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We have computed the capacitive energy associated with the addition of each electron to a circular quantum
dot, reproducing the shell-filling behavior as reported in previous simulations and recently found experimen-
tally. We derived quantitative estimates for the shape of the confining potential and for the dot radius in the
experiments. Our results show that the succession of shell-filling events differs for the case of a realistic
self-consistent potential from that predicted by a single-electron approximation and with an idealized parabolic
potential.@S0163-1829~97!51808-X#

Recent measurements by Taruchaet al.,1 using vertical
quantum dots, have provided experimental evidence of the
shell structure of addition energies as predicted in Refs. 2–4.
This has been possible through a sophisticated technology5,6

that has allowed the fabrication of smaller and geometrically
more controllable quantum dots. The vertical confinement
has been obtained with AlxGaAs12x barriers 12 nm apart and
the lateral confinement by etching and by the deposition of a
side gate that can be used to control the dot potential.
Taruchaet al. devised an improved procedure for the deter-
mination of the addition energies from the data of the Cou-
lomb blockade conductance peaks as a function of the gate
voltage. A method that was well known in the field of Cou-
lomb blockade studies has been applied, exploiting the infor-
mation on the slopes in the diamond diagram7 to evaluate the
charging energy from the values of the gate voltage that cor-
respond to conductance peaks.

In this paper, for labeling the addition energies in relation-
ship to the number of electrons in the dot, we use the same
convention as in the paper by Taruchaet al., which yields
the most direct physical interpretation. For comparisons, the
data in Refs. 3 and 4 must be shifted to the right by one unit.

Our calculations have been performed for a two-
dimensional circular quantum dot, solving the Schro¨dinger
equation self-consistently within a mean-field approximation
including exchange and correlation effects via a local-
density-functional approach.2,3 The two-dimensional~2D!
approximation is appropriate, because the thickness of the
quantum dot in the vertical direction is only 12 nm, corre-
sponding to the In0.05Ga0.95As quantum well width,1 and is
therefore significantly smaller than the dot diameter.

The two-dimensional Schro¨dinger equation for the dot
reads, in polar coordinates,
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where \ is the reduced Planck constant,m* the effective
mass of the electron,r the radial coordinate, andf the
angular coordinate. The material parameters for
In 0.05Ga0.95As have been computed with a linear interpola-
tion between the parameters of InAs and GaAs, which gives
m*50.0648m0 and « r512.98. The total potentialV(r)
includes3 the confinement potential, the Coulomb interaction
term with the other electrons, and the exchange and correla-
tion terms, evaluated on the basis of the polynomial approxi-
mations given by Tanatar and Ceperley8. The confinement
potential is assumed to be parabolic up to a distance corre-
sponding to the geometric dot radius, where hard walls de-
fine the outer boundary. Such a potential landscape is con-
sistent, as discussed in the following, with the experimental
results for the charging energy.

The 2D Schro¨dinger equation is separable into azimuthal
and radial equations
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wheren2 is the separation constant andk252m*E/\2. En-
forcing periodic boundary conditions, the azimuthal equation
has the standard solutionF5c exp(6if). For n250 we
have only one solution, while forn2Þ0 there are two solu-
tions corresponding to the up and down orientations of the
angular momentum. The radial equation is properly dis-
cretized and solved numerically, with a self-consistent itera-
tive procedure.3

For a dot radius around 100 nm and a number of electrons
around 20, convergence is attained with a few tens of itera-
tions, which take less than a minute of CPU time on a high-
performance workstation. For smaller dots, fewer iterations
are needed, because the self-consistent problem differs just
by a weak perturbation from the single-electron problem, and
the iteration procedure converges monotonically to the solu-
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tion. This is the consequence of the fact that the interaction
energy scales with 1/Re , Re being the effective radius over
which the electron wave function is spread, while the con-
finement energy scales with 1/Re

2.9 Thus, for increasing dot
size, the Coulomb energy becomes more and more impor-
tant, leading to a very stiff self-consistent problem.

The chemical potentialm(N), corresponding to the en-
ergy needed to add theNth electron to a system withN21
electrons, is computed by means of Slater’s transition
rule2,10, in order to avoid the amplification of numerical er-
rors associated with differentiations.

It is important to clarify that the term ‘‘addition energies’’
as used in Ref. 1 is misleading, because the quantityDm is
actually the equivalent of a classical capacitive energy, i.e.,
the variation in the dot potential energy as a consequence of
the addition of one electron. The properly defined addition
energy, i.e. the energy needed to add an electron onto the
dot, is just the chemical potentialm(N). Let us then define
the capacitive energy4 as e2/C(N)5m(N11)2m(N): this
is the quantity to be compared with the ‘‘addition energy’’ of
Ref. 1.

We observe that, after a few oscillations of decreasing
amplitude, the measured capacitive energy1 tends to saturate
around a value of 1.25 meV as the number of electrons in-
creases. This effect is due to the varying effective dot radius:
for small electron numbers, the effective radius is smaller
than the geometrical radius, leading to an increase of the
capacitive energy, which, in a semiclassical approximation,
is inversely proportional to the radius. For large electron
numbers, the size of the dot grows as much as the depletion
region due to the side gate permits.

We have computed the electron density for a dot with a
geometrical radius of 90 nm and a parabolic confinement
potential given byVp51/2m*v2r 2, where r is the radial
coordinate and\v53 meV. The results are presented in Fig.
1 for various electron numbers. One can see that the effective
radius starts approaching the geometrical radius only for a
number of electrons larger than 18. We have made this
choice of parameters because\v53 meV corresponds to
the estimate given in Ref. 1, andR590 nm is a value allow-
ing quick convergence.

The corresponding behavior of the capacitive energy is
shown in Fig. 2 by the solid squares. The other results in Fig.

2 are for dots with the same geometrical radius, but with a
confinement potential with\v54 ~solid dots! 2.5 meV
~empty squares!.

Examining the detailed features of these results, we notice
that peaks occur in more positions than those predicted on
the basis of a mere parabolic confinement potential. Each
peak in the capacitive energy corresponds to the filling of a
‘‘shell,’’ i.e., a set of degenerate orbitals. If one adds an
electron to an unfilled shell the capacitive energy is simply
due to the increased electrostatic repulsion as for a classical
capacitor. Thus it is substantially constant and depends on
the dot diameter. When, instead, an electron is added to a
different shell, the capacitive energy also includes the varia-
tion between the energy eigenvalues associated with the two
consecutive shells. For the case of a bare parabolic potential
and neglecting electron-electron interactions, there should be
peaks atN52, 6, 12, 20, and 30, because each shell accom-
modates 2, 4, 6, 8, and 10 electrons.1 In our self-consistent
results there are peaks also atN516 and 24. These are due to
the fact that the effective self-consistent potential ‘‘seen’’ by
each electron is not parabolic, and therefore only degenera-
cies associated with the circular symmetry remain. Each or-
bital with n50 is double degenerate~just the spin degen-
eracy!, while for nÞ0 we have fourfold degeneracy, as
discussed previously. For example, if we look at the data
obtained from the self-consistent solution for\v53 meV
and 24 electrons, the orbitals are ordered~from the point of
view of the energy eigenvalues! as follows:~0,1! ~1,1! ~2,1!
~0,2! ~3,1! ~1,2! ~4,1!, with the angular and radial quantum
numbers indicated by the first and second numbers, respec-
tively. In order to proceed rigorously, we should consider the
data for the values ofN corresponding to each transition we
are interested in, but, for the purpose of exemplification, let
us just look at the separation between consecutive energy
eigenvalues forN524. We find values around 0.9 meV, ex-
cept for two cases, that of the pair~2,1!-~0,2!, for which the
separation is only 0.049 meV, and that of the pair~3,1!-~1,2!,
for which we have a separation of 0.17 meV. Thus the~2,1!
and ~0,2! orbitals are almost degenerate~for a parabolic po-
tential they would be exactly degenerate! and this is the rea-
son why no peak is observable in the capacitive energy re-
ported in Fig. 2 forN510. The relatively small separation

FIG. 1. Electron density as a function of dot radius, for different
electron numbers; the geometric dot radius is 90 nm and the con-
finement potential is parabolic, with\v53 meV.

FIG. 2. Self-consistent capacitive energy of a quantum dot with
a radius of 90 nm as a function of the number of electrons, includ-
ing a parabolic confinement potential defined by\v54 ~solid
dots!, 3 meV ~solid squares!, and 2.5 meV~empty squares!.
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between~3,1! and~1,2! leads to the reduced peak height for
N516. A small peak forN516 is clearly visible in the ex-
perimental results of Ref. 1.

The actual shape of the self-consistent potential is shown
in Fig. 3 for\v53 meV: increasing the number of electrons
the potential is gradually flattened out and raised. The pres-
ence of a peak forN54 in the experimental data of Ref. 1
may be due to the lack of circular symmetry as a conse-
quence of size fluctuations, or of the presence of an impurity.
If the circular symmetry breaks down, the only degeneracy
left is that associated with the spin: each shell will accom-
modate only two electrons, and the capacitive energy will
exhibit a peak in correspondence with each even value of
N ~see Ref. 2!. Asymmetry effects do not appear at higher
electron numbers, possibly because of screening effects.

Comparing the numerical values of the capacitive ener-
gies in Fig. 2 with the experimental data in Fig. 1~b! of Ref.
1, we notice that, up toN57/8 the latter lie somewhere
between the curves for\v52.5 and 4 meV, while, for larger
N, they are definitely lower. Since for smallN the best ap-
proximation is represented by the curve with\v54 meV,
and forN around 7 by that for\v52.5 meV, the actual bare
confinement potential could be best approximated with a
somewhat less than quadratic function.

For large values ofN, all three curves of Fig. 2 tend to
merge to an asymptotic value of approximately 2 meV, as a
consequence of the hard walls limiting any further increase
of the effective dot size. This value of the charging energy is
approximately equal to that (Ecc) classically expected for a
two-dimensional conducting disk with a radius of 90 nm:2,11

Ecc5
e2

8R«0« r
51.94 meV, ~4!

whereR is the disk radius,«0 is the vacuum permittivity and
« r is the relative permittivity of the medium in which the
disk is embedded.

This trend toward an asymptotic value depending on the
maximum dot size is clearly visible in the results reported in
Fig. 4, where the three curves represent the capacitive ener-
gies for\v53 meV for a dot radii of 75 nm~solid dots!, 90

nm ~solid squares!, and 120 nm~empty squares!. For small
values ofN, for which the effective dot size is not influenced
by the distance of the hard walls but only by the profile of
the bare parabolic potential, we obtain the same results for
all three cases, while, for large values ofN, the curves satu-
rate approximately at the classical capacitive energies
Ecc51.45, 1.94, and 2.32 meV that would be expected for
R575, 90, and 120 nm. The curve forR5120 nm does not
reach the limiting value of 1.45 meV in our plot: this is due
to the fact that the number of electrons needed to reach satu-
ration increases with the dot radius.

From the experimental data, we notice that the capacitive
energy decreases to about 1.25 meV, which within the clas-
sical electrostatic analogy corresponds to a dot radius of 140
nm. This is a reasonable value, considering that the litho-
graphic radius is 250 nm and that a depletion zone must form
due to the Schottky contact of the side gate. For values of
N larger than those reported in Fig. 1~b! of Ref. 1, the ca-
pacitive energy may decrease further, implying an even
larger dot radius.

Results of calculations performed for a dot radius of 140
nm and a parabolic confinement potential with\v52.48
meV are shown in Fig. 5. Although the slope of the confine-
ment potential has been lowered with respect to the curves of
Fig. 4, the capacitive energy does not reach the expected

FIG. 3. Self-consistent potential of a quantum dot with a geo-
metrical radius of 90 nm and a parabolic confinement potential
defined by\v53 meV, for different electron numbers; the poten-
tial for N50 corresponds to the bare parabolic confinement poten-
tial.

FIG. 4. Self-consistent capacitive energy of a quantum dot in-
cluding a parabolic confinement potential defined by\v53 meV
and with a geometrical radius of 75 nm~solid dots!, 90 ~solid
squares!, and 120 nm~empty squares!.

FIG. 5. Self-consistent capacitive energy in a quantum dot in-
cluding a parabolic confinement potential defined by\v52.48
meV, and with a geometrical radius of 140 nm.
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saturation value of 1.24 meV even for 30 electrons. Calcula-
tions for larger dots and/or for smaller values of\v are very
difficult, because of numerical convergence problems.

In summary, we presented a numerical simulation of the
capacitive charging energy of a model quantum dot which
agrees well with recently found experimental results. Our
model explains peaks in the capacitive energy found in ad-
dition to those predicted for a mere parabolic confinement
potential. Furthermore, we derived estimates for the shape of

the confinement potential and the maximum radius of the
quantum dot.
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