
Nonanalytical magnetoresistance, the third angular effect, and a method
to investigate Fermi surfaces in quasi-two-dimensional conductors

A. G. Lebed
Electrotechnical Laboratory, 1-1-4 Umezono 350, Tsukuba, Japan;

Institute for Materials Research, Tohoku University, Sendai 980, Japan;
and L.D. Landau Institute for Theoretical Physics, 117334 Moscow, 2 Kosygina Street, Russia

N. N. Bagmet
Institute for Materials Research, Tohoku University, Sendai 980, Japan

~Received 11 November 1996; revised manuscript received 5 February 1997!

We demonstrate that transverse magnetoresistance is a nonanalytical function of the magnetic field,
r'(H);uHu1/2, if a magnetic field is parallel to the plane of anisotropy and normal to the Fermi surface at an
inflection point in a quasi-two-dimensional~Q2D! conductor. The so-called ‘‘third angular effect,’’ recently
discovered in organic conductors (TMTSF)2X (X5ClO4 ,PF6) and (DMET)2I3, is interpreted in terms of the
existence of an inflection point on their Fermi surfaces. Nonanalytical magnetoresistance is predicted to appear
when the magnetic field is applied at the ‘‘third magic angles,’’Q56Qc . It is also shown that at arbitrary
directions of the in-plane magnetic field the magnetoresistance does not depend on relaxation time and obeys
the law r'(H);AuHu with factor A being a function of local characteristics of a Q2D Fermi surface. The
above-mentioned phenomena provide useful methods to investigate Fermi surfaces in strongly anisotropic Q2D
conductors including organic and high-Tc superconductors.@S0163-1829~97!51814-5#

Numerous quasi-two-dimensional~Q2D! conductors from
chemical families (TMTSF)2X and (ET)2X demonstrate un-
usual properties in a metallic state in a magnetic field~for a
review, see Refs. 1–4!. Although such phenomena as
‘‘magic angles’’ and ‘‘rapid magnetic oscillations’’ seem to
be of many-body origin,3 some others have a clear Fermi-
surface topology nature. Among them, there are Yamaji’s,5,4

Osada’s,6,4 Danner-Chaikin’s,7,1 and the so-called
‘‘third’’ 8–10 angular resonances. Due to a strongly aniso-
tropic nature of Fermi surfaces~FS’s! in (ET)2X and
(TMTSF)2X materials, the Fermi-surface topology effects in
their metallic phases were shown to be nontrivial.5–7,9,1,4

The aim of our paper is to present nontrivial Fermi-
surface topology phenomena that must exist in Q2D com-
pounds. We point out that in the Q2D case~contrary to the
3D one11! the Boltzmann kinetic equation possesses solu-
tions which diverge if the anisotropy and the valuevct tend
to infinity. Under these conditions an electric current is de-
fined by a small group of ‘‘effective electrons’’ which are
located in the vicinity of the pointPH where the magnetic
field is normal to the cross section of the Q2D FS~see Figs.
1 and 2!. It is shown that it results in the appearance of
non-analytical transverse magnetoresistance.

On the basis of the above-mentioned finding, we propose
an interpretation of the recently discovered ‘‘third angular
effect’’ ~TAE!8–10 and suggest useful methods for the inves-
tigation of Q2D FS’s. Note that TAE was originally inter-
preted as a consequence of some changes in electron states.8

In Ref. 9, this effect was treated in terms of the disappear-
ance of closed orbits when the in-plane magnetic field is
applied at the ‘‘third magic angles’’~TMA’s !:

Qc
1,256arctanS 2tbb*vF

D , ~1!

i.e., normal to the inflection point on the FS of a Q2D con-
ductor with the electron spectrum:

e~p!56vF~pa7pF!22tbcos~pbb* !22t'cos~p'c* !, ~2!

where eF5pFvF.2000 K, tb.200 K, and t'.5210
K; Q is the angle betweena axis andH; h51 ~see Fig. 1!.

Nevertheless, as shown in Ref. 10, TAE does not disap-
pear if the magnetic field is slightly inclined with respect to
the plane of anisotropy when closed orbits do not exist. Con-
trary to Ref. 9~where numerical solutions of kinetic equation
were found for the anisotropic 3D spectrum with an under-
estimated value of the anisotropy ratio,tb /t'54), in the
present paper we ignore the existence of small closed orbits.
It is shown that TAE can be understood in terms of the
appearance of nonanalytical magnetoresistance due to the ex-
istence of ‘‘effective electrons’’ in the case of large values of
tb /t' in Eq. ~2!. In addition, we show that, if the direction of
the in-plane magnetic field is far enough from the TMA’s

FIG. 1. The in-plane magnetic field is normal to the cross sec-
tion, pa2pF52tbcos(pbb* )/vF , of the open FS~2! at the inflection
point PH .
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~1!, magnetoresistance does not depend on electron relax-
ation timet and depends only on some local characteristics
of the FS. We propose experiments on the measurement of
transverse magnetoresistance in Q2D compounds to obtain
detailed information about their FS’s.

Let us consider the peculiarities of the solutions of the
kinetic equation in a strongly anisotropic Q2D conductor.
For a conductor with an electron spectrum

e~p!5e~pa ,pb!22t'cos~p'c* !, t'!eF , ~3!

the Boltzmann kinetic equation

S eE1
e

c
@v3H# D d f~p!

dp
52

f ~p!2 f 0~p!

t
~4!

can be rewritten in the following form:

2eEt'c* sin~p'c* !2
e

c
uvn~a!uHsin~a!

dC~p!

dp'

5
C~p!

t
,

~5!

if magnetic and electric fields are applied parallel and per-
pendicular to the plane of anisotropy.@In Eq. ~5!, we have
omitted the component of the Lorentz force which comes
from the electron velocity perpendicular to the plane;
f (p)5 f 0(p)2@d f0(p)/dp#C(p); vn is in-plane electron ve-
locity; a is the angle betweenH andvn ~see Figs. 1 and 2!#.

It is important that Eq.~5! has a simple solution,

C~p' ,a!5
2eEt'c* t@sin~p'c* !2vc~a!tcos~p'c* !#

11vc
2~a!t2

.

~6!

Therefore conductivity perpendicular to the (a,b) plane can
be expressed in the following form:

s'~H !5
e2t'

2c* t

p2 R dl

uvn~a!u@11vc
2~a!t2#

, ~7!

where the integration is taken along the contour
e'(pa ,pb)5eF ; vc(a)5(e/c)uvn(a)uHc* sina is a char-
acteristic frequency of an electron motion in the direction
perpendicular to the plane. The main difference between
Eqs.~6! and~7! and typical solutions of the kinetic equation
in the 3D case11,9 is that the integral~7! diverges at small
a in the clean limit whenvct5vc(90°)t→`.

Below, we consider two different cases:~1! 2D curvature
R21 of the cross sectione(pa ,pb)5eF of the FS’s@~2! and

~3!#, is zero at pointPH ~i.e., PH is an inflection point! ~see
Fig. 1!; ~2! 2D curvatureR21 is nonzero at pointPH ~i.e.,
PH is an ordinary point! ~see Fig. 2!.

It is easy to make sure thatvc(a);a;(dl)2 in the first
case which results in a strong divergence of the integral~7!
in the clean limit. From Eq.~7!, it is possible to obtain the
following expression for the perpendicular resistivityr'

whenvct@1:

r'~H ! ; r'~0! ~vct!1/2 ;uHu1/2. ~8!

@We have taken into account thats'(H)s i(H)@s (',i)
2 (H)

if t'!eF .#
We stress that magnetoresistance~8! is a nonanalytical

function of a magnetic field. It is due to the fact that only
‘‘effective electrons’’ which are located in the vicinity of the
inflection pointPH ,

dl;a1/2;~vct!21/2!1 , ~9!

contribute to the conductivity~see Fig. 1!. To demonstrate
that nonanalytical behavior~8! is valid in a broad region of
magnetic fields we performed a numerical estimation of the
integral ~7! for a model spectrum~2! of ~TMTSF! 2X com-
pounds. Both the results of numerical calculations and ex-
perimental data9 for ~TMTSF! 2ClO4 at ambient pressure are
shown in Fig. 3. As it follows from Fig. 3, Eq.~8! ~which has
been derived in the limitvct@1) becomes valid if
vct>2. From Fig. 3, it is also clear that magnetoresistance9

measured at TMA is in satisfactory agreement with common
nonanalytical dependence~8!.

Let us consider the case when the in-plane magnetic field
is applied at an arbitrary direction~i.e., PH is not an inflec-
tion point! ~see Fig. 2!. In this casevc(a);a;dl in Eq.
~7! and the divergence of the integral~7! is not as strong as
in the first case. Nevertheless, as follows from Eq.~7!, trans-
verse magnetoresistance is still a nonanalytical function of a
magnetic field:

FIG. 2. The in-plane magnetic field is normal to the cross sec-
tion, e(pa ,pb)5eF , of the Q2D FS~3! at the ordinary pointPH .

FIG. 3. The resistivity, calculated for the magnetic field applied
at Q5Qc @Eq. ~1!#, is shown to obey a nonanalytical law,
r';uHu1/2, if vct>2 ~solid line!. Solid circles: experimental data
~Ref. 9! for ~TMTSF!2ClO4.
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r'~H !;A~PH! uHu , A~PH!;
uvn~PH!u2

R~PH!
. ~10!

Nonanalytical dependence~10! comes from the fact that for
an arbitrary direction of the in-plane magnetic-field conduc-
tivity is defined by ‘‘effective electrons’’ located in the vi-
cinity of the pointPH :

dl5R~PH!a;~vct!21!1. ~11!

At this point we would like to present a qualitative expla-
nation of TAE. When the direction of a magnetic field is
approaching an inflection pointPH ~see Fig. 1!, more and
more electrons are becoming ‘‘effective’’@compare Eqs.~9!
and ~11!#, which leads to the appearance of a minimum of
the resistivity in the vicinity of the TMA’s~1!. To be more
specific, we made numerical calculations of an angular de-
pendence of the conductivity~7! for electron spectrum~2!
with ta /tb.8.3 and compared it with the experimental
angular dependence10,12 that was obtained on the
~TMTSF! 2PF6 conductor~see Fig. 4!.

Let us come back to Eq.~10!. Note that magnetoresis-
tance~10! does not depend on electron relaxation timet and
thus does not depend on temperature. This is an example of
when the diagonal element of the resistivity tensorr' de-
pends only on band-structure parameters. Unlike the nondi-
agonal Hall resistivity componentr(',i), transverse magne-
toresistance~10! depends on local characteristics of a Q2D
FS ~3!. Therefore, measurements of the angular dependence
of the factorA in Eq. ~10! gives information about the an-
gular dependence of band parameteruvn(PH)u2/R(PH). In
some cases the shapes of the FS’s are known in Q2D com-
pounds~see, for example, Ref. 13!. Then measurement of an
angular dependence of the magnetoresistance~10! provides a
method to investigate the dependence of Fermi velocity,
uvn(PH)u, on the position on the FS. In a simple case of an
elliptic Fermi surface we point out that (OPH)/(OPH* )
5A(PH)/A(PH* ) ~see Fig. 2!. In the case of high-Tc com-
pounds, when the existence of the FS’s is not clear, the dis-
covery of the magnetic-field dependence~10! could be a con-
firmation of an applicability of a Fermi-liquid picture.

Below, we discuss an applicability of the ‘‘effective elec-
trons’’ approach~5!–~11! for the description of the proper-
ties of real Q2D compounds. The first question is ‘‘When
can we ignore the Lorentz force component which comes
from the electron velocity perpendicular to the plane~i.e.,
ignore the existence of small closed orbits!?’’ An analysis
shows that for electron spectra~2! and ~3! nonanalytical de-
pendences~8! and~10! have to be valid in a broad region of
magnetic fields, 1<vct<(eF /t')

2/3 and
1<vct<(eF /t')

1/2, correspondingly. Using the following
values of the parameterseF.2000 K, t'.5 K, and
t.4.3310212 sec7, we found that for~TMTSF! 2ClO4 the
above inequalities can be rewritten as 1<H<40 T and
1<H<15 T. At higher and lower magnetic fields, solutions
of the kinetic equation~4! are becoming nondivergent, which
leads to the restoration of a textbook analytical magne-
toresistance.11,9

The second important question is related to an applicabil-
ity of the Fermi-liquid picture and kinetic equation~4! in the
Q2D case. The comparison of a numerical estimation of the
integral~7! with experimental data on~TMTSF! 2PF6 ~Refs.
10 and 12! at pressureP58.5 kbar~see Fig. 4! shows that
the Fermi-liquid picture works well if there exist ‘‘effective
electrons’’ on the FS„e.g., for the in-plane magnetic field
applied atQ,Qc.19.5° @Eq. ~1!#…. The applicability of the
kinetic equation at Q<Qc ~which corresponds to
Hb<2.3 T! is also supported by the observation of angular
oscillations in Refs. 10 and 12 which seem to be of a semi-
classical origin.10 On the other hand, in Refs. 14 and 15 it is
shown that much smaller in-plane magnetic fields applied at
Q590°, Hb.0.2 T, destroy coherent electron motion be-
tween layers in~TMTSF! 2PF6 at pressureP59.8 kbar. Per-
haps it indicates that pressure may induce a Fermi-liquid–
non-Fermi-liquid transition in this compound.

In conclusion, we recall that above we ignore the exis-
tence of closed orbits in the case of in-plane (a-b) rotation
of a magnetic field. The importance of closed orbits in
~TMTSF! 2ClO4 for out-of-plane (a-c) rotation was demon-
strated both experimentally and theoretically in Ref. 7.
Qualitative analysis shows that the ‘‘effective electrons’’ ap-
proach developed by us has to result in the appearance of a
minimum of resistivity at the in-plane direction of a mag-
netic field under the conditions of out-of-plane rotation if
1<vct<(eF /t')

1/2. This conclusion seems to be in accor-
dance with the theoretical results of Ref. 7 where it is shown
that the diminishing oftc5t' results in the disappearance of
a peak in resistivity at the in-plane direction of a magnetic
field. We also consider the experimental observation of shal-
low minima at the in-plane direction of a magnetic field in
~TMTSF! 2ClO4 for H<6 T ~Ref. 7! as well as the obser-
vation of sharp minima at the in-plane direction of a mag-
netic field in ~ET! 2KHg~SCN! 4 ~see, for example, Ref. 17!
as evidence of an importance of ‘‘effective electrons’’ in
these compounds.

We are thankful to E.V. Brusse, S.B. Brusse, S. Ka-
goshima, I.J. Lee, M. Naughton, T. Osada, T. Sasaki, J.
Singleton, T. Toyota, V.M. Yakovenko, K. Yamaji, and H.
Yoshino for stimulating discussions. We also wish to thank
M. Motokawa and K. Yamaji for their kind hospitality.

FIG. 4. Experimental data for~TMTSF!2PF6 ~Refs. 10 and 12!
~solid circles! are shown to be in a good agreement with theoretical
angular dependence,r'(Q) ~solid line!, atQ<Qc.19.5°.
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