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Using a combination of analytical techniques and quantum Monte Carlo simulations we investigate the
coupled spin-ladder system LaCuO2.5. At a critical ratio of the interladder to intraladder coupling
(J8/J)c'0.11 we find a quantum phase transition between a Ne´el ordered and a disordered state. At criticality
the uniform susceptibility behaves asx(T)5aT2 with a universal prefactor. At intermediate temperatures the
system crosses over to a ‘‘decoupled ladders regime’’ with pseudogap-type behavior, similar to uncoupled
ladders. This can explain the gaplike experimental data for the magnetic susceptibility of LaCuO2.5 despite the
presence of long-range Ne´el order.@S0163-1829~97!50910-6#

The unusual normal-state magnetic properties of doped
high-Tc cuprates have led to enhanced interest in zero-
temperature order-disorder transitions of quantum magnets.
In particular, detailed predictions have been made about the
behavior of a two-dimensional~2D! Heisenberg antiferro-
magnet by mapping it to the nonlinear sigma model.1 They
are in good agreement with experimental measurements on
La2CuO4. In addition to various mechanisms proposed for
2D spin systems, long-range Ne´el order atT50 can also be
destroyed if a 3D antiferromagnet approaches the 1D limit
due to spatially anisotropic exchange. Then, quantum critical
behavior and a disordered spin-liquid phase should be ob-
served in three spatial dimensions.

Recently, a suitable system for such type of behavior,
LaCuO2.5, has been synthesized.2 The copper atoms in this
compound form an array of coupled spin-1/2 two-chain lad-
ders. Isolated spin ladders have a spin-liquid ground state
and show signs of superconducting pairing with ad-wave
order parameter upon doping3. However, a marked transition
to a metallic phase takes place in LaCuO2.5 under Sr doping,
but no sign of superconducting pairing was observed down
to 5 K.2 In contrast superconductivity was recently found in
the ladder compound Sr0.4Ca13.6Cu24O41.84,

4 which has weak
and frustrated interladder couplings. This observation makes
it quite important to study in detail the influence of the in-
terladder coupling on the magnetic properties of the undoped
insulating phase.

First, susceptibility measurements on LaCuO2.5 were in-
terpreted as showing a spin gap in the excitation spectrum.2

Subsequent NMR andmSR studies indicated, in contrast,
antiferromagnetic ordering belowTN;110 K.5,6 Normand
and Rice7 suggested that the magnetic state could be close to
a transition to spin-liquid phase. In this paper we expand on
this idea and show that the apparently conflicting experimen-
tal results can be reconciled.

The basic model for understanding these properties of
LaCuO2.5 is a spin-1/2 Heisenberg Hamiltonian for coupled
ladders7

Ĥ5J(
^ i , j &

Si•Sj1J8(
^ i , j &

Si•Sj , ~1!

which are shown schematically in Fig. 1. We assume for
simplicity equal rung and leg exchange constantsJ in each
ladder and different exchangeJ8 between ladders. Notice
that the crystalline structure of LaCuO2.5 is more compli-
cated, having four spins per unit cell.2 However, we may
choose a simpler, topologically equivalent lattice structure
having only two spins per unit cell. ForJ8'J the spin sys-
tem is three-dimensional and has Ne´el order at low tempera-
tures because the interladder coupling does not introduce

FIG. 1. Cross section of the lattice structure of the model. The
ladders run perpendicular to the paper plane. Solid lines are the
rungs of the ladders with a couplingJ. Dashed lines are the inter-
ladder couplingsJ8. The dotted lines indicate the unit cell used.
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frustration. Quantum fluctuations become more and more
significant as one approaches the quasi-1D limit. Since the
1D phase is a spin liquid with a finite gap, the magnetic order
is destroyed at some finiteJ8.

We examine the following points:~i! the critical ratio of
(J8/J)c for the order-disorder transition,~ii ! the low-T be-
havior of the uniform susceptibilityx at the critical point,
and ~iii ! x(T) in the whole temperature range and for arbi-
trary J8/J. For this we employ a combination of analytical
and numerical techniques. With the help of the renormalized
spin-wave theory8 and the bond-operator method9 we obtain
lower and upper bounds for the transition point:
0.05,(J8/J)c,0.12. The quantum critical behavior of the
uniform susceptibility for a 3D spin system has been pre-
dicted from scaling arguments by Chubukovet al.1 as
x(T)5aT2. We calculate a universal factor in this law. Em-
ploying a quantum Monte Carlo cluster algorithm10 ~QMC!
we then obtain a better estimate for the critical coupling:
0.11,(J8/J)c,0.12. Next we calculate the temperature de-
pendence of the uniform susceptibilityx(T) for the whole
temperature range and various coupling ratios, shown in Fig.
2. Finally we show that the susceptibility measurements of
Hiroi and Takano2 can be fitted perfectly by the predicted
form for a nearly critical ordered system, thus resolving the
apparent contradiction between the susceptibility and mag-
netic resonance measurements.

A natural approach to the Hamiltonian~1! from the side
of strong interladder couplingJ8;J is the renormalized
spin-wave theory of antiferromagnets.8 Following a slightly
different procedure, we express the two spins per unit cell
via two types of boson operatorsai andbi using the antifer-
romagnetic Dyson-Maleev transformation. Interaction terms
with four bosons are then treated in the mean-field approxi-
mation by introducing boson averages:m5^ai

†ai&,
D15^aibi&, D25^aiai1z&, D35^aibi1x&, which are deter-
mined by solving self-consistent equations. The correspond-
ing spin-wave spectrum consists of two branches,

vk5AA22~Bk6uCku!2, ~2!

A5J~S2m1D1!12J~S2m1D2!12J8~S2m1D3!,

Bk52J~S2m1D2!coskz ,

Ck5J~S2m1D1!12J8~S2m1D3!~e
ikx1eiky!,

each having zero-frequency mode atkz50 or p. At the iso-
tropic pointJ85J, our calculations predict forS51/2 only a
small reduction of the sublattice magnetization:^S&50.40.
Quantum fluctuations destroy the magnetic order for the
critical couplingJc8'0.05J. ~The result by the linear spin-
wave theory is an order of magnitude smaller.! From general
arguments we expect that the renormalized spin-wave theory
overestimates the stability region of the ordered phase and,
hence,Jc8'0.05J presents alower bound for the exact criti-
cal value.

In the ordered phase the uniform magnetic susceptibility
becomes anisotropic with two components parallel and per-
pendicular to the staggered moments. The parallel compo-
nentx i vanishes atT50. We calculate its low-temperature
behavior in the framework of the present approach by using

x i5
1

T(
j

^Si
zSj

z&. ~3!

In the limit T→0 we find in agreement with Oguchi’s
results:8 x i5T2/6cic'

2 , whereci and c' are the two spin-
wave velocities determined from Eq.~2!. The numerical co-
efficient in the square-law behavior ofx(T) increases by a
factor of 20 betweenJ85J andJc8 .

Describing correctly transverse oscillations in the ordered
phase, spin-wave theory fails, however, in the vicinity of
Jc8 since at the critical point excitation spectrum has the same
triplet degeneracy as in the disordered singlet phase for
J8,Jc8 . To study the order-disorder transition from the op-
posite side, we use the bond operators formalism.9 This
method describes a single spin ladder fairly well for strong
enough rung coupling.7 It has also been applied to a 3D array
of ladders in LaCuO2.5 at T50, but the result of Ref. 7 is
different from ours.

The two spins (n51,2) belonging to the same ladder’s
rung with the lattice indexi are expressed in terms of dimer
states as

Sn,i
a 5

~21!n

2
~si

†ta,i1ta,i
† si !2

i

2
eabgtb,i

† tg,i , ~4!

wheresi and ta,i are singlet and triplet boson operators sub-
ject to the constraintsi

†si1(ata,i
† ta,i51. This relation is en-

forced by a chemical potentialm. Also, a site independent
condensate of singletŝsi&5 s̄ is assumed. In the quadratic
approximation we keep only the terms with two triplet op-
erators. Diagonalizing the remaining Hamiltonian by the
Bogoliubov transformation we obtain two self-consistent
equationŝ ]Ĥquad/]m&50 and ^]Ĥquad/] s̄&50 on the pa-
rametersm and s̄. They can be reduced to a single equation
on the new parameterd52Js̄2/(J/42m):

FIG. 2. Uniform susceptibility calculated by QMC for some
representative ratios of the couplings. Error bars were omitted
where the relative error was less than 1%. The inset is the same data
in a double logarithmic plot. The dotted line is added as a guide to
the eye, indicating the criticalT2 behavior clearly.
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2D , ~5!

wherenk5coskz2J8/2J(coskx1cosky), magnon dispersion is

vk5(J/42m)A11dnk, and nk is a Bose factor. We first
solve Eq. ~5! at T50. The gap becomes zero for
d51/(11J8/2J). Substituting this value into Eq.~5! we find
that the critical coupling corresponding to vanishing gap and
to the transition to the ordered phase isJc850.121J. The
mean-field theory should again overestimate the stability re-
gion of the corresponding phase. Therefore, we conclude that
the above value is anupper bound for the exact value of
Jc8 , which lies between 0.05 and 0.12. We will find below
from QMC that the exact critical coupling is very close to
the upper bound. The spectrum of low-lying excitations
in the disordered phase near (0,0,p) has the form
vk5ciAkz21p2k'

21m2, where ci and c'5pci are spin-
wave velocities parallel and perpendicular to ladders,
ci'1.16J ~at J85Jc8), andp5AJ8/2J. The massm and the
gap D5cim behave like (Jc82J8)1/2 close to the critical
point.

The isotropic susceptibility in the spin singlet state can be
calculated by Eq.~3!, which after substitution of Eq.~4!
takes the form

x5
1

T(
k

~nk
21nk!, ~6!

where summation is performed over one of the three magnon
branches only.

If the temperature is smaller than the gap, one can use the
zero-temperature spectrum. In this quantum disordered re-
gime the asymptotic behavior of the susceptibility found
from Eq. ~6! is

x~T!5
D3/2T1/2

~2p!3/2cic'
2 e

2D/T, ~7!

which differs by its prefactor from the analogous results for
magnetically disordered phases in 1D and 2D.11

At J85Jc8 the massm is generated by thermal fluctua-
tions. It can be found from the self-consistency equation at
finite T. In contrast to the 2D case,12 variation of the zero-
point fluctuation term in Eq.~5! becomes logarithmically di-
vergent on the upper limit, and is, therefore, lattice depen-
dent. Accordingly,m is a linear function ofT with a loga-
rithmically small prefactor computed by evaluating lattice
sums:

c2m2

T2
5

2p2

3ln~0.7J/T!
. ~8!

To calculate the universal behavior of the uniform suscepti-
bility in the quantum critical regionD!T!J8 we should
neglect logarithmically small mass and substitute the gapless
dispersion into Eq.~6!. As a result, the universal form for the
susceptibility coincides with the result forx i obtained in the
spin-wave theory:

x~T!5
T2

6cic'
2 . ~9!

Notice that nonuniversal corrections to the prefactor in the
above expression have only logarithmic smallness.

Analogous calculations for the specific heat predict
C(T)52p2T3/5cic'

2 at the critical point. The temperature
dependence coincides again with the behavior in the ordered
phase. However, the prefactor is multiplied by 3/2 according
to the different number of gapless modes in the two phases.
Consequently, a crossover between these two regimes should
exist for a ‘‘nearly critical’’ ordered spin system.

Critical behavior can be also studied using a sigma model
description of quantum antiferromagnets.1 Predictions of that
method have been compared with bond-operator results for a
2D magnet in Ref. 12. By analogy we argue that the limit
N→` of the O(N) quantum nonlinears model in 311
dimensions should give the same universal factor as in Eq.
~9!. This is quite natural since both approaches use mean-
field approximation. Calculation of leading 1/N corrections
to the mean-field prediction remains an open question.

Using QMC we can obtain a better estimate for the criti-
cal coupling. We have calculated the uniform susceptibility
x(T) for various couplings on lattices up to 10310 ladders
of length 40~8000 spins! and periodic boundary conditions
at temperatures down tobJ524. The results are shown in
Fig. 2. We estimate the critical coupling by varying the cou-
pling ratio and looking for the predictedT2 behavior at criti-
cality. Taking into account the shift of the critical point due
to finite-size effects13 we estimate: 0.11,(J8/J)c,0.12,
very close to the bond-operator estimate.

Additionally we use self-consistent field boundary
conditions14 to probe the occurrence of Ne´el order and to
estimate Ne´el temperatures. We findTN'0.38(3)J at
J8/J50.25, TN'0.27(3)J at J8/J50.15 and no indication
for order down toT5J/16 at J8/J50.1. These results are
consistent with the above estimates and show that the Ne´el
temperature of about 110 K ('J/10) observed in the experi-
ments is realizedvery closeto the critical point.

Next we want to discussx(T) for the whole temperature
and coupling range and compare with the experimental mea-
surements. For all couplings the Curie behavior at high tem-
peratures changes over into a broad maximum at tempera-
tures of the order ofJ, caused by local spin singlet formation
on the individual ladders, just as in uncoupled ladders.11 The
single ladder then shows a steep decrease with lowering
the temperature, following an exponential decayx(T)
;T21/2e2D/T ~Ref. 11! with a gap of about 0.5J at low
temperatures.3

A weak coupling between the ladders does not destroy the
spin gap. At high and intermediate temperatures we observe
the same behavior and a steep exponential decrease with a
pseudogapsimilar to the gap of the single ladder. Only at
temperatures of the order ofJ8 does a crossover to the 3D
quantum disordered behavior Eq.~7!, an exponential decay
with theactual gap, take place.

WhenD becomes smaller thanJ8 upon approaching the
T50 transition point, the quantum critical region1 with its
T2 law for the susceptibility appears between the quantum
disordered and decoupled ladders regimes. Note, that exist-
ence of the 3D-type quantum critical behavior is restricted to
quite low temperaturesT,J8. At T.J8, when interladder
coupling can be neglected,x(T) still shows a remarkable
similarity to the single ladder.
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In the ordered phase close to criticality we find the same
pseudogap behavior, but the susceptibility goes to a small
but nonzero value at zero temperature. The crossover occurs
at temperatures of the order of the Ne´el temperature~com-
pareJ8/J50.15,0.2 in Fig. 2!.

Let us now fit the susceptibility measurements on
LaCuO2.5. Hiroi and Takano have fitted them to an exponen-
tial form plus a Curie contribution due to impurity spins, and
thus concluded a disordered ground state. But, as the mag-
netic resonance measurements indicate an ordered ground
state the correct low-T behavior is

x~T!5C/~T2Q!1x01aT2/J3, ~10!

where a'0.33(3) emu mol21 estimated from QMC,
and x0 is the sum of the temperature independent core
susceptibility, and van Vleck susceptibilty, and the
small zero-temperature spin susceptibility. The fit is excel-
lent, as shown in Fig. 3, with fitting para-
metersC51.8(1)31023 emu mol21, Q526.0(4) K, x0
526.2(2)31026 emu mol21. J513406150 K, similar to
the value in the planar copper oxide compounds.

We see that the uniform susceptibility measured by Hiroi
and Takano2 is indeed compatible with a gapless ordered
ground state close to quantum criticality, as suggested by
Normand and Rice.7 We remark that due to the dominance of
quantum fluctuations in this nearly critical system no
anomaly can be observed at the Ne´el temperature.

Measurements of the total susceptibility suffer from the
Curie contribution of impurity spins at low temperatures,
which make the extraction of the asymptoticT→0 behavior

difficult. Thus measurements which are not sensitive to im-
purities, such as NMR ormSR are much better in distin-
guishing nearly critical ordered magnetic materials from dis-
ordered ones.
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FIG. 3. Fit of the susceptibility measurements by Hiroi and Ta-
kano~Ref. 2! to Eq.~10!. The circles denote the measurements, the
solid line the fit, and the dashed line the measurements after sub-
traction of the Curie term.
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