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A model interaction is introduced for quantum many-body simulations of Coulomb systems using periodic
boundary conditions. The interaction gives much smaller finite size effects than the standard Ewald interaction
and is also much faster to compute. Variational quantum Monte Carlo simulations of diamond-structure silicon
with up to 1000 electrons demonstrate the effectiveness of our method.@S0163-1829~97!51408-1#

Many-body simulation techniques such as the variational1

and diffusion2 quantum Monte Carlo~QMC! methods are
capable of yielding highly accurate results for correlated sys-
tems. Large systems are normally modeled using a finite
simulation cell subject to periodic boundary conditions. This,
however, introduces ‘‘finite size effects’’ which are often
very important, particularly for systems with long ranged
interactions such as the Coulomb interaction. In this paper
we introduce a method for dealing with long ranged interac-
tions in quantum many-body simulations which greatly re-
duces these finite size effects. This method is a generaliza-
tion of one we developed earlier for homogeneous systems
such as jellium.3 We illustrate our method with variational
QMC calculations on diamond-structure silicon. The ideas
described in this paper are of wide generality and can be
applied to other quantum many-body schemes, such as the
HF and ‘‘GW’’ ~Ref. 4! methods, and to long ranged inter-
actions other than the Coulomb interaction.

The finite size effects encountered in QMC calculations
for electronic systems can be divided into two terms:~i! the
independent particle finite size effect~IPFSE! and ~ii ! the
Coulomb finite size effect~CFSE!.3,5 The IPFSE and CFSE
are most easily defined with reference to results of local den-
sity approximation~LDA ! calculations. The IPFSE is the dif-

ference between the LDA energies per atom in the finite and
infinite systems and the CFSE is the remainder of the finite
size error. Recently we presented a method6 for reducing the
IPFSE in insulating systems by using the ‘‘specialk-points’’
method borrowed from band-structure theory.7 This method
reduces the IPFSE by an order of magnitude and leaves the
CFSE as the dominant finite size effect. The CFSE, which is
the subject of this work, arises from the long range of the
Coulomb interaction and is therefore of wide significance in
many-body simulations.

We illustrate the CFSE by comparing the results of LDA
and Hartree-Fock calculations. To define the LDA and HF
energies for simulation cells with periodic boundary condi-
tions we must specify the form of the model electron-
electron interaction used. This interaction acts only between
the charges within the simulation cell, but is intended to
model the forces that would act in the center of an infinite
array of identical copies of that cell. Unfortunately, sums of
Coulomb 1/r potentials in extended systems are only condi-
tionally convergent, and hence these forces are not uniquely
defined until the boundary conditions at infinity have been
specified. It is standard to calculate the potential~and hence
the forces! by solving Poisson’s equation subject to periodic
boundary conditions, in which case the model interaction
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between electrons in the cell becomes the well-known Ewald
interaction.8

In Fig. 1 we show the LDA and HF energies per atom of
diamond-structure silicon as a function of simulation cell
size, calculated using norm-conserving pseudopotentials and
a plane wave basis set. We sample a singlek point in the
Brillouin zone~BZ! of the simulation cell, whose translation
vectors aren times those of the primitive unit cell.6 The k
point unfolds into ann3n3n mesh in the BZ of the primi-
tive unit cell. Thek point we have chosen is anL point of the
supercell BZ, which is equivalent to using a ‘‘specialk-
points’’ method giving very good results.6,7We have studied
simulation cells withn52,3,4,5, which, for the diamond
structure, corresponds to 16,54,128,250 atoms, respectively.
To facilitate comparison between the LDA and HF results
we have used the LDA orbitals to calculate the HF energies,
so that the energy differences arise solely from the difference
between the LDA exchange-correlation~XC! energy and the
HF exchange energy. Figure 1 shows that the LDA energy
converges very rapidly with simulation cell size, whereas the
HF exchange energy converges very slowly. Forn53 the
finite size error in the LDA energy~IPFSE! is 0.012 eV per
atom, which is much smaller than the HF finite size error of
20.211 eV per atom. The slow convergence of the HF ex-
change energy with the density of BZ sampling~which is
equivalent to the size of the simulation cell! is well known
and is usually solved by increasing the quality of the BZ
integration. This solution is costly even in HF, and would be
prohibitive in QMC calculations; the required computer time
is roughly proportional to the cube of the number of elec-
trons in the simulation cell and hence to the ninth power
of n.

In the past, corrections for the CFSE in QMC simulations
have been applied using results for different simulation cell
sizes and extrapolating to the infinite cell size limit.5,6 This
empirical procedure is very costly and not particularly accu-
rate. Such calculations have established that the CFSE is
approximately inversely proportional to the number of elec-
trons in the simulation cell, a result which is borne out by the
HF data of Fig. 1. We now illustrate the fact that the CFSE is
a crucial issue affecting the accuracy of many-body calcula-
tions for Coulomb systems. A standard problem in electronic

structure theory is to calculate the energy required to create a
point defect. This is done by subtracting the energy of the
perfect crystal from that of a large simulation cell containing
a single defect. Taking the example of then53 ~54 atom!
simulation cell of silicon, we find~see Fig. 1! that the CFSE
error in the HF energy of the whole simulation cell is211
eV, while in the fully correlated QMC calculation~see be-
low! it is about25 eV. In either case it is much larger than
the energies of interest, which are often tenths of an eV per
simulation cell. Moreover, since the CFSE per atom is ap-
proximately inversely proportional to the number of atoms in
the simulation cell, the CFSE for the whole cell is almost
independent ofn.9 Of course there will be a cancellation
between the CFSEs in the perfect and defective solids, which
will become more complete as the size of the simulation cell
increases, so that eventually the energy difference will con-
verge. However, we must expect that the incomplete cancel-
lation of errors for finite simulation cells will lead to a sig-
nificant uncertainty in the defect energy.

We now describe the origin of the CFSE in more detail.
We write the total energy of the finite simulation cell as the
sum of kinetic, electron-ion, and electron-electron interaction
energies. We further split the electron-electron interaction
energy into Hartree and XC contributions:

Ee-e5
1

2Ecellr~r !r~r 8!v~r2r 8!drdr 8

1
1

2EcellrXC~r 8,r !r~r !v~r2r 8!drdr 8, ~1!

wherev is the model interaction,r is the electron density,
andrXC is the XC hole. In HF theory the XC hole is replaced
by the exchange hole, but the expression forEe-e is other-
wise the same. Note that the entire XC hole, with an inte-
grated charge equal to a deficit of one electron, is always
contained within the simulation cell~which is the entire
physical system!. Normally the charge density converges
quite rapidly with simulation cell size. An extreme example
is jellium, where the charge density is exact for all simula-
tion cell sizes but the CFSE is still present. Therefore the
convergence of the charge density with simulation cell size is
not the cause of the CFSE. Calculations of pair correlation
functions~e.g., Ref. 3! show that they also converge rapidly
with simulation cell size, and therefore the convergence of
rXC is not the cause of the CFSE either.

We have found that the CFSE is due to the use of the
Ewald interaction. Expanding the Ewald interaction10 yields

vEwald~r !5
1

r
1
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3V
rT•D•r1OS r 4

V5/3D , ~2!

whereV is the volume of the simulation cell, and the tensor
D depends on the geometry of the simulation cell.~For a
cubic cell D is the identity matrix.! The deviations from
1/r model the effects of charges ‘‘outside’’ the simulation
cell. In the XC integral, however, the interaction between
each electron and its XC hole should be exactly 1/r , inde-
pendent of the size of the simulation cell. For very large
simulation cells the 1/r term in the expansion of the Ewald
interaction dominates, but for typical cell sizes the second
term is significant and produces a finite size error propor-

FIG. 1. LDA and HF energies per atom of diamond-structure
silicon as a function of the size of the simulation cell, which con-
sists ofn3n3n primitive unit cells.
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tional to 1/V in the XC energy per electron. The XC energy
is negative and the extra unphysical interaction makes the
XC energy more negative. These observations explain why
the HF energies in Fig. 1 converge with increasing simula-
tion cell size~i! from below and~ii ! with an error which is
roughly inversely proportional to the number of electrons in
the simulation cell.

The success of the LDA is often ascribed to the fact that it
preserves the sum rule that the XC hole contains unit charge.
When using many-body wave functions, as in QMC tech-
niques, this sum rule is automatically satisfied and the im-
portant point is simply to make sure that the interaction with
the XC hole has the proper 1/r form. In many cases the XC
hole is well localized around each electron, so we should be
able to simulate the XC interaction using relatively small
simulation cells.

The two requirements for a model Coulomb interaction,
which gives small CFSEs in simulations employing periodic
boundary condition, are now clear. The model Coulomb in-
teraction should~i! reproduce the proper Hartree interaction
@first term in Eq.~1!# and ~ii ! be exactly 1/r for the interac-
tion with the XC hole. The Ewald interaction satisfies~i!, but
violates ~ii !. An interaction energy satisfying both require-
ments is

Ee-e5
1

2Ecellr~r !r~r 8!@vEwald~r2r 8!2 f ~r2r 8!#drdr 8

1E
cell

uCu2(
i. j

f ~r i2r j !Pkdr k , ~3!

where f (r ) is the 1/r Coulomb interaction treated within the
‘‘nearest image’’ convention, which corresponds to reducing
the vector r into the Wigner-Seitz cell of the simulation
cell.11 The second term in Eq.~3! contributes both Hartree
and XC terms. The Hartree contribution cancels the un-
wanted f (r2r 8) term in the first integral, and the XC con-
tribution involves thef (r2r 8) interaction, which has the re-
quired 1/ur2r 8u form at small separations. Of course, for
consistency, we should apply the same prescription to all the
interactions in the system, i.e., electron-electron, electron-
ion, and ion-ion terms. However, if we model the ions as
classical particles with well defined positions, then the XC
terms from the electron-ion and ion-ion terms vanish and
only Hartree-like terms involving the Ewald interaction re-

main. This analysis justifies our procedure of retaining the
Ewald interaction for the electron-ion and ion-ion interac-
tions. One consequence of this is that the forces on the ions
are continuous functions of the ionic positions, which means
that our scheme is suitable for use in quantum molecular
dynamics calculations.

The Schro¨dinger equation may be ‘‘derived’’ by minimiz-
ing an energy functional,E@C#5^CuĤuC&, whereC is a
normalized wave function. If a similar procedure is carried
out for a functional including the electron-electron interac-
tion of Eq. ~3!, the electron-electron interaction operator in
the resulting Schro¨dinger-like equation is

Ĥe-e5(
i. j

f ~r i2r j !1(
i
E
cell

@vEwald~r i2r !

2 f ~r i2r !#r~r !dr . ~4!

The total electron-electron energy,Ee-e , is then the expecta-
tion value of Ĥe-e minus a double counting term for the
electrostatic interactions. For systems where the charge den-
sity is uniform, the interaction reduces to a truncated Cou-
lomb interaction~plus a constant!, which is precisely the
form we proposed for homogeneous systems.3 Since the
Ewald potential may be interpreted as the potential in an
infinite periodic lattice with a particular choice of boundary
conditions at infinity,12,3 the interaction of Eq.~4! may be
illustrated as in Fig. 2. This depicts a rhombohedral simula-
tion cell containing two electrons, on one of which is cen-
tered a hexagonal window corresponding to the Wigner-Seitz
cell of the simulation cell. The electron at the center of the
window experiences a 1/r interaction with all the other elec-
trons within the window~one in this case! and an electro-
static interaction with the electronic charge density of the
shaded region outside of the window.

In a variational QMC calculation the electronic charge
density appearing in Eq.~4! may be accumulated during the
simulation and the interaction energy evaluated afterwards.
In a diffusion QMC calculation this is not possible and one
must know the charge density before starting the calculation.
To overcome this problem we use the LDA charge density in
Eq. ~4!. It would be possible to update this charge density
afterwards and perform a self-consistent calculation. How-
ever, LDA charge densities are normally remarkably good
and, moreover, the interaction energy is insensitive to the

FIG. 2. An illustration of our interaction for a rhombohedral
simulation cell containing two electrons~crosses!. The hexagonal
clear window centered on one of the electrons has the shape of the
Wigner-Seitz cell of the simulation cell.

FIG. 3. The energy per atom of diamond-structure silicon as a
function of simulation cell size, from variational QMC calculations
using the Ewald electron-electron interaction and our interaction.
The statistical error bars are smaller than the size of the symbols.
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quality of the charge density used becausevEwald(r )2 f (r )
differs significantly from zero only whenur u is large. We
have found this approximation to be so successful that for
convenience we also use it for variational QMC calculations
and in the procedures for optimizing wave functions. We
note that a successful QMC calculation requires a reasonable
approximation to the wave function itself, so that the require-
ment of a reasonable approximation to the charge density is
not a serious limitation.

We now illustrate the effectiveness of our procedure with
a set of variational QMC calculations for the silicon simula-
tion cells listed earlier. The techniques employed are similar
to those described elsewhere.6,13 We use variational Slater-
Jastrow wave functions containing 24 parameters,13 which
are optimized by minimizing the variance of the energy.14

The single particle functions were obtained from LDA cal-
culations and were the same as those used in Fig. 1. We have
optimized the wave functions using Hamiltonians with the
Ewald interaction and with our interaction, but even for the
smallest simulation cells the wave functions obtained were
virtually identical. This shows that properties other than the
energy are not significantly affected by the change in the
interaction term. We have also tested the sensitivity to the
charge density used in the Hamiltonian of Eq.~4!. Using the
charge densities obtained from ann52 LDA calculation and
from a fully converged LDA calculation makes no detectable
difference to the calculated energies. Figure 3 shows the en-
ergy per atom obtained from variational QMC calculations
using our interaction and the Ewald interaction. It is clear

that the use of our interaction greatly reduces the CFSE. This
interaction is also successful in HF calculations, reducing the
CFSE shown in Fig. 1 by a factor of about 3. Finally, we
note that our interaction is much faster to compute than the
Ewald interaction.

In summary, we have traced the source of the troublesome
Coulomb finite size errors in quantum many-body calcula-
tions for periodic simulation cells to the use of the Ewald
interaction, which gives a spurious cell-size-dependent con-
tribution to the electron-electron interaction energy. We have
devised a model electron-electron interaction which elimi-
nates this problem, based on the idea that the exchange-
correlation hole is short ranged. Variational QMC calcula-
tions with up to 1000 electrons show that the interaction
gives much smaller finite size effects than the Ewald inter-
action. This development will allow for significantly more
accurate simulations of correlated electron systems.
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