Local magnetic relaxation and hysteresis in the strong and weak Bose-glass regimes of type-II superconductors: A simple model

M. A. R. LeBlanc, Daniel S. M. Cameron, and David LeBlanc

Department of Physics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5

(Received 3 January 1997)

We present a simple generic model which reproduces the salient features of the observations of Beauchamp *et al.* [Phys. Rev. B 52, 13 025 (1995); Phys. Rev. Lett. 75, 3942 (1995)] on the effect of heavy-ion irradiation on the local magnetic response and relaxation rate of $YBa_2Cu_3O_{7-\delta}$ single crystals. The model assumes that j_c vs H , although altered by the irradiation, remains continuous and the decay rate of the critical currents is diminished below the matching field H_{ϕ} . [S0163-1829(97)51310-5]

Beauchamp *et al.*^{1,2} have recently reported on measurements of the local magnetic response and relaxation rates of untwinned YBa₂Cu₃O_{7- δ} single crystals as the density of columnar defects is increased. They conclude from their discovery of a peak followed by a valley in the relaxation rate vs magnetic field that the vortex creep rate is (i) appreciably enhanced in the dilute range where the magnetic-flux density $B(x) \leq B_{\phi}$, (ii) strongly suppressed in the range $B(x)$ $\approx B_{\phi}$, and (iii) insensitive to the density of columnar defects when $B(x) > B_{\phi}$. Here B_{ϕ} is a flux-line density matching, hence scaling, with the density of columnar defects generated by the heavy-ion irradiation of the specimen. Radzihovsky³ has developed a theoretical framework which supports these observations. The regimes where $B(x)$ $\langle B_\phi, B(x) \rangle B_\phi$, and $B(x) \approx B_\phi$ are denoted the strong Bose glass, weak Bose glass, and Mott insulator phase, respectively.^{1–3} By contrast, Baert *et al.*⁴ observe a large peak in flux creep rate when $\langle B \rangle > B_{\phi}$ in Pb/Ge multilayers with a square lattice of submicron holes, Harada *et al.*⁵ observe that the relaxation rate in the irradiated region of $Bi₂Sr_{1.8}CaCu₂O_r$ thin films was less than that in the nonirradiated region, Konczykowski *et al.*⁶ find that the creep rate of the remanent flux in YBa₂Cu₃O_{7- δ} crystals is appreciably decreased by Pb ion irradiation, and Prost *et al.*⁷ find a significant decrease of the relaxation rate below 15 K in single crystals of $Bi_2Sr_2CaCu_2O_8$ in fields of 0.2 and 0.5 tesla after irradiation with 5.3 Gev Pb ions along the *c* axis. The analysis of Khalfin and Shapiro⁸ predicts a steplike rise of the magnetic relaxation at high magnetic fields.

In this paper, we present a simple empirical model which (i) successfully reproduces the observations of Beauchamp *et al.*^{1,2} on the effect of heavy-ion irradiation on (a) the local magnetic hysteresis and (b) the local magnetic relaxation rates; (ii) is in harmony with the observations of several workers that (a) the enhanced critical current density j_c vs B curves are continuous after heavy-ion irradiation, $9-12$ and (b) the flux creep rates are reduced by the heavy-ion irradiation^{4–7} in the range $B < B_{\phi}$; and (iii) makes readily testable predictions.

First, we address the local magnetic hysteresis curves in the context that $B(x) = \mu_0 H(x)$. For simplicity, as in the analysis of Beauchamp *et al.*, ¹ we consider infinite slab geometry where the applied magnetic field *Ha* is directed parallel to the surfaces situated at $x=0$ and $x=2X$. By symmetry, we can focus on the space $0 \le x \le X$.

We assume that the field profiles initially exist in a critical state, hence Maxwell's equation reads *dH*/*dx* $= \pm j_c(H(x))$. Beauchamp *et al.*¹ exploited a modified Bean model where the structure observed in the local magnetic hysteresis of the irradiated specimens corresponds to B_{ϕ} . In their model, the critical current density $j_c = j_{c1}$ when $B(x)$ $\langle B_{\phi}, j_c = j_{c2} \text{ when } B(x) \rangle B_{\phi}$, and j_c rapidly descends from j_{c1} to j_{c2} in the vicinity of B_{ϕ} .

In crucial contrast with their model, we assume that j_c vs *H* is continuous both before and after irradiation. For purpose of illustration, we choose the well-known Kim expression 13 in the form

$$
j_c = \frac{j_0 H_{\text{ref}}}{\{H(x) + H_0\}} n,
$$
\n(1)

where the current density parameter j_0 and the parameter H_0 are viewed as quantities which can be dramatically affected by the heavy-ion irradiation, whereas the reference field H_{ref} and the exponent *n* characterizing the specimen are taken to be insensitive to this process.

We note that Eq. (1) with $n=1$ emerges from the data of Krusin-Elbaum *et al.*,¹² the simulation experiment by Reichhardt *et al.*¹⁴ on the dynamics of vortices interacting with columnar defects, and the Bose-glass theoretical analysis of Nelson and Vinokur.¹⁵ Also, Eq. (2) with $n=2$ fits the measurements of Gerhauser *et al.*¹⁰ on the effect of heavy-ion irradiation on j_c .

We visualize critical states where the induced persistent currents are unidirectional in the half-space $0 \le x \le X$ and focus on the field profiles where H_a is positive ascending or descending in magnitude (see Fig. 1). Introducing Eq. (1) (where to fix ideas, we let $n=1$) into Maxwell's equation and integrating leads to

$$
H(x) = \{(H_a + H_0)^2 \pm 2j_0 H_{\text{ref}} x\}^{1/2} - H_0,\tag{2}
$$

where the $+$ sign applies when H_a is descending in magnitude and the $-$ sign in the space where $H(x)$ is positive when H_a is ascending in magnitude. In the space $x_0 \le x \le X$ where $H(x)$ is negative (see Fig. 1),

FIG. 1. Displays critical field profiles with H_a increasing (solid lines) and decreasing (dashed lines) in magnitude. The profiles were calculated using $j_c = j_0 H_{ref} / [H(x) + H_0]$ with the parameters listed in the caption of Fig. 2 under j''_c . The profiles should be compared with Fig. 3 of Ref. 1 and Fig. 1 of Refs. 16 and 17.

$$
H(x) = -\left\{2j_0H_{\text{ref}}(x - x_0) + H_0^2\right\}^{1/2} + H_0,\tag{3}
$$

where $H(x_0)=0$ in Eq. (2) leads to $x_0 = \frac{(H_a + H_0)^2}{2}$ $-H_0^2/2j_0H_{\text{ref}}$.

Figure $2(a)$ displays the evolution of the hysteresis curves at the center of the specimen as the heavy-ion irradiation modifies the dependence of j_c on H as shown in the inset by altering the parameters j_0 and H_0 . Figure 2(b) displays hysteresis curves for different distances from the surface for the outermost hysteresis curve and uppermost inset of Fig. $2(a)$. Clearly, the families of calculated hysteresis curves presented in our Fig. 2 reproduce the major features of the corresponding data of Beauchamp $et al.^{1,2}$ We stress that (i) the $j_c(H)$ curves introduced in this analysis are continuous, and (ii) the matching field H_{ϕ} plays no explicit role in the structure of j_c vs *H*, hence in the structure of $H(x)$ vs H_a . (i) and (ii) therefore differ radically from the assumption of Beauchamp *et al.*¹ that j_c vs H exhibits an abrupt descent when $H \approx H_{\phi}$.

The steep slopes in their $H(x)$ vs H_a curves¹ are directly associated with H_{ϕ} . In our model, $\left[dH(x)/dH_{a}\right]_{x=x_{0}}$ $= [H_*(x_0)+H_0]/H_0$ becomes very steep as H_0 is made to diminish by irradiation. $H_*(x_0) = H_a = (H_0^2 + 2j_0H_{\text{ref}}x_0)^{1/2}$ $-H_0$. Note also the symmetry and relationship of the four points in the hysteresis curves of Fig. 2 where $H(x)$ crosses the vertical and horizontal coordinate axes, i.e., $H(x)$ $H^* = H^*(x_0)$ when $H^* = 0$, and $H^* = H^*(x_0)$ when $H(x) = 0$.

We now turn to the effect of the irradiation on the local magnetic relaxation rates. We apply the normalized relaxation rate of Beauchamp *et al.*² in the form

$$
S_n = \left\{ \frac{-1}{M(x)} \right\} \frac{dH(x)}{d \ln t} = \left\{ \frac{-1}{M(x)} \right\} \frac{dH(x)}{d(j/j_0)} \frac{d(j/j_0)}{d \ln t}, \tag{4}
$$

where $M(x) = H(x) - H_a$. Adopting the approach of several workers,^{18–21} we assume that, (i) only the parameter j_0 changes with time in Eq. (1) , hence in Eqs. (2) and (3) ,

FIG. 2. (a) Displays hysteresis curves of $H(x)$, the magnetic field at the center of the specimen vs H_a , the applied magnetic field, calculated using $j_c = j_0 H_{ref} / [H(x) + H_0]$ shown in the inset with $j_0 X/H_{\text{ref}} = 1.5$, 0.6, and 1.8, and $H_0/H_{\text{ref}} = 1.0$, 0.12, and 0.10 for $j_c = j'_c$, j''_c , and j'''_c . Taking $\mu_0 H_{\text{ref}} \approx 1.5$ T gives a good fit to Fig. 1 of Ref. 2. (b) Displays local hysteresis curves $H(x)$ for different distances from the surface $(x/X = 1/3, 2/3,$ and 1 for the inner, middle, and outer curves) calculated using j''_c .

and (ii) $d(j/j_0)/d$ lnt does not depend on *H*. We focus on the initial values of the decay rates, *Rn* $= |dH(x)/d(j/j_0)/M(x)|$.

The insets of Figs. 3 and 4 display R_n vs H_a and vs $H(x)$ for the three cases already illustrated in Fig. 2. The dramatic peaks of height, $R_{n\text{peak}} = j_0 x / H_0 H_*(x_0)$, occurring at H_a $=$ *H*_{*}(*x*₀), hence at *H*(*x*₀)=0, arise from the feature that j_c vs *H* of Eq. (1) is convex downwards when $n > 0$. Other dependences of j_c on H with this property such as j_c $= j_0 e^{-H/H_0}$, and $j_c = j_0 {1 - (H/H_{c2})}^m$ where $m > 1$, also give rise to such a peak in our framework. We stress that in our model H_{ϕ} plays no explicit role in the existence of this local relaxation peak.

To account for the valley in the local relaxation rates discovered by Beauchamp *et al.*, ² we now amend the above assumption that $d(j/j_0)/d$ lnt is independent of $H(x)$. In harmony with the observations of several workers, 4^{-7} we envisage that $d(j/j_0)/d$ lnt is smaller in the regions where $H(x) \leq H_{\phi}$ than in the regions where $H(x) \geq H_{\phi}$. For simplicity, we assume an abrupt change in this quantity at $H(x) = H_a$. Consequently we write $d(j_1 / j_{01})/d \ln t$ $=f d(j_2 / j_{02})/d$ lnt where f is a temperature-dependent parameter lying between 0 and 1. Here, for bookkeeping clarity,

FIG. 3. Displays the initial local decay rates defined in the text, where $d(j/j_0)/d\ln t$ for the field profiles $H(x) \leq H_{\phi}$ is a fraction $f=1/3$ of that where $H(x) > H_{\phi}$ vs H_{a} , increasing (a) and (b) decreasing in magnitude. The curves are calculated using $j_c^{\prime\prime\prime}$ for $x/X=1$ and 1/2. The lower and upper boundaries of the nearly linear slope are situated at H_{ϕ} and $H_{a\text{max}} = \{(H_{\phi} + H_0)^2\}$ $1+2j_0H_{\text{ref}}x_m$ ^{1/2}-*H*₀ for (a), and at $H_{\text{amin}} = \{(H_\phi + H_0)^2\}$ $-2j_0H_{\text{ref}}x_m$ $-H_0$ and H_ϕ for (b). The peaks appear at $H_a = H_*(x_0) = H_*(x_m) = (H_0 + 2j_0H_{\text{ref}}x_m)^{1/2} - H_0$ with height $R_{n \text{fpeak}} = f j_0 x_m H_{\text{ref}} / H_0 H_*(x_0)$. Here x_m denotes the position of the field measuring probe. The upper inset displays the local decay rate R_n at $x=X$ calculated using $j_c', j_c'',$ and j_c'' when $d(j/j_0)/d$ lnt is the same whether $H(x) \ge H_\phi$, hence $f=1$. The lower inset complements the upper inset by displaying $R_n(x)$ calculated at $x = X = 1/3$, 2/3, and 1 for j''_c . The curves in (a) and (b), taking $\mu_0 H_{\text{ref}} \approx 1.0$ T, $H_\phi/H_{\text{ref}} = 2.5$, should be compared with that of Fig. 2 of Ref. 2 (note the crystal here is different from that of their Figs. 1 and 3). Also compare (b) with Figs. 2 (b) and 3(b) of Ref. 4 [our model does not show a descent near H_{c2} , since this quantity has not been introduced into our formula for $j_c(H)$].

 j_{01} denotes j_0 where $H(x) \le H_\phi$, and j_{02} denotes j_0 where $H(x)$ is H_{ϕ} . We stress however that $j_{01} = j_{02} = j_0$.

For the field profiles where $H(x) \leq H_{\phi}$ for $0 \leq x \leq X$, we now write $R_n = R_{nf} = |f dH(x)/d(j_1 / j_{01})/M(x)|$. The field profiles which intersect the field boundary H_{ϕ} now read, in the space, $x_{\phi} < x \leq X$ (see Fig. 1), before the relaxation begins

$$
H_i(x) = \{ (H_{\phi} + H_0)^2 \pm 2j_{0i} H_{\text{ref}}(x - x_{\phi i}) \}^{1/2} - H_0, \quad (5)
$$

$$
x_{0i} = \frac{\pm (H_a + H_0)^2 \mp (H_\phi + H_0)^2}{2j_{0j}H_{\text{ref}}},\tag{6}
$$

FIG. 4. Complements Fig. 3. In the main figures, the decay rates calculated using j_c^{\prime} , $j_c^{\prime\prime}$, and $j_c^{\prime\prime\prime}$ and with $f=1/3$ are displayed vs $H(x)$ increasing in magnitude in (a), and decreasing in magnitude in (b). Figure (a) with $\mu_0 H_{\text{ref}} \approx 1.5$ T, $H_{\phi}/H_{\text{ref}} = 0$, 1.25, and 2.5 should be compared with Fig. 3 of Ref. 2. The lower and upper boundaries of the nearly linear slope are situated at $H(x_m)_{\text{min}} = H_{\text{amin}}$ and H_{ϕ} for (a) and at H_{ϕ} and $H(x_m)_{\text{max}} = H_{\text{annax}}$ for (b). The peaks at $H(x)=0$ have a height, R_{n} *R*_{nf} peak $=f j_0 x_m H_{\text{ref}} / H_0 H_*(x_0)$ as in Fig. 3. The insets complement the corresponding main figures by displaying the decay rates vs *H*(*x*) with $d(j/j_0)/d$ lnt the same whether $H(x) \le H_\phi$ (hence here $f = 1$).

where for H_a ascending in magnitude, $i=1$ and $j=2$ and the upper signs apply, while for H_a descending in magnitude, $i=2$ and $j=1$ and the lower signs apply. The decay rate R_{nf} in the space $x_{\phi} \leq x \leq X$ for these two situations, now reads

$$
R_{nfk} = \left| \frac{1}{M(x)} \frac{dH_k}{d(j/j_0)} \right|
$$

=
$$
\left| \frac{1}{M(x)} \left\{ f \frac{\partial H_k}{\partial (j_1/j_{01})} + \frac{\partial H_k}{\partial (j_2/j_{02})} \right\} \right|,
$$
 (7)

where now the subscript $k=1$ denotes $H_1(x)$ and $k=2$ denotes $H_2(x)$.

The ensuing relaxation rates vs H_a and $H(x)$ ascending and descending in magnitude are displayed in the main parts of Figs. 3 and 4. Clearly, these theoretical curves reproduce the salient features of the corresponding data curves of Beauchamp *et al.*² We note that our model generates a "rise" or "drop" in the vicinity of H_{ϕ} whether H_{a} and $H(x)$ are ascending or descending in magnitude. These structures are illustrated in the main parts of Figs. 3 and 4 and their boundaries are given in the captions of these figures. In the framework of our model, the data of Beauchamp *et al.*² indicate that $d(j/j_0)/d$ lnt in the range of $H(x) > H_\phi$ is insensitive to the irradiation since we obtain agreement with their measurements of the evolution of S_n vs irradiation although our model addresses $R_n = S_n / d(j/j_0) / d$ lnt [compare the high-field region of our Fig. $4(a)$ with that of Fig. 3 of Ref. 2].

We have proposed a simple generic empirical model which reproduces the local hysteresis curves observed by Beauchamp *et al.*^{1,2} and provides an account of the peak and valley they found in the local magnetic relaxation rates of their specimens subjected to heavy-ion irradiation. Our analysis predicts that a peak in local magnetic relaxation will appear at $H_a = H_*(x_0)$ in graphs of the rate of decay vs H_a and at $H(x)=0$ in *all* specimens which exhibit a convex downwards curve for j_c vs H . We note that our model also applies to idealized cylindrical geometry simply by replacing x/X in our formulas by $[1-(r/R)]$. Finally, we recommend that workers display $S = dH(x)/d \ln t$ rather than the *composite* quantity S_n .

- ¹K. M. Beauchamp *et al.*, Phys. Rev. B **52**, 13025 (1995).
- 2 K. M. Beauchamp *et al.*, Phys. Rev. Lett. **75**, 3942 (1995).
- 3 L. Radzihovsky, Phys. Rev. Lett. **74**, 4919 (1995).
- ⁴M. Baert *et al.*, Phys. Rev. Lett. **74**, 3269 (1995).
- 5 K. Harada *et al.*, Phys. Rev. B **53**, 9400 (1996).
- ⁶M. Konczykowski *et al.*, Phys. Rev. B **44**, 7167 (1991).
- 7 D. Prost *et al.*, Phys. Rev. B 47, 3457 (1993).
- 8 I. B. Khalfin and B. Ya. Shapiro, Physica C 207, 359 (1993).
- 9 L. Civale *et al.*, Phys. Rev. Lett. **67**, 648 (1991).
- 10 W. Gerhaüser *et al.*, Phys. Rev. Lett. **68**, 879 (1992).
- 11R. C. Budhani, M. Suenaga, and S. H. Liou, Phys. Rev. Lett. **69**, 3816 (1992).
- 12 L. Krusin-Elbaum *et al.*, Phys. Rev. B **53**, 11744 (1996).
- 13Y. B. Kim, C. F. Hempstead, and A. R. Strnad, Phys. Rev. Lett. **9**, 306 ~1962!; Phys. Rev. **129**, 528 ~1963!; **131**, 2486 $(1963).$
- 14 C. Reichhardt *et al.*, Phys. Rev. B 53, 8898 (1996).
- 15David R. Nelson and V. M. Vinokur, Phys. Rev. B **48**, 13 060 $(1993).$
- ¹⁶M. Konczykowski et al., Physica C 235-240, 2965 (1994).
- 17R. A. Richardson, O. Pla, and F. Nori, Phys. Rev. Lett. **72**, 1268 $(1994).$
- ¹⁸Y. Yeshurun *et al.*, Phys. Rev. B 38, 11 828 (1988).
- ¹⁹ Donglu Shi et al., Phys. Rev. B **42**, 2062 (1990).
- 20 Ming Xu *et al.*, Phys. Rev. B 43, 13049 (1991).
- 21 Yang Ren Sun *et al.*, Physica C 194, 403 (1992).