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Integer-filling metal-insulator transitions in the degenerate Hubbard model
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We obtain exact numerical solutions of the degenerate Hubbard model in the limit of large dimébsions
large lattice connectivily Successive Mott-Hubbard metal insulator transitions at integer fillings occur at
intermediate values of the interaction and low enough temperature in the paramagnetic phase. The results are
relevant for transition metal oxides with partially filled narrow degenerate b#860463-182807)51908-4

The understanding of strongly correlated electron systemsn-site Coulomb repulsion, and the exchange paramkter
is one of the current challenges in condensed-matter physiceriginates the Hund’s coupling. For simplicity, we shall fur-
In recent years, this problem has received a great deal gfer assumq"’}b=—t53b and neglect the last “spin flip” term
attention from theorists and experimentalist alike. Howeverjn gq. (1). The resulting model Hamiltonian is relevant for
our knowledge of even some of the basic features of th@ectronic systems with partially filled narrow degenerate

proposed model Hamiltonians remains to a large extent onlynqs. Examples of such systems are tharansition metal

partial, except, p_erhaps, in.the one—dimensio_nal case. In CoNyidas R, ,A,MOj with three-dimensional perovskite-type
sequence, the interpretation of the experimental data o

. tructure, wher®=La,Y, A= Ca,Sr, and the transition metal
strongly correlated electron systems has to remain only, . Lo :
U C =Ti,V,Cr. Fujimori constructed a phase diagram by clas-
speculative in most of the cases. In regard to this S|tuat|0néi ing th mpound rrelated metals or Mott insu-
exact results on properties of model Hamiltonians in well- fying these compounds as correlated metals or Mott insu

defined limits is very desirable. The relevant role played b))ator_s according to their electr_onlc properti‘éd&nofcher a_nd
the band degeneracy in models of strongly correlated eledlarticularly notable .example is the extenswlely investigated
trons has been long and largely recognizetHowever, the Y203 compound which has a MIT as a function of tempera-
systematic treatment of such models poses in general evdHré: pressure and chemical substitutiont is important to
greater technical difficulties than nondegenerate ones. Thidote that in bipartite lattices such as the hypercubic or the
particularly applies to numerical approaches which have td€the lattice, the ground state of the model has long-range
deal with the exponential growth of the Hilbert space. order?® In the single-band case it is a spin antiferromagnetic
The goal of this paper is to demonstrate the existence dfNeel) state, while in the degenerate modeith J~0) one
successive metal insulator transitiofMIT’s) at the integer can have either a spin-ordered and/or an orbital-ordered
filingsn=1, 2, and 3 in the two-band degenerate Hubbardstate. Other types of orderings are atspriori possible, as
model within the “local impurity self-consistent approxima- for instance, ferromagnetidor largeJ). The stability of the
tion” (LISA) which is exact in the limit of large dimensions different phases will depend on the values of the various
(or large lattice connectivify’ These MIT’s occur within the interaction parameters appearing in the Hamiltoniah
paramagnetic phase for intermediate values of the interaSince the parameter space is rather large, we defer the inves-
tion. We obtain exact numerical solutions of the model usingigation of the full phase diagram for a later publication.
an extension of the Hirsch and Fye quantum Monte CarliHere we choose to concentrate on the interesting question of
(HFQMC) algorithn 8 for the solution of the associated im- the destruction of a metallic state by the sole effect of elec-
purity problem within the LISA. This impurity problem is a tronic correlationgMott transitior). Therefore, we shall re-
generalized single impurity Anderson model where the im-strict ourselves to the paramagnetic phéseboth spin and
purity and conduction-band operators carry an orbital indexorbit indices. It is important to note, however, that the para-

The two-band degenerate Hubbard model reads magnetic solutions that we obtain are indeed the true ground
state in models that include next-nearest-neighbor hopping
(U+J) (that lifts the rather artificial nesting propertand also in
H:m%w tia}bc;raociba+Ti;U NiaoNia—o models with hopping disordéf:*®
In this paper we shall consider the model on a Bethe
U (U= lattice of connectivityz—oo which renders a semicircular
+ Ei,a;),o NiacMib—o Ti,a;),o NiaoNibo bare density of statep°(e)=(2/7D)yI— (e/D)Z, with
D=2t. Our choice is motivated from the fact thaf(e)
J S o + shares common features with a realistic three-dimensional
215 CiaoCia—oCib—oCibo @D cubic tight-binding model; that is, it is bounded and has the

same square-root behavior at the edges. We shall set the
(ij ) labels nearest-neighbor sites aadh=1,2 is the orbital half-bandwidthD=1 andJ=0 (the case)#0 will be con-
index. This Hamiltonian is rotational invariant in spin and sidered elsewheje
real space, and the usual approximatibhsndJ indepen- Within the LISA, the lattice model is exactly mapped onto
dent of band indices are assuniethe parametel is due to  its associated impurity problem supplemented with a self-

0163-1829/97/58)/48554)/$10.00 55 R4855 © 1997 The American Physical Society



R4856 MARCELO J. ROZENBERG 55

consistency condition This approximation becomes exact in

44 ]
the limit of the dimensionalityd—c (or connectivity
z—). The resulting effective local action at a particular 3 11
(any) lattice site read4® , w -

B (A ’ T 0 —1 ’ ' 1+ B
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and the Weiss fiel@? , is related to the local Green’s func- ol
tion by the self-consistency condition 4
G, Niw)=io+u—1t2G,,(iw). 3 ¥ L

The LISA equationg2) and (3) have to be solved for .
self-consistently. In practice this is done by iteration. One e .
begins with a guess fa@72, which is used in Eq(2) to solve !

the many-body problem and calculadg,, . This is then used 0"‘_6‘ 5 =0 2 4 ¢

as input in Eq.(3) to obtain anotheggo, and the process is

iterated until self-consistency is attained. Equati@h also p-3/2U0

defines arimpurity problemwhere the local site is coupled

to an effective “conduction band” with hybridization func- FIG. 1. Occupation number and k=dn/du (dotted and solid

tion A(i w)EtzGaU(iw) similarly to the Anderson single- curves as a function of the chemical potentjal « is obtained by
impurity problem. This is the associated impurity problemnumerical differentiation. The data are obtained at
within the LISA which has to be solved anew at each step ot/ =2.5 and 3,4 and = 1/8 (top to bottom. Note: for better com-
the iteration. To solve thisegeneratémpurity problem we pa_rison,LSL is measured with respect to the particle-hole symmetry
use an extension of the HFQMC algorithm. The details forPoint atzU.
the implementation can be found in Ref. 8. One of its salient o )
features is the absence of a negative sign problem, whici{le asymmetry prediction of our model by approaching
allows the investigation of low temperatures {02 of the ~N=1 from above in oxygen-deficient LaTiO, . Around
bandwidth. Converged solutions are typically obtained afterN=2, Which is the particle-hole symmetry point, the en-
eight iterations usind. = 64 time slices in a few hours on a hancement ofy/y, is symmetric. _ ,
workstation. In Fig. 1, we increase the value of the interaction strength
We now turn to the discussion of the results from thet® U=3, and observe that the compressibilitynat 1 and 3
solution of the LISA equation&) and(3). In Fig. 1 we show
the total occupation number=(n;;+n; +n, +n,) and 50
its first derivativexk=dn/du (which is proportional to the 45| .
compressibility, as a function of the chemical potentjal
For U=2.5 we observe drops ir at values ofu corre-
sponding to the integer fillinga=1, 2, and 3 that indi- 35

4.0 -

cates the onset of a correlated metallic state. This is demon- o 301 -
strated in Fig. 2, where we plot the quasiparticle residue 25k i
Z=(1-9m>/dw,)"* and the specific heaty/y,

(=m*/my in thed=0 limit). We observe that as the system 20r 7
approaches the integer fillings the quasiparticles at the Fermi 151 -
level become heavier as a consequence of the proximity to ol |
the MIT. On the other hand, &t=0 and 4 the quasiparticle Z o

residue approaches unity as the correlations vanish. It is

worth noting the asymmetry in the behavior arourdl and 0.0 ‘ ‘ ‘
e 0.00 1.00 2.00 3.00 4.00

3. As one approaches=1 from below the specific heat n

diverges as the inverse of the dopidy?® (6=1—n)."®

However, as we approach=1 from above the enhancement G, 2. Quasiparticle residug and specific heay/ y, (bottom

of y/yo seems to be faster. The results fosO<1 are and top as a function of the occupation numberobtained for

similar as the obtained within a one band model and give U=2.5 andT=1/8. We estimate the slope in the self-enebyas

posteriorijustification for its correct prediction of the behav- the ratio of2/w, for the first Matsubara frequency. The wiggles are

ior of /7y, in La; _,Sr,TiO3.2 It would be interesting to test due to the quantum Monte Carlo noise.
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20 . . . . magnetic solution. The first order transition lines at
n=1, 2, and 3(dotted line$ end at second order critical points.
. Diamonds indicate the approximate position of fhe O critical
points U.,), and squares approximately indicate the fiffiteriti-
10 + . ) cal point where the two solutions mergel(n=1,3)~0.04,
...° T(n=2)=~0.06]. Solid lines an=1, 2, and 3 indicate the Mott
6 ‘m,,,,,....mmmooooo insulator states, and dashed-dotted lines-ab and 4 indicate the
E 00 ° 8 empty and full band insulator states.
Co0oggeee
..°'”' low-frequency behavior. In fact, the metallic Green’s func-
a0l . | tion behaves as I@&(w)+#0 for »—0, and can be continu-
’ ously connected to the noninteracting solution. On the other
. hand, the insulating Green’s function shows linear behavior
at small frequencies which is a signature of a gap opening in
200 40 20 00 20 a0 &0 the density of states; thus, in this case,Gfw)—0, for
(b) 0] w—0 and can be continuously connected to the atomic limit

_ _ solution t—0).

~ FIG. 3. Top: Imaginary part of the Green's function as a func-  Calling U.;(n) the minimum value of the interaction for
tion of Matsubara frequency at=1/32, U=2.9 andn=1. The  \hich an insulating solution is allowed at givem and
solid dots correspond to the metallic solution and the open dots tg) c»(n) the maximum value for which a metallic solution is
the insulating one. Bottom: Idem fdr=1/32,U=3.4, andn=2.  4|oed, we have established that at the lowest temperature

. . investigatede%z, Uc1(1)=Uc1(3)~2.8,Ucy(1)=Uo(3)
vanishes as the system goes through a metal-insulatarg 1(2)~3.1, andU,(2)~3.7. Using similar argu-
- . : , U 1, c 7.
transition;” in fact, U(n=1)=U¢(n=3), due to particle- - ents to those for the single-band motfetyne can demon-
hole symmetry. On the other hand, the compressibility akirae that af=0 the metallic solution is lower in energy,
n=2 also decreases but still remains finite, and the MIT is;,s T=0 MIT occurs atU , and is of second-order. A
H C .

reached upon further increasing the interaction. Note &hat irect consequence of two solutions being allowed in regions

ints 3 S > eI )
also goes to zero at the endpoipts 3~ = 2U, butthese are ¢ e (U, T) plane at given integer fillings is the existence of

band-insulating states which correspond to the completely first.order transition line defined by the crossing of their
emptyn=0 and completely fulh=4 state. free energies. This line starts &k, at T=0, and has a
We find that the MIT's of the degenerate model atpggative slope due to the large entropy of the insulating state,
n=1, 2, and 3 have many features in common with thepije at finite T it ends at another second-order point where
transition that occurs in the single-band c&en particular,  the 1o solutions eventually merge. These results are con-

at low enough temperaturé=0.04 forn=1, and 3 and gensed into the phase diagram of Fig. 4 which shows quali-
T=0.06 forn=2, and within a finite interval of the interac- i5jve agreement with that of Ref.10.

tion U, two distinct solutions coexist: one has metallic char-  grom the experimental standpoint, it was argued by Fuiji-
acter while the other shows a gap at low frequencies. In Figy i et all? that the systematic analysis of the electronic
3 we show, for the two fillings:1=1 and 2 the coexistent properties of various transition-metal-oxide compounds with
Green’s functions obtained @t= 3. To select either solution nominally one electronin a degeneratel band shows evi-
within the coexistent region, one has to choose an appropridence of a MIT due to electron correlations. Moreover, the
ate “seed” at the beginning of the iteration. These Green’sextensively investigated dD; compound contains nominally
functions are obtained as a function of Matsubara frequentwo electronsn a doubly degeneratg, band, and its phase
cies, i.e., they live on the imaginary axis. In order to obtaindiagram displays a paramagnetic MIT line which fisst

the density of states they have to be analytically continued torder!! Nevertheless, Castellani, Natoli, and Ranninger-

the real axis. Nevertheless, the metallic or insulating naturgued that a relevant model for this system should contain just
of the solution can be unambiguously determined from theione electron in a doubly degeneragband. In either case
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the qualitative physics is being correctly predicted by ourpounds with narrow degenerate bands. This remark can be
results. considered am posteriorijustification for the recent success

In conclusion, we obtain exact numerical solutions of thein the interpretation of low-frequency spectroscopies of cor-
LISA mean-field equations for the degenerate Hubbarg¢elated systems with band degeneracy using a single-band
model. These are exact solutions of the model in the limit Ofmode|_19vzo However, the pre\/ious statement has to be taken
d=c. We find that within the paramagnetic phase the modejyith care, as we have seen that some quantities, as for in-
has  metal-insulator  transitions —at integer fillings stance the specific heat, may show a different behavior de-
n=1, 2, and 3 which are similar in character to the Si”9|e'pending on how the MIT is approached.
band case. In particular, we find that(n=2) Many interesting questions are open, as, for instance,
>U(n=1)=U(n=3), and that there are regions in the whether the present scenario is modified by the introduction
(U,T) plane where two different solutions are allowed, oneof 4 finjte J and the study of phases with long-range order as
metallic and one insulating, which leads to a first-order MITynction of U, J, T and n. These are certainly relevant
line at finite temperatures. An important remark is that thegyestions for the understanding of the physics of transition
observation of a similar scenario for the integer-filling MIT \yetal-oxides with partially filled! bands.
in both the single- and degenerate-band model validates the
often-made assumption about the relevance of a single-band Valuable conversations with A. Georges, I. H. Inoue, H.
Hubbard model for the qualitative investigation of com- Kajueter and G. Kotliar are gratefully acknowledged.
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