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Correlations in one-dimensional disordered electronic systems with interaction
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We investigate the effects of randomness in a strongly correlated electron model in one dimension at
half-filling. The ground state correlation functions are exactly written by productx &ftansfer matrices and
are evaluated numerically. The correlation lengths depend on randomness when the interaction is effectively
weak. On the contrary, they are completely insensitive to randomness when the interaction is effectively
strong.[S0163-182€07)50912-X

The behavior of electrons in the presence of randomnesannihilation operator at a site with infinitely large on-site
has attracted a lot of attention as one of the most fundamerCoulomb repulsion. Such ad‘site” can have at most one
tal problems in condensed matter physids.the absence of electron.n{’, (a=p, d) is the electron number operator. The
interactions, scaling theory gives us a criterion determiningprojection operator that represents the infinitely large on-site

whether or not states are localizett. has been shown rig- Coulomb repulsion oml sites iSP:Hi(l_nidTnidl)- We de-

orously that all the states are localized for a wide class ofote the on-site potentials for sites byV®s. For simplicity
models in one dimensichin two dimensions, it is believed e parametrizé’s and Vs by positive’s as

that all the states are localized. Randomness induces a metal-

insulator transition in three dimensions. Much theoretical ti=N\i, 2
and experimental work has been reported. However, the va-
lidity of describing experiments by noninteracting models is Vid= —2\2+2. ©)

open to question, since the Coulomb interaction betweenh h . il . b
electrons is always present. Then the on-site potentials ptsites are set to be zero except

In one dimension, some interacting models without ran2t the boundaries. We shall takes to be independent ran-

domness can be solved exactly by the Bethe ansatz technig@M variables. The advantage of mo@®l is that the exact
or bosonizatiof and the properties have been investigated@nd Unique ground statat half-filling) is explicitly written

However, including randomness in such models seems to b&

hopeless. In the presence of randomness and without inter- L
action, exact results were obtained on the localization of _

. . ere obtair liza Wes)=PI1
eigenstatedIn this way, investigations of models with inter- =
action or randomness alone have been successful. However,
it is an extremely hard task to take account for them simul- Without randomness, namely when thé&s are uniform,
taneously. Although a few results by the perturbationthe exact ground state in a restricted parameter space was
method or by bosonizatiofr® are known, even our qualita- obtained® by following the construction introduced by
tive understanding is far from satisfactory. Numerical inves-Brandt and Giesekus. The correlation functions and the
tigations have limitations due to the restriction of the systenfnomentum  distribution  functions were  calculated
size. Furthermore, one needs an enormous amount of cpqa)<actly.12'13The correlation functions are exactly represented
time for averaging over samples to obtain enough accuracypy products of the 8 3 transfer matrice$>'* Therefore, the

In this paper we study a special model at half-filling, al- correlation functions and the correlation lengths can be ob-
lowing us to investigate the effects of randomness in dained numerically for considerably long chains, even with
strongly correlated electron system without the numericarandomness.
difficulties mentioned above. The lattice structure is shown When there is neither interaction nor randomness, the
in Fig. 1 and the Hamiltonian with the open boundary con-ground state is a band insulator. With interaction and without

dition is given by

25 (piT0'+ pi-r+10+)\id;r0')|o>' (4)

L

H=P :ETL i:21[(_pi‘r‘(,rpi+1(J'_r‘iF)iT(J'(:ji(7'

_tipiT+ladi0'+H'C')+Vidnid0']+nEU+ nE+1o’ P, (1)

FIG. 1. The lattice structure. An open circle denotep aite
where a unit cell is labeled by Herep;, is an annihilation  (with no interaction and a solid circle denotesdsite (with infi-
operator with spinc=1,| at sitei. Such a ‘p site” can nitely large on-site Coulomb repulsipr line represents hopping
have at most two electrons, with opposite spihs.is the the  of electrons.
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randomness, the ground state is also an insulator but of method to such cases. If one studies those cases, the numeri-
totally different type due to the existence of a spin gap. cal method can treat only very small systems. Thus one can

Then, the model enables us to investigate the effects of ramot have reliable results that can be compared with the
domness on an insulating stgtehere the insulating behav- present ones.

ior is due to strong correlatignThus our results partially
complement those of earlier works® which started from

We take uniform randomness with widW

metglhc stateg. The effects of dqp!ng or other generalizations A — <N (=t)<A+—. 5)
are important issues. However, it is not possible to apply our 2 2
|
The probability density function fow=2\ is
(1 2 W) 2
o for—2(>\+— +2sxs—2()\—— +2
— 2 2
plx=Vf)=1 WVB(2=) (®)
0 otherwise
\
and forw=2\
[ 1 2 W2
— for -2 A+ +2sxs—2()\—— +2
W/8(2—x) 2 2
—Vvd= 1 w2
pPIX=Vi) . for—z()\—— +2<x<?2 @)
W2(2—-x) 2
0 otherwise.
\
|
For all W, average is However, by choosing on-site potenthf, the model inter-
polates between the following two limit¢i) A —<. In this
— , WP limit V¢— —o and(nY — 1. Since each site is occupied
Vi=—2( N\ 5 +2 (8) by one electron, no electrons can be added. In this sense the

The difference of the on-site potentials betwg@eandd sites
depends both ok andW.

effective interaction is strong(ii) N—0. In this limit
Vv9—2. Since the hopping matrix elements betwgeand
d sites,\, is infinitesimal compared with9, one has/nd)

Without randomness, the spin, density, singlet pair, and— 0. Thus the effective interaction is weak, since no elec-

<cmcw) correlation functions decay exponentiatfy'® This

tron occupies al site.

suggests the existence of a finite excitation gap above the The occupation and the correlation functions are exactly

ground state, which has been confirmed numericali@f

course, ord sites, the Coulomb interaction is always infinite.
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FIG. 2. The estimates dn?) as functions o for A =0.1, 0.2, 0.5,
1, and 10.

written'®

k1:[ Tk)N“( 1] Tk)
Ft(k[[lT)

(n%y= <(I)G.SJnia|(DG.S> _ (
' (Pss|Pes)

(€)

where|® ) is the ground state wave function given @,

and
(Ps|OFOf| g s)

<O?OJB>: (Pss|Pss) _<Oia><0jﬁ>
oo IT, wot] 1T, s
i+1 k=j+1
- L
It T |F
k=1
—(0)(0F), (10

where
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1 1 Here O*'s are the number, spin, creatigannihilatior) of

_ |9 - lo singlet pair, or creatiofannihilation operators, andr, 8

I = , F= . (11) = p or d. The matricesT, M, andO are the corresponding
1 0 transfer matrices given by

20 +1 A%+1 1

T,=| 2A%  237+1 2|, (12)
0 NG|
( A+1 A2
Mk—_—'"
1 1
NN N
NP+ a0 :
! OF= 0 \2 . oh=- A \; for the correlation functions (¢/,c;,),
! 0 0
13
d )\i 2l>\1 0 d Al )\l ( )
Oi=— 0 . 0 O5=— )\i 2)\1 >
( 7\ 0\
Mi—l,
[
2
of=[0 -\ =17 of= Jfor the spin correlation functions,
0
(14)
éxf
o!=[-\} 0 0] o=
\ ZAZ
Mk=Tk9
[A2+1 L 0
0}=0%= 207 A2+1 1| for the density correlation functions,
\ L 0 A0
[ \F N0
oi=0f=| i A b, "
{ L 0 0
Mizl,

=[0 N 1] O%=| 0| for the singlet-pair correlation functions,
4 0

2\; (16)
01=[0 \; 0] o0’=|2)

0
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FIG. 3. The estimates of; as functions ofW for A =0.1, FIG. 4. The estimates ofs as functions ofw for A =0.1,
0.2,05, 1, and 10. 0.2,0.5, 1, and 10.

The correlation |ength5 of the correlation functions betweerh]ates Ofgc and §S are shown in F|gs 3 and 4, respective|y_

p sites and betweeml sites are the same up to order The size of the error bars is smaller than that of the plotted
O(1/L), since only the matrices atand] sites are different  points.

in the representatio(l0). Due to the same reason, the cor-  The behavior of the correlation lengths depends on the
relation lengths of the spin and the singlet-pair correlationpccupation ofd sites, namely, the effective interaction. For
functions are the same up to ord®(1/L). For a fixed set the parameter regime<1, where the effective interaction is

{Ai}, we numerically evaluate the quantities weak, the correlation lengths become shortasncreases.
Lg+N This behavior seems to be similar to the noninteracting
(== E (n,) cases. Fo]\>1, where th_e effective interaction is strong, the
: NS, VY correlation lengths are independent of the strength of the

randomness. We obtained similar behaviors for the density
- and the singlet-pair correlation functions.

(OFOP) e -i= N 2 (0rOF ), (21 For the noninteracting cases, the spin degree of freedom

'=te has nothing to do with the properties of the systems. For the

whereN is the number of sites that are used for the averaginteracting cases, on the other hand, the spin degree of free-
ing in a sample antg is the number of sites that are ignored dom plays an important role and the effects of randomness
to exclude contributions from the boundary. We chooseare likely to be different from those for the noninteracting
L=10000,Lg=2500, andN=5000. The occupations af  cases. The ground stat) is given by superpositions of spin
sites are shown in Fig. 2. The sizes of the error bars arsinglet states. Within the analysis of this model, the results
smaller than those of the plotted points. Note tkaf) suggest that the states, where the effective interaction is
=2—(nY), since the system is half-filled. We confirmed that Strong, have local nature, with overlappings contributing
the correlation functions decay exponentially. The correlanegligibly to the expectation values of the correlations. Thus
tion lengths are given frOWmH o exf—mé], their properties are stable against randomness.

whereQ =S for the spin andd =c for the correlation func-  The authors are grateful to H. Tasaki and Y. Hatsugai for
tion (c/,Cj,). The correlation lengths are estimated by leastyseful discussions and comments. One of the autiMr¥.)
squares fit for the values I@(O?Oﬁ>m=j,i]. The esti- was supported by JSPS.
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