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We generalize the London free energy to include fourfold anisotropies that could arise fromd-wave pairing
or other sources in a tetragonal material. We use this simple model to study vortex lattice structure and discuss
neutron scattering, scanning tunneling microscopy, Bitter decoration, and muon-spin-rotation experiments.
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The London free energy provides a very simple way of
studying the vortex lattice in an extreme type-II supercon-
ductor. The conventional isotropic model1 predicts a hexago-
nal vortex lattice with an arbitrary orientation relative to the
ionic lattice. Recent neutron scattering2 and scanning tunnel-
ing microscopy3 ~STM! experiments on high-Tc compound
YBa2Cu3O72d ~YBCO! revealed vortex lattices with cen-
tered rectangular symmetry and a specific orientation with
respect to the ionic lattice. It has been proposed that this
effect can arise from additional quartic derivative terms in
the Ginzburg-Landau~GL! free energy4–7 or, alternatively,
from including two or more order parameters~such asd and
s) in the GL free energy with derivative mixing terms re-
flecting the ionic lattice symmetry.8–11 Such models predict
interesting effects in the behavior of the various order param-
eters in the vortex lattice. However, these models contain a
large number of unknown parameters and are rather cumber-
some to work with numerically. Another approach12,13 to the
macroscopic effects ofd-wave pairing takes into account the
generation of quasiparticles near the gap nodes due to current
flow and thermal excitation. This leads to a nonlinear rela-
tionship between supercurrent and superfluid velocity which
becomes singular atT→0.

The purpose of this paper is to present a simple and gen-
eral approach to these effects based on a generalization of the
London free energy to include anisotropy of fourfold sym-
metry, characteristic of a tetragonal ionic lattice. The number
of new parameters is far smaller than in the GL approach~a
reasonable model contains only one new parameter! and nu-
merical simulations are considerably easier. It provides a
useful model to study vortex lattice structure, pinning by
twin boundaries, and the magnetic-field distribution mea-
sured in muon-spin-rotation (mSR! experiments. The model
is suitable to study the intermediate field region
Hc1!H!Hc2 which is experimentally most relevant but tra-
ditionally difficult to handle within the GL theory. Further-
more, this approach can be extended toT50 where GL
theory breaks down and the supercurrent becomes singular.

We now present a derivation of the generalized London
model, starting from a GL free-energy density with bothd
ands order parameters:8,14,15

f5asusu21adudu21gsuPW su21gduPW du21 f 41h2/8p

1gv@~Pys!* ~Pyd!2~Pxs!* ~Pxd!1c.c.#. ~1!

HerePW [2 i¹2e*AW /\c and f 4 contains the quartic terms.
We shall consider a case of ad-wave superconductor in
which s identically vanishes in zero magnetic field. In finite
field (H.Hc1) a small s component with a highly aniso-
tropic spatial distribution is nucleated in the vicinity of a
vortex giving rise to nontriangular equilibrium lattice
structures.9,10Our strategy will be to simplify free energy~1!
by integrating out thiss component in favor of higher-order
derivative terms ind. In this process some short length-scale
information on the order parameter is lost but the magnetic-
field distribution is described accurately. Using its Euler-
Lagrange equations can be expressed to the leading order in
(12T/Tc) as

s5~gv /as!~Px
22Py

2!d. ~2!

Substituting this intof gives the leading derivative terms in
d of the form

f5gd@ uPW du22~gv
2/gdas!u~Px

22Py
2!du2#1•••. ~3!

Various additional corrections to the free energy are obtained
from integrating outs more accurately, taking into account
the gsuPW su2 term and quartic terms. However, these all in-
volve higher powers ofPW or other terms that will not con-
cern us. The coefficient of the second term has dimensions of
~length! 2; we will write it in the form ej2/3 where
e[3(adgv

2/asgd
2) is a dimensionless parameter which con-

trols the strength of thes-d coupling andj[Agd /uadu is the
GL coherence length. We henceforth assumee!1. As we
remark below, neutron scattering and STM experiments
probably support this assumption. We note that a term of the
form u(Px

22Py
2)du2 could arise without invokings-d mixing

from a systematic derivation of higher order terms in the GL
free energy starting with a BCS-like model and taking into
account the square symmetry of the Fermi surface.4–6,16
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The free energy of Eq.~3! is not bounded below, exhib-
iting runaway behavior for rapidly varyingd fields. This is in
fact cured by keeping additional higher derivative terms that
also arise from integrating outs. Stability occurs for
gv
2,gsgd . In fact, the approximation of Eq.~3! will be suf-

ficient for our purposes, yielding a local minimum which we
expect would become a global minimum upon including the
additional terms.

We now assume that the penetration depthl@j. We may
then assume thatud(rW)u'd0, the zero-field equilibrium
value, almost everywhere in the vortex lattice, except within
a distance ofO(j) of the cores. This gives the London free
energy,

f L5~1/8p!~BW !21gdd0
2$vW 22~ej2/3!

3@~vx
22vy

2!21~]yvy2]xvx!
2#%, ~4!

written in terms of the superfluid velocity,

vW [¹W u2~e* /\c!AW , ~5!

whereu is the phase ofd.
The corresponding London equation, obtained by varying

f L with respect toAW , is

c

4p
¹W 3BW 5S 2e*\c Dgdd0

2$vW 2 2
3 ej2@~ ŷvy2 x̂vx!~vy

22vx
2!

2~ ŷ]y2 x̂]x!~]yvy2]xvx!#%. ~6!

For many purposes it is very convenient to expressvW in
terms ofBW and its derivatives, and then substitute this ex-
pression forvW back intof L , giving an explicit expression for
f L as a functional ofBW only. For e50 this gives

vW ~0!5¹W 3BW /B0 , ~7!

whereB0[f0/2pl2 is of orderHc1 (f0[2p\c/e* is the
flux quantum! and

f L
05~1/8p!@BW 21l0

2~¹W 3BW !2#. ~8!

Here the penetration depth, for e50 is
l0

2258pgd(e* d0 /\c)
2. It is presumably not possible to

solve Eq.~6! in closed form forvW as a function ofBW for e
Þ0. However, this can be done readily in a perturbative
expansion ine. The first order correction is

vW ~1!5~2ej2/3!$~ ŷvy
~0!2 x̂vx

~0!!@~vy
~0!!22~vx

~0!!2#

2~ ŷ]y2 x̂]x!~]yvy
~0!2]xvx

~0!!% ~9!

with vW (0) given by Eq.~7!. The London free-energy density,
up toO(e) is then

f L5 f L
01

el0
2j2

8p
@4~]x]yB!21„~]xB!22~]yB!2…2/B0

2#.

~10!

Note that we could have arrived at a similar conclusion by
simply writing down all terms allowed by symmetry inf L ,
expanding in number of derivatives and powers ofB. Square

anisotropy is first possible in the fourth derivative terms. In
principle, we should also include all isotropic terms to order
B4 and¹4. However, assuming that these have small coef-
ficients, they will not be important. This result can also be
obtained from considering generation of quasiparticles near
gap nodes in ad-wave superconductor,12 in a range of tem-
perature and field where the supercurrent can be Taylor ex-
panded in the superfluid velocity.17 More generally, the qua-
dratic and quartic terms in Eq.~10! have independent
coefficients.

The corresponding London equation is obtained by vary-
ing f L with respect toBW (rW). ForB along thez direction one
obtains

@12l0
2¹214el0

2j2~]x]y!
2#B2eQ@B#50, ~11!

where

Q@B#52l0
2j2B0

22@~]x
22]y

2!B1]xB]x2]yB]y#

3@~]xB!22~]yB!2# ~12!

is the nonlinear term arising from the last term in Eq.~10!.
To get a feeling for the effect of the extra terms, consider

a weak field which depends only onx or else only on
(x1y). The solution of the linearized London equation@~11!
without the last term# gives an exponentially decaying field
with l5l0 for variation along the x axis but
l5l0A@11(124ej2/l0

2)1/2#/2, for variation at 45° to the
crystal axis. The penetration depth is longer along the crystal
axis.

To determine vortex lattice structure we insert source
terms ( jr(rW2rW j ) at the vortex core positions,rW j , on the
right-hand side of Eq.~11!. The source terms reflect the to-
pological winding of the phase angle and the reduction of the
order parameter in the core.1 A commonly used phenomeno-
logical form is18

r~rW !5~f0/2pj2!e2r2/2j2. ~13!

It is straightforward to solve these equations numerically for
the vortex lattice by an iterative method. We find that the
quartic term makes a negligible contribution.~Contrary to
naive expectation, it does not become more important with
increasing applied field because the field becomes nearly
constant in the vortex lattice when the applied field is large.!
Thus to an excellent approximation one may neglectQ@B# in
the London equation~11! and the magnetic field may be
written explicitly as

B~rW !5B̄(
kW

eik
W
•rWe2k2j2/2

11l0
2k214el0

2j2~kxky!
2 . ~14!

Here the sum is over all wave vectors in the reciprocal lattice
andB̄ is the average field. The lattice constant is determined
by the condition thatB̄V5f0 whereV is the area of the unit
cell. The lattice symmetry is determined by minimizing the
Gibbs free-energygL5 f L2HB̄/4p. We find that the flux
lattice has centered rectangular symmetry, with principal
axes aligned with the ionic crystal lattice, with an angleb
between unit vectors which depends one and the magnetic
field. An example of such a centered rectangular lattice is
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shown in Fig. 1~a!. In agreement with earlier results within
GL ~Ref. 10! and Eilenberger11 formalisms, individual vorti-
ces are elongated along the crystalline axes. Figure 2~a!
shows the dependence of Gibbs free energy onb for various
values of e at fixed applied fieldH5400B0.6.8 T. For
e50 minimum occurs forbMIN560°, corresponding to a
hexagonal lattice. Ase increasesbMIN continuously in-
creases and for sufficiently largee, the flux lattice becomes
tetragonal withbMIN590°. ForbMINÞ90°, there are always
two solutions, related by a 90° rotation, in which the long

axis of the centered rectangle is aligned with either thex or
y axis. The degeneracy is much larger fore50, when the
flux lattice may have an arbitrary orientation relative to the
ionic crystal lattice.

Dependence ofbMIN on the applied field for various val-
ues of e is displayed in Fig. 2~b!. Clearly the anisotropic
term becomes more important at larger fields. Our perturba-
tive elimination ofvW in favor ofB breaks down whene and
H are sufficiently large thatbMIN differs significantly from
60°. Furthermore, we might expect higher-order corrections
to Eq. ~4! to be important in this regime. By fitting Fig. 2~b!
to experimental data on tetragonal materials such as
Tl 2Ba2CuO61d ~once such data become available! one can
directly assess the magnitude ofe, the only unknown param-
eter in the model.

Our analysis can be easily extended to take into account
effective mass~i.e., penetration depth! anisotropy. In a
simple one-component GL model, the derivative term is gen-
eralized to

f5 (
i5x,y,z

g i uP idu2. ~15!

We restrict our attention to fields along thez axis. Then the
anisotropy can be removed by a rescaling of thex coordinate
and a corresponding rescaling of the magnetic field. The co-
herence length and penetration depth anisotropies are the
same:jy /jx5lx /ly . We will make the simplifying assump-
tion that the higher derivative and mixed derivative terms in
f are also simply modified by a rescaling by a common fac-
tor. It then follows that the flux lattice shape is obtained by
stretching along thex axis by the factorlx /ly . We now
obtain two possible vortex lattices, both of centered rectan-
gular symmetry, aligned with the ionic lattice, with different
angles,b. ~Relaxing our simplifying assumption may split
the degeneracy between these two lattices.! On the other
hand, whene50, we may rotate the hexagonal lattice by an
arbitrary angle before stretching. This gives an infinite set of
oblique lattices with arbitrary orientation.

To compare theory with YBCO we should take into ac-
count twin boundaries which may also tend to align the vor-
tex lattice by pinning vortices to the twin boundaries, at
645° to thex axis. This effect competes with alignment to
the ionic lattice which we have been discussing. Only in the
special case of a square vortex lattice does a line of vortices
occur at645°. If this is not the case, and if pinning by twin
boundaries is significant, then we should expect that the vor-
tex lattice will align with the ionic lattice far from twin
boundaries but will be deformed in the vicinity of a twin
boundary in an effort to align itself with the twin boundary.
On the other hand, fore50, the vortex lattice would remain
aligned with the twin boundaries everywhere except within
vortex lattice domain boundaries which necessarily exist
roughly midway between the twin boundaries.

Neutron-scattering experiments on YBCO~Ref. 2! sug-
gest that the vortex lattice is well-aligned with the twin
boundaries and is close to being centered rectangular~the
ratio of lattice constants is about 1.04! with b'73°, with
weak dependence onH. This corresponds to a rotation away
from alignment with the ionic lattice by 9°. Four different
orientational domains, related by reflection in the (1,1,0)

FIG. 1. ~a! Distribution of magnetic field in a vortex lattice for
e50.3 andH56.8 T, leading to an angle ofb.74°. We use
l051400 Å and k[l0 /j568. ~b! CorrespondingmSR line
shape.

FIG. 2. ~a! Gibbs free energy as a function ofb for the same
parameters as Fig. 1 and various values ofe. Arrows indicate po-
sitions bMIN of the minima andG0[2H2/8p. ~b! Equilibrium
anglebMIN as a function ofH for several values ofe.
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axis and 90° rotation were reported. These results can be
rather well fitted19 by the basic London model (e50) with
mass anisotropy. Forlx /ly51.5, a value roughly consistent
with infrared and microwave experiments, this lattice has
about the right shape. Taking into account the two crystallo-
graphic domains~related by interchanginglx andly) there
are all together four vortex lattice domains, as seen experi-
mentally. The experimental fact that the vortex lattice ap-
pears to be well aligned with the twin boundaries suggests
that the tendency to align with the ionic lattice is small. No
evidence for a bending of the vortex lattice~by 9°) into
alignment with the ionic lattice far from the twin boundaries
has so far been found.

STM imaging of the YBCO vortex lattice3 also suggests
that the ~highly disordered! lattice has approximately cen-
tered rectangular symmetry withb'77°. However, no evi-
dence for the 9° tilt into alignment with the twin boundaries
was reported. Considering the observed anisotropy of the
vortex cores it has been concluded that the mass anisotropy
alone cannot account for the measured 77° angle of the vor-
tex lattice. It has been suggested that a mechanism related to
the internal symmetry of the order parameter~such as the one
discussed in the present work! needs to be invoked in order
to reconcile these observations.

Low-field Bitter decoration data on YBCO~Ref. 20! show
vortex lattice geometry with a very small distortion from
hexagonal, consistent with a much smaller anisotropy
lx /ly51.11–1.15. One may be tempted to attribute this ap-
parent field dependence ofb to the effects discussed above
in connection with Fig. 2~b!. An alternative explanation is a
poor quality of samples used in the Bitter decoration experi-

ments that may have resulted in partial washing out of the
a-b plane anisotropy.21

mSR experiments measure the field distribution
P(B)5(1/V)*d@B2B(rW)#dxdy. This is shown in Fig. 1~b!.
ForbÞ60°,B(rW) has two inequivalent saddle points leading
to two peaks inP(B). P(B) is unaffected by effective-mass
anisotropy, as can be shown by the rescaling transformation,
mentioned above. ExistingmSR experiments show only a
single peak,22 but broadening due to the finite muon lifetime
or other effects might possibly obscure the second peak.

The weak-field dependence ofb, the alignment with twin
boundaries in the neutron-scattering experiments, and the
single peak inP(B) suggest thate is small in YBCO and
that the normal London model, together with twin boundary
pinning, provides a good fit to the data. STM and Bitter
decoration data on the other hand seem to favor finitee and
weak pinning to twin boundaries. Further experimental work,
preferably on untwinned YBCO or other tetragonal super-
conductors, will probably be necessary to clarify the impor-
tance of square lattice anisotropy in high-Tc superconduct-
ors. It is our hope that the present model will serve as a
useful tool for interpretation of such experiments.

The general approach to vortex lattices introduced here
may be extended to low temperatures, but then the free en-
ergy takes a quite different form which is nonanalytic inB at
T→0.12,17
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