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We obtain exact numerical solutions of the degenerate Hubbard model in the limit of large dimensions~or
large lattice connectivity!. Successive Mott-Hubbard metal insulator transitions at integer fillings occur at
intermediate values of the interaction and low enough temperature in the paramagnetic phase. The results are
relevant for transition metal oxides with partially filled narrow degenerate bands.@S0163-1829~97!51908-4#

The understanding of strongly correlated electron systems
is one of the current challenges in condensed-matter physics.
In recent years, this problem has received a great deal of
attention from theorists and experimentalist alike. However,
our knowledge of even some of the basic features of the
proposed model Hamiltonians remains to a large extent only
partial, except, perhaps, in the one-dimensional case. In con-
sequence, the interpretation of the experimental data of
strongly correlated electron systems has to remain only
speculative in most of the cases. In regard to this situation,
exact results on properties of model Hamiltonians in well-
defined limits is very desirable. The relevant role played by
the band degeneracy in models of strongly correlated elec-
trons has been long and largely recognized.1–4 However, the
systematic treatment of such models poses in general even
greater technical difficulties than nondegenerate ones. This
particularly applies to numerical approaches which have to
deal with the exponential growth of the Hilbert space.

The goal of this paper is to demonstrate the existence of
successive metal insulator transitions~MIT’s ! at the integer
fillings n51, 2, and 3 in the two-band degenerate Hubbard
model within the ‘‘local impurity self-consistent approxima-
tion’’ ~LISA! which is exact in the limit of large dimensions
~or large lattice connectivity!.6 These MIT’s occur within the
paramagnetic phase for intermediate values of the interac-
tion. We obtain exact numerical solutions of the model using
an extension of the Hirsch and Fye quantum Monte Carlo
~HFQMC! algorithm7,8 for the solution of the associated im-
purity problem within the LISA. This impurity problem is a
generalized single impurity Anderson model where the im-
purity and conduction-band operators carry an orbital index.

The two-band degenerate Hubbard model reads
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^ i j & labels nearest-neighbor sites anda,b51,2 is the orbital
index. This Hamiltonian is rotational invariant in spin and
real space, and the usual approximationsU andJ indepen-
dent of band indices are assumed.9 The parameterU is due to

on-site Coulomb repulsion, and the exchange parameterJ
originates the Hund’s coupling. For simplicity, we shall fur-
ther assumet i j

ab52tdab and neglect the last ‘‘spin flip’’ term
in Eq. ~1!. The resulting model Hamiltonian is relevant for
electronic systems with partially filled narrow degenerate
bands. Examples of such systems are the 3d transition metal
oxidesR12xAxMO3 with three-dimensional perovskite-type
structure, whereR5La,Y,A5Ca,Sr, and the transition metal
M5Ti,V,Cr. Fujimori constructed a phase diagram by clas-
sifying these compounds as correlated metals or Mott insu-
lators according to their electronic properties.10 Another and
particularly notable example is the extensively investigated
V2O3 compound which has a MIT as a function of tempera-
ture, pressure and chemical substitution.11 It is important to
note that in bipartite lattices such as the hypercubic or the
Bethe lattice, the ground state of the model has long-range
order.3 In the single-band case it is a spin antiferromagnetic
~Néel! state, while in the degenerate model~with J'0) one
can have either a spin-ordered and/or an orbital-ordered
state. Other types of orderings are alsoa priori possible, as
for instance, ferromagnetic~for largeJ). The stability of the
different phases will depend on the values of the various
interaction parameters appearing in the Hamiltonian~1!.
Since the parameter space is rather large, we defer the inves-
tigation of the full phase diagram for a later publication.
Here we choose to concentrate on the interesting question of
the destruction of a metallic state by the sole effect of elec-
tronic correlations~Mott transition!. Therefore, we shall re-
strict ourselves to the paramagnetic phase~in both spin and
orbit indices!. It is important to note, however, that the para-
magnetic solutions that we obtain are indeed the true ground
state in models that include next-nearest-neighbor hopping
~that lifts the rather artificial nesting property! and also in
models with hopping disorder.12,13

In this paper we shall consider the model on a Bethe
lattice of connectivityz→` which renders a semicircular
bare density of statesro(e)5(2/pD)A12(e/D)2, with
D52t. Our choice is motivated from the fact thatro(e)
shares common features with a realistic three-dimensional
cubic tight-binding model; that is, it is bounded and has the
same square-root behavior at the edges. We shall set the
half-bandwidthD51 andJ50 ~the caseJÞ0 will be con-
sidered elsewhere!.

Within the LISA, the lattice model is exactly mapped onto
its associated impurity problem supplemented with a self-
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consistency condition.5 This approximation becomes exact in
the limit of the dimensionalityd→` ~or connectivity
z→`). The resulting effective local action at a particular
~any! lattice site reads14,5
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and the Weiss fieldGas
0 is related to the local Green’s func-

tion by the self-consistency condition

Gas
0 21~ iv!5 iv1m2t2Gas~ iv!. ~3!

The LISA equations~2! and ~3! have to be solved for
self-consistently. In practice this is done by iteration. One
begins with a guess forGas

0 which is used in Eq.~2! to solve
the many-body problem and calculateGas . This is then used
as input in Eq.~3! to obtain anotherGas

0 , and the process is
iterated until self-consistency is attained. Equation~2! also
defines animpurity problemwhere the local site is coupled
to an effective ‘‘conduction band’’ with hybridization func-
tion D( iv)[t2Gas( iv) similarly to the Anderson single-
impurity problem. This is the associated impurity problem
within the LISA which has to be solved anew at each step of
the iteration. To solve thisdegenerateimpurity problem we
use an extension of the HFQMC algorithm. The details for
the implementation can be found in Ref. 8. One of its salient
features is the absence of a negative sign problem, which
allows the investigation of low temperatures (;1022 of the
bandwidth!. Converged solutions are typically obtained after
eight iterations usingL564 time slices in a few hours on a
workstation.

We now turn to the discussion of the results from the
solution of the LISA equations~2! and~3!. In Fig. 1 we show
the total occupation numbern5^n1↑1n1↓1n2↑1n2↓& and
its first derivativek5dn/dm ~which is proportional to the
compressibility!, as a function of the chemical potentialm.

For U52.5 we observe drops ink at values ofm corre-
sponding to the integer fillingsn51, 2, and 3 that indi-
cates the onset of a correlated metallic state. This is demon-
strated in Fig. 2, where we plot the quasiparticle residue
Z5(12]ImS/]vn)

21 and the specific heat g/g0
(5m* /m0 in thed5` limit !. We observe that as the system
approaches the integer fillings the quasiparticles at the Fermi
level become heavier as a consequence of the proximity to
the MIT. On the other hand, atn50 and 4 the quasiparticle
residue approaches unity as the correlations vanish. It is
worth noting the asymmetry in the behavior aroundn51 and
3. As one approachesn51 from below the specific heat
diverges as the inverse of the dopingd21 (d512n).15

However, as we approachn51 from above the enhancement
of g/g0 seems to be faster. The results for 0<n<1 are
similar as the obtained within a one band model and givea
posteriori justification for its correct prediction of the behav-
ior of g/g0 in La12xSrxTiO3.

12 It would be interesting to test

the asymmetry prediction of our model by approaching
n51 from above in oxygen-deficient LaTiO32y . Around
n52, which is the particle-hole symmetry point, the en-
hancement ofg/g0 is symmetric.

In Fig. 1, we increase the value of the interaction strength
to U53, and observe that the compressibility atn51 and 3

FIG. 1. Occupation numbern andk5dn/dm ~dotted and solid
curves! as a function of the chemical potentialm. k is obtained by
numerical differentiation. The data are obtained at
U52.5 and 3,4 andT51/8 ~top to bottom!. Note: for better com-
parisonm is measured with respect to the particle-hole symmetry
point at 32U.

FIG. 2. Quasiparticle residueZ and specific heatg/g0 ~bottom
and top! as a function of the occupation numbern obtained for
U52.5 andT51/8. We estimate the slope in the self-energyS as
the ratio ofS/vn for the first Matsubara frequency. The wiggles are
due to the quantum Monte Carlo noise.
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vanishes as the system goes through a metal-insulator
transition;15 in fact, Uc(n51)5Uc(n53), due to particle-
hole symmetry. On the other hand, the compressibility at
n52 also decreases but still remains finite, and the MIT is
reached upon further increasing the interaction. Note thatk
also goes to zero at the endpointsm2 3

2'62U, but these are
band-insulating states which correspond to the completely
emptyn50 and completely fulln54 state.

We find that the MIT’s of the degenerate model at
n51, 2, and 3 have many features in common with the
transition that occurs in the single-band case.12 In particular,
at low enough temperatureT&0.04 for n51, and 3 and
T&0.06 forn52, and within a finite interval of the interac-
tion U, two distinct solutions coexist: one has metallic char-
acter while the other shows a gap at low frequencies. In Fig.
3 we show, for the two fillingsn51 and 2 the coexistent

Green’s functions obtained atT5 1
32. To select either solution

within the coexistent region, one has to choose an appropri-
ate ‘‘seed’’ at the beginning of the iteration. These Green’s
functions are obtained as a function of Matsubara frequen-
cies, i.e., they live on the imaginary axis. In order to obtain
the density of states they have to be analytically continued to
the real axis. Nevertheless, the metallic or insulating nature
of the solution can be unambiguously determined from their

low-frequency behavior. In fact, the metallic Green’s func-
tion behaves as ImG(v)Þ0 for v→0, and can be continu-
ously connected to the noninteracting solution. On the other
hand, the insulating Green’s function shows linear behavior
at small frequencies which is a signature of a gap opening in
the density of states; thus, in this case, ImG(v)→0, for
v→0 and can be continuously connected to the atomic limit
solution (t→0).

Calling Uc1(n) the minimum value of the interaction for
which an insulating solution is allowed at givenn, and
Uc2(n) the maximum value for which a metallic solution is
allowed, we have established that at the lowest temperature

investigatedT5 1
32, Uc1(1)5Uc1(3)'2.8,Uc2(1)5Uc2(3)

'3, Uc1(2)'3.1, andUc2(2)'3.7. Using similar argu-
ments to those for the single-band model,16 one can demon-
strate that atT50 the metallic solution is lower in energy,
thus, T50 MIT occurs atUc2 and is of second-order. A
direct consequence of two solutions being allowed in regions
of the (U,T) plane at given integer fillings is the existence of
a first-order transition line defined by the crossing of their
free energies. This line starts atUc2 at T50, and has a
negative slope due to the large entropy of the insulating state,
while at finiteT it ends at another second-order point where
the two solutions eventually merge. These results are con-
densed into the phase diagram of Fig. 4 which shows quali-
tative agreement with that of Ref.10.

From the experimental standpoint, it was argued by Fuji-
mori et al.17 that the systematic analysis of the electronic
properties of various transition-metal-oxide compounds with
nominally one electronin a degenerated band shows evi-
dence of a MIT due to electron correlations. Moreover, the
extensively investigated V2O3 compound contains nominally
two electronsin a doubly degenerateeg band, and its phase
diagram displays a paramagnetic MIT line which isfirst
order.11 Nevertheless, Castellani, Natoli, and Ranninger18 ar-
gued that a relevant model for this system should contain just
one electron in a doubly degenerateeg band. In either case

FIG. 3. Top: Imaginary part of the Green’s function as a func-
tion of Matsubara frequency atT51/32, U52.9 andn51. The
solid dots correspond to the metallic solution and the open dots to
the insulating one. Bottom: Idem forT51/32,U53.4, andn52.

FIG. 4. InteractionU vs filling n phase diagram for the para-
magnetic solution. The first order transition lines at
n51, 2, and 3~dotted lines! end at second order critical points.
Diamonds indicate the approximate position of theT50 critical
points (Uc2), and squares approximately indicate the finiteT criti-
cal point where the two solutions merge@T(n51,3)'0.04,
T(n52)'0.06]. Solid lines atn51, 2, and 3 indicate the Mott
insulator states, and dashed-dotted lines atn50 and 4 indicate the
empty and full band insulator states.
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the qualitative physics is being correctly predicted by our
results.

In conclusion, we obtain exact numerical solutions of the
LISA mean-field equations for the degenerate Hubbard
model. These are exact solutions of the model in the limit of
d5`. We find that within the paramagnetic phase the model
has metal-insulator transitions at integer fillings
n51, 2, and 3 which are similar in character to the single-
band case. In particular, we find thatUc(n52)
.Uc(n51)5Uc(n53), and that there are regions in the
(U,T) plane where two different solutions are allowed, one
metallic and one insulating, which leads to a first-order MIT
line at finite temperatures. An important remark is that the
observation of a similar scenario for the integer-filling MIT
in both the single- and degenerate-band model validates the
often-made assumption about the relevance of a single-band
Hubbard model for the qualitative investigation of com-

pounds with narrow degenerate bands. This remark can be
considered ana posteriori justification for the recent success
in the interpretation of low-frequency spectroscopies of cor-
related systems with band degeneracy using a single-band
model.19,20However, the previous statement has to be taken
with care, as we have seen that some quantities, as for in-
stance the specific heat, may show a different behavior de-
pending on how the MIT is approached.

Many interesting questions are open, as, for instance,
whether the present scenario is modified by the introduction
of a finiteJ and the study of phases with long-range order as
function of U, J, T and n. These are certainly relevant
questions for the understanding of the physics of transition
metal-oxides with partially filledd bands.
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