab
2 Nmn) where the greek

indices take onlyx,y values. We obtain after simple algebra

hz@11lab
2 k21lab

4 ~n2k
41dkx

2ky
2!#5f0 ,

d52n126n2 . ~8!

One can verify that in the isotropic cased50; thusdÞ0 is
responsible for the anisotropy. We note that although the
fourth-order terms in Eq.~8! make the sum~7! formally con-
vergent, the L approach~with or without nonlocal correc-
tions! fails in the vortex core, and one has to introduce a
cutoff atg;1/j. Minimization of the energy for this case is
done by complementinghz(g) with a factor exp(2g2j2).13

In comparing energies for various VL’s, we note that for
the case in question, the field and the crystal have~100! and
~110! symmetry planes. We will look for VL’s having one of
these symmetry elements. Thus, the general parallelogram of
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the VL unit cell is reduced to a rhombus with a diag-
onal along@100# or @110#. We will minimize F for each
of these possibilities separately and choose the energeti-
cally favorable. We will see that whichever case wins de-
pends onH. The VL vectors for the first possibility are
mb11nb2with integers m,n and b15b( x̂sinb11ŷcosb1),
b25b(2 x̂sinb11ŷcosb1); b is the side of the isosceles tri-
angle and 2b15b is the apex angle:b5Af0 /Bsinb.
The reciprocal lattice is g1x5p(m2n)/bsinb1, g1y
5p(m1n)/bcosb1. For the second possibility,@110# is
the rhombus diagonal:g2x52p(n cosb22msinb2)/bsinb,
g2y52p(m cosb22n sinb2)/bcosb, with b25b/22p/4.

Examples ofF(b) are shown in Fig. 1. The anglesb
obtained by minimizingF at different fields are shown in
Fig. 2. At small fields, the minimum energy corresponds to
the rhombus with a diagonal along@110#; this structure be-
comes unstable atH1'180 G. ForH.H1, the equilibrium
rhombus has a diagonal along@100#, shown at the left of Fig.
2. The transition atH1 cannot be realized by a small defor-
mation; i.e., it is of the first order. The situation near
H2'480 G is different: asH→H2 from below, the angle
b→90° while the orientation of the rhombus does not
change. The transition atH2 to a square VL is therefore of
the second order.

It should be noted that due to the fourfold rotational sym-
metry (ĉ) for this field orientation, each structure mentioned
above can be rotated 90° without changing the energy. The
existence of structures with equal or close energies may re-
sult in domains of different VL’s or cause disorder in actual
vortex arrangements.

The treatment is more involved for an arbitrary field
orientation, sincem̂ and n̂ have to be transformed from
the crystal frame wherem̂ is diagonal andn̂ is given by Eq.
~5!, to the frame (x,y,z) with z along the vortex axes. To
avoid this formal complexity, we demonstrate the effect of
tilted fields for the simple situation ofHi â. We choose the
axes so thatx5c, y5b, andz5a; then the needed compo-
nents of n̂ are nxxxx5ncccc5n3 , nyyyy5nbbbb5n1 , and
nxxyy5nccaa5n4. ForHi â, the symmetry planes of the crys-

tal and field are~010! or ~001!; the only rhombus compatible
with these elements is one with diagonals at@001# and@010#;
see Fig. 2. Proceeding as in the previous case we obtain

hz@11l2K21l4~n4K
41dkx

2ky
2!#5f0 , ~9!

K25makx
21mcky

2 , d5n3mc
21n1ma

226n4mamc .

Results of minimization of the energy~7! with this hz are
shown in Fig. 2. A few points are to be noticed:~a! Due to
the anisotropy in thexy ~or bc) plane, the high-field struc-
ture is not a 45° rotated square but a rhombus with the apex
angleb'81.3° of the same orientation. The low-field VL is
made of an isosceles triangles even in the limitB→0. ~b!

Unlike the caseHi ĉ, we have here only two competing
rhombic VL’s in low fields. Still, we expect the low-field VL
in this case to be better ordered than forHi ĉ. ~c! The tran-
sition between the fixed high-field structure and theB depen-
dent low-field VL occurs atH251.25 kG as compared to
about 0.5 kG forHi ĉ. The last feature might be interpreted
qualitatively as follows: the high-field locked structure is
caused by nonlocal effects with a range of the orderj0. The
smaller this range, the weaker the nonlocal effect, and the
locking happens at shorter intervortex distances, i.e., at
higher fields. For anisotropic materials, the role ofjab

2 for

Hi ĉ goes tojbjc when Hi â, so that the effective range
shrinks (jc,jab) while the transition to a locked state
moves to higher fields. Since the nonlocality range slowly
decreases with raisingT, one expects the transition field
H2 to increase with temperature. The increasing transition
field qualitatively agrees with experiments on the Er and Lu
systems, although the data are not yet accurate enough for a
detailed comparison.

The predictions we make on VL transitions for the Lu
compound are not yet properly verified since so far we do

FIG. 1. The free-energyF vs the apex angleb of a rhombic unit
cell in fields 200 G~the lower curve! and 500 G~the upper curve!

parallel to ĉ. For H,H2'480 G, two minima atb8.60° and
b9,120° approach each other with increasing field and merge at
H5H2 to b590°. The square VL remains stable forH.H2.

FIG. 2. The apex angleb of rhombic unit cells vs applied fields.

Two curves on the left are forHi ĉ. The upper curve is for the
rhombus diagonals alonga,b @examples ofF(b) for this case are
given in Fig. 1#. The lower-left curve is for rhombic VL’s with a
diagonal along@110#; these VL’s are unstable forH.H1 where
they are shown by crosses. The curve starting at the right is for

Hi â; the structure shown is stable.
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not have the data needed. The model, however, does not
contradict the data on the Er compound as indicated in Fig.
3. Although we do not possess at the moment the Fermi
averages~3! which make the model quantitative, the data

suggest the transition fieldH2 as'900 G. This allows us to
reconstruct the low-field part of the curveb(B) in a reason-
able agreement with data.

Thus, we have shown that the London model corrected for
nonlocal effects accounts well for the square VL’s seen in

high fields parallel to theĉ axis of borocarbides. The model
explains the observed transition to triangular structures with
the field reduction. More data are needed to verify evolution
of the VL structure in low fields.

Note added:Recently, formally similar conclusions about
possible VL structures ind-wave materials were reported by
I. Affleck, M. Franz, and M. Amin@Phys. Rev. B55, R705
~1997!#. The authors derive L equations starting with the GL
free energy phenomenologically amended with higher-order

gradients. ForHi ĉ, the single vortex field is given by an
equation similar to Eq.~8!. For certain choices of the param-
eters involved, the energy minimization yields the square VL
which transforms toH-dependent structures in low fields.
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FIG. 3. The apex angleb of rhombic unit cells vs applied fields

parallel to ĉ from the SANS data on ErNi2B2C at T53.5 K. The
circles are taken fromu22u scans. The squares are taken from the
location of the Bragg reflections on an area detector at the peak of
the rocking curve. The scatter in the data accurately represents the
error bars. The solid line is calculated assumingH2'900 G.
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