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We investigate the effects of randomness in a strongly correlated electron model in one dimension at
half-filling. The ground state correlation functions are exactly written by products of 333 transfer matrices and
are evaluated numerically. The correlation lengths depend on randomness when the interaction is effectively
weak. On the contrary, they are completely insensitive to randomness when the interaction is effectively
strong.@S0163-1829~97!50912-X#

The behavior of electrons in the presence of randomness
has attracted a lot of attention as one of the most fundamen-
tal problems in condensed matter physics.1 In the absence of
interactions, scaling theory gives us a criterion determining
whether or not states are localized.2 It has been shown rig-
orously that all the states are localized for a wide class of
models in one dimension.3 In two dimensions, it is believed
that all the states are localized. Randomness induces a metal-
insulator transition in three dimensions. Much theoretical
and experimental work has been reported. However, the va-
lidity of describing experiments by noninteracting models is
open to question, since the Coulomb interaction between
electrons is always present.

In one dimension, some interacting models without ran-
domness can be solved exactly by the Bethe ansatz technique
or bosonization4 and the properties have been investigated.
However, including randomness in such models seems to be
hopeless. In the presence of randomness and without inter-
action, exact results were obtained on the localization of
eigenstates.3 In this way, investigations of models with inter-
action or randomness alone have been successful. However,
it is an extremely hard task to take account for them simul-
taneously. Although a few results by the perturbation
method1 or by bosonization5–9 are known, even our qualita-
tive understanding is far from satisfactory. Numerical inves-
tigations have limitations due to the restriction of the system
size. Furthermore, one needs an enormous amount of CPU
time for averaging over samples to obtain enough accuracy.

In this paper we study a special model at half-filling, al-
lowing us to investigate the effects of randomness in a
strongly correlated electron system without the numerical
difficulties mentioned above. The lattice structure is shown
in Fig. 1 and the Hamiltonian with the open boundary con-
dition is given by
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where a unit cell is labeled byi . Herepis is an annihilation
operator with spins5↑,↓ at site i . Such a ‘‘p site’’ can
have at most two electrons, with opposite spins.dis is the the

annihilation operator at a site with infinitely large on-site
Coulomb repulsion. Such a ‘‘d site’’ can have at most one
electron.nis

a (a5p, d) is the electron number operator. The
projection operator that represents the infinitely large on-site
Coulomb repulsion ond sites isP5) i(12ni↑

d ni↓
d ). We de-

note the on-site potentials ford sites byVd’s. For simplicity
we parametrizet ’s andVd’s by positivel ’s as
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Then the on-site potentials atp sites are set to be zero except
at the boundaries. We shall takel ’s to be independent ran-
dom variables. The advantage of model~1! is that the exact
and unique ground state~at half-filling! is explicitly written
as
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Without randomness, namely when thel ’s are uniform,
the exact ground state in a restricted parameter space was
obtained10 by following the construction introduced by
Brandt and Giesekus.11 The correlation functions and the
momentum distribution functions were calculated
exactly.12,13The correlation functions are exactly represented
by products of the 333 transfer matrices.13,14Therefore, the
correlation functions and the correlation lengths can be ob-
tained numerically for considerably long chains, even with
randomness.

When there is neither interaction nor randomness, the
ground state is a band insulator. With interaction and without

FIG. 1. The lattice structure. An open circle denotes ap site
~with no interaction! and a solid circle denotes ad site ~with infi-
nitely large on-site Coulomb repulsion!. A line represents hopping
of electrons.
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randomness, the ground state is also an insulator but of a
totally different type due to the existence of a spin gap.15

Then, the model enables us to investigate the effects of ran-
domness on an insulating state~where the insulating behav-
ior is due to strong correlation!. Thus our results partially
complement those of earlier works,5–8 which started from
metallic states. The effects of doping or other generalizations
are important issues. However, it is not possible to apply our

method to such cases. If one studies those cases, the numeri-
cal method can treat only very small systems. Thus one can
not have reliable results that can be compared with the
present ones.

We take uniform randomness with widthW
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The probability density function forW<2l is
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and forW>2l
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For allW, average is

Vi
d522S l21

W2

12D12. ~8!

The difference of the on-site potentials betweenp andd sites
depends both onl andW.

Without randomness, the spin, density, singlet pair, and
^cis

† cjs& correlation functions decay exponentially.12,13 This
suggests the existence of a finite excitation gap above the
ground state, which has been confirmed numerically.15 Of
course, ond sites, the Coulomb interaction is always infinite.

However, by choosing on-site potentialVd, the model inter-
polates between the following two limits:~i! l→`. In this
limit Vd→2` and^nd& → 1. Since eachd site is occupied
by one electron, no electrons can be added. In this sense the
effective interaction is strong.~ii ! l→0. In this limit
Vd→2. Since the hopping matrix elements betweenp and
d sites,l, is infinitesimal compared withVd, one haŝ nd&
→ 0. Thus the effective interaction is weak, since no elec-
tron occupies ad site.

The occupation and the correlation functions are exactly
written13
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whereuFG.S.& is the ground state wave function given by~4!,
and
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where
FIG. 2. The estimates of̂ni

d& as functions ofW for l 50.1, 0.2, 0.5,
1, and 10.
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HereOa’s are the number, spin, creation~annihilation! of
singlet pair, or creation~annihilation! operators, anda, b
5 p or d. The matricesT, M , andO are the corresponding
transfer matrices given by
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The correlation lengths of the correlation functions between
p sites and betweend sites are the same up to order
O(1/L), since only the matrices ati and j sites are different
in the representation~10!. Due to the same reason, the cor-
relation lengths of the spin and the singlet-pair correlation
functions are the same up to orderO(1/L). For a fixed set
$l i%, we numerically evaluate the quantities
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whereN is the number of sites that are used for the averag-
ing in a sample andLB is the number of sites that are ignored
to exclude contributions from the boundary. We choose
L510000,LB52500, andN55000. The occupations ofd
sites are shown in Fig. 2. The sizes of the error bars are
smaller than those of the plotted points. Note that^ni

p&
522^ni

d&, since the system is half-filled. We confirmed that
the correlation functions decay exponentially. The correla-
tion lengths are given from̂Oi

aOj
b&m5 j2 i } exp@2m/jO#,

whereO5S for the spin andO 5c for the correlation func-
tion ^cis

† cjs&. The correlation lengths are estimated by least-
squares fit for the values log10@^Oi

aOj
b&m5 j2 i #. The esti-

mates ofjc andjS are shown in Figs. 3 and 4, respectively.
The size of the error bars is smaller than that of the plotted
points.

The behavior of the correlation lengths depends on the
occupation ofd sites, namely, the effective interaction. For
the parameter regimel!1, where the effective interaction is
weak, the correlation lengths become short asW increases.
This behavior seems to be similar to the noninteracting
cases. Forl@1, where the effective interaction is strong, the
correlation lengths are independent of the strength of the
randomness. We obtained similar behaviors for the density
and the singlet-pair correlation functions.

For the noninteracting cases, the spin degree of freedom
has nothing to do with the properties of the systems. For the
interacting cases, on the other hand, the spin degree of free-
dom plays an important role and the effects of randomness
are likely to be different from those for the noninteracting
cases. The ground state~4! is given by superpositions of spin
singlet states. Within the analysis of this model, the results
suggest that the states, where the effective interaction is
strong, have local nature, with overlappings contributing
negligibly to the expectation values of the correlations. Thus
their properties are stable against randomness.
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FIG. 3. The estimates ofjc as functions ofW for l 50.1,
0.2, 0.5, 1, and 10.

FIG. 4. The estimates ofjS as functions ofW for l 50.1,
0.2, 0.5, 1, and 10.
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