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A model interaction is introduced for quantum many-body simulations of Coulomb systems using periodic
boundary conditions. The interaction gives much smaller finite size effects than the standard Ewald interaction
and is also much faster to compute. Variational quantum Monte Carlo simulations of diamond-structure silicon
with up to 1000 electrons demonstrate the effectiveness of our mdiBoii63-18207)51408-1

Many-body simulation techniques such as the variationalference between the LDA energies per atom in the finite and
and diffusiof quantum Monte CarldQMC) methods are infinite systems and the CFSE is the remainder of the finite
capable of yielding highly accurate results for correlated syssize error. Recently we presented a meftiod reducing the
tems. Large systems are normally modeled using a finitéPFSE in insulating systems by using the “spedigboints”
simulation cell subject to periodic boundary conditions. This,method borrowed from band-structure thebfjhis method
however, introduces “finite size effects” which are often reduces the IPFSE by an order of magnitude and leaves the
very important, particularly for systems with long ranged CFSE as the dominant finite size effect. The CFSE, which is
interactions such as the Coulomb interaction. In this papethe subject of this work, arises from the long range of the
we introduce a method for dealing with long ranged interac-Coulomb interaction and is therefore of wide significance in
tions in quantum many-body simulations which greatly re-many-body simulations.
duces these finite size effects. This method is a generaliza- We illustrate the CFSE by comparing the results of LDA
tion of one we developed earlier for homogeneous systemand Hartree-Fock calculations. To define the LDA and HF
such as jelliun® We illustrate our method with variational energies for simulation cells with periodic boundary condi-
QMC calculations on diamond-structure silicon. The ideagions we must specify the form of the model electron-
described in this paper are of wide generality and can belectron interaction used. This interaction acts only between
applied to other quantum many-body schemes, such as thibe charges within the simulation cell, but is intended to
HF and “GW" (Ref. 4 methods, and to long ranged inter- model the forces that would act in the center of an infinite
actions other than the Coulomb interaction. array of identical copies of that cell. Unfortunately, sums of

The finite size effects encountered in QMC calculationsCoulomb 1f potentials in extended systems are only condi-
for electronic systems can be divided into two tertfisthe  tionally convergent, and hence these forces are not uniquely
independent particle finite size effe@PFSB and (i) the  defined until the boundary conditions at infinity have been
Coulomb finite size effectCFSB.3®° The IPFSE and CFSE specified. It is standard to calculate the poter(@ald hence
are most easily defined with reference to results of local denthe force$ by solving Poisson’s equation subject to periodic
sity approximation(LDA) calculations. The IPFSE is the dif- boundary conditions, in which case the model interaction
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-104.0 structure theory is to calculate the energy required to create a
' point defect. This is done by subtracting the energy of the
A A perfect crystal from that of a large simulation cell containing
1045 A a single defect. Taking the example of the-3 (54 atom
simulation cell of silicon, we findsee Fig. 1 that the CFSE
A HF error in the HF energy of the whole simulation cell-isl1
e LDA eV, while in the fully correlated QMC calculatiofsee be-

F low) it is about—5 eV. In either case it is much larger than
the energies of interest, which are often tenths of an eV per
simulation cell. Moreover, since the CFSE per atom is ap-
proximately inversely proportional to the number of atoms in
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-108.0 . . the simulation cell, the CFSE for the whole cell is almost

°
3 a4 5 independent oh.° Of course there will be a cancellation
e

N

between the CFSEs in the perfect and defective solids, which

will become more complete as the size of the simulation cell
FIG. 1. LDA and HF energies per atom of diamond-structureincreases’ so that eventually the energy Qifference will con-

silicon as a function of the size of the simulation cell, which con- VErge. However, we must_expeqt that the mcomplete Ca_ncel-

sists ofnxnxn primitive unit cells. Igt!on of errors _for f|_n|te simulation cells will lead to a sig-

nificant uncertainty in the defect energy.

between electrons in the cell becomes the well-known Ewalg W& now describe the origin of the CFSE in more detail.

interaction® We write the total energy of the finite simulation cell as the
In Fig. 1 we show the LDA and HF energies per atom ofSUM qf kinetic, electron—lo_n, and electron-electron interaction

diamond-structure silicon as a function of simulation cell€n€rgies. We further split the electron-electron interaction

size, calculated using norm-conserving pseudopotentials arfi'€r9y into Hartree and XC contributions:

a plane wave basis set. We sample a sirgigoint in the

System Size n

b : : - 1
Brillouin zone(BZ) of the simulation cell, whose translation Ee'ezif p(Np(r"Hv(r—r")drdr’
vectors aren times those of the primitive unit céllThe k cell
point unfolds into amXxnXxn mesh in the BZ of the primi- 1
tive unit cell. Thek_poir_1t we h_ave chosen i§ anpoint of the + Ef pxc(r’ D) p(Do(r—r")drdr’, )
supercell BZ, which is equivalent to using a ‘“speclal ell

points” method giving very good resuls. We have studied
simulation cells withn=2,3,4,5, which, for the diamond

structure, corresponds to 16,54,128,250 atoms, respectivelMy the exchange hole, but the expression Er, is other-
l e

To facilitate comparison between the LDA and HF results, s yhe same. Note that the entire XC hole, with an inte-
we have used the LDA orbitals to calculate the HF energies X

. ) i rated charge equal to a deficit of one electron, is always
so that the energy differences arise solely from the d'ﬁerencgontained within the simulation celwhich is the entire
g?:tweez the LDA exch'zinge—colrrerl]atl(mct% etnt?]rgyL[a)rAd the physical system Normally the charge density converges

exchange energy. Figure 1 shows that the ENerg¥uite rapidly with simulation cell size. An extreme example
converges very rapidly with simulation cell size, whereas thqS jellium, where the charge density is exact for all simula-
HF exchange energy converges very slowly. Rer3 the

L . ) tion cell sizes but the CFSE is still present. Therefore the
finite size error in the LDA energyPFSB IS 0.'012. eV per convergence of the charge density with simulation cell size is
atom, which is much smaller than the HF finite size error of

not the cause of the CFSE. Calculations of pair correlation
—0.211 eV per atom. The slow convergence of the HF ex P

. . o functions(e.g., Ref. 3 show that they also converge rapidly
Cha.”ge energy W't.h the denS|.ty of .BZ sa_mphhgmch 'S with simulation cell size, and therefore the convergence of
equivalent to the size of the simulation gal well known

. : : . pxc is not the cause of the CFSE either.
and is usually solved by. Increasing th.e quality of the BZ We have found that the CFSE is due to the use of the

wherewv is the model interactiory is the electron density,
andpyc is the XC hole. In HF theory the XC hole is replaced

prohibitive in QMC calculations; the required computer time

is roughly proportional to the cube of the number of elec- 1 27 r4
trons in the simulation cell and hence to the ninth power vaa|d(f):F+3—QrT'D'f+O QW?) v
of n.

In the past, corrections for the CFSE in QMC simulationswhere(} is the volume of the simulation cell, and the tensor
have been applied using results for different simulation celD depends on the geometry of the simulation céfor a
sizes and extrapolating to the infinite cell size limitThis  cubic cell D is the identity matriX. The deviations from
empirical procedure is very costly and not particularly accu-1/r model the effects of charges “outside” the simulation
rate. Such calculations have established that the CFSE eell. In the XC integral, however, the interaction between
approximately inversely proportional to the number of elec-each electron and its XC hole should be exactly, iide-
trons in the simulation cell, a result which is borne out by thependent of the size of the simulation cell. For very large
HF data of Fig. 1. We now illustrate the fact that the CFSE issimulation cells the 1/term in the expansion of the Ewald
a crucial issue affecting the accuracy of many-body calculainteraction dominates, but for typical cell sizes the second
tions for Coulomb systems. A standard problem in electroniderm is significant and produces a finite size error propor-
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FIG. 2. An illustration of our interaction for a rhombohedral
simulation cell containing two electrorisrosses The hexagonal FIG. 3. The energy per atom of diamond-structure silicon as a
clear window centered on one of the electrons has the shape of thenction of simulation cell size, from variational QMC calculations
Wigner-Seitz cell of the simulation cell. using the Ewald electron-electron interaction and our interaction.

The statistical error bars are smaller than the size of the symbols.
tional to 1L} in the XC energy per electron. The XC energy
is negative and the extra unphysical interaction makes th&ain. This analysis justifies our procedure of retaining the
XC energy more negative_ These observations exp|ain WhﬁWﬁ'd interaction for the electron-ion and ion-ion interac-
the HF energies in Fig. 1 converge with increasing simulations. One consequence of this is that the forces on the ions
tion cell size(i) from below and(ii) with an error which is are continuous functions of the ionic positions, which means
roughly inversely proportional to the number of electrons inthat our scheme is suitable for use in quantum molecular
the simulation cell. dynamics calculations.

The success of the LDA is often ascribed to the fact thatit The Schrainger equation may be “derived” by minimiz-
preserves the sum rule that the XC hole contains unit chargéng an energy functionalE[ W ]=(W¥|H|V¥), whereV is a
When using many-body wave functions, as in QMC tech-normalized wave function. If a similar procedure is carried
niques, this sum rule is automatically satisfied and the imout for a functional including the electron-electron interac-
portant point is simply to make sure that the interaction withtion of Eq. (3), the electron-electron interaction operator in
the XC hole has the properriform. In many cases the XC the resulting Schdinger-like equation is
hole is well localized around each electron, so we should be

able to simulate the XC interaction using relatively small N - f .
simulation cells. He-e .Z, fri r1)+2i Ce”[vE‘”a"’(r' )

The two requirements for a model Coulomb interaction,
which gives small CFSEs in simulations employing periodic —f(ri=r)]p(r)dr. (4)

boundary condition, are now clear. The model Coulomb in—rq o4 electron-electron enerdg,. o, is then the expecta-
teraction shouldi) reproduce the proper Hartree interaction

[first term in Eq.(1)] and(ii) be exactly I¢ for the interac-
tion with the XC hole. The Ewald interaction satisfigs but
violates (ii). An interaction energy satisfying both require-
ments is

tion value of He, minus a double counting term for the
electrostatic interactions. For systems where the charge den-
sity is uniform, the interaction reduces to a truncated Cou-
lomb interaction(plus a constant which is precisely the
form we proposed for homogeneous systén®ince the
1 Ewald potential may be interpreted as the potential in an
— , , , / infinite periodic lattice with a particular choice of boundar
Ee-e che”p(r)p(r Nvewadr =) —fr=rdrdr conditio%s at infinity:2> the inferaction of Eq(4) may be g
illustrated as in Fig. 2. This depicts a rhombohedral simula-
+f |q,|22 f(ri—r)Idry, 3) tion cell containing tlwo electrons, on one of whigh is cen-
cell i>] tered a hexagonal window corresponding to the Wigner-Seitz
cell of the simulation cell. The electron at the center of the
wheref(r) is the 1f Coulomb interaction treated within the window experiences a flinteraction with all the other elec-
“nearest image” convention, which corresponds to reducingtrons within the window(one in this caseand an electro-
the vectorr into the Wigner-Seitz cell of the simulation static interaction with the electronic charge density of the
cell** The second term in E43) contributes both Hartree shaded region outside of the window.
and XC terms. The Hartree contribution cancels the un- In a variational QMC calculation the electronic charge
wantedf(r—r’) term in the first integral, and the XC con- density appearing in Eq4) may be accumulated during the
tribution involves thef (r—r’) interaction, which has the re- simulation and the interaction energy evaluated afterwards.
quired 1fr—r’| form at small separations. Of course, for In a diffusion QMC calculation this is not possible and one
consistency, we should apply the same prescription to all thenust know the charge density before starting the calculation.
interactions in the system, i.e., electron-electron, electronTo overcome this problem we use the LDA charge density in
ion, and ion-ion terms. However, if we model the ions asEq. (4). It would be possible to update this charge density
classical particles with well defined positions, then the XCafterwards and perform a self-consistent calculation. How-
terms from the electron-ion and ion-ion terms vanish ancever, LDA charge densities are normally remarkably good
only Hartree-like terms involving the Ewald interaction re- and, moreover, the interaction energy is insensitive to the
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quality of the charge density used becawsg{r)— f(r) that the use of our interaction greatly reduces the CFSE. This
differs significantly from zero only wheir| is large. We interaction is also successful in HF calculations, reducing the
have found this approximation to be so successful that fo€FSE shown in Fig. 1 by a factor of about 3. Finally, we
convenience we also use it for variational QMC calculationsnote that our interaction is much faster to compute than the
and in the procedures for optimizing wave functions. WeEwald interaction.

note that a successful QMC calculation requires a reasonable |n summary, we have traced the source of the troublesome
approximation to the wave function itself, so that the require-coylomb finite size errors in quantum many-body calcula-
ment of a reasonable approximation to the charge density ifons for periodic simulation cells to the use of the Ewald

not a serious limitation. interaction, which gives a spurious cell-size-dependent con-

We now .|IIu.strate the eﬁectlvepess of our Pr chdure WIthtribution to the electron-electron interaction energy. We have
a set of variational QMC calculations for the silicon simula- . . ) . o
pewsed a model electron-electron interaction which elimi-

tion cells listed earlier. The techniques employed are simila tes thi bl based the idea that th h
to those described elsewhérE We use variational Slater- N&!€S thiS problem, based on he idea that theé exchange-
correlation hole is short ranged. Variational QMC calcula-

Jastrow wave functions containing 24 parame’térwhich ’ : - |
are optimized by minimizing the variance of the enelgy. tONS with up to 1000 electrons show that the interaction
The single particle functions were obtained from LDA cal- 9ives much smaller finite size effects than the Ewald inter-
culations and were the same as those used in Fig. 1. We ha@étion. This development will allow for significantly more
optimized the wave functions using Hamiltonians with theaccurate simulations of correlated electron systems.

Ewald mte_rachon and with our |nteract|o_n, but even for the We thank Stephen Fahy for helpful conversations. Finan-
smallest simulation cells the wave functions obtained were ..

virtually identical. This shows that properties other than theCIaI support was provided under U.K. EPSRC Grants Nos.

energy are not significantly affected by the change in theGR/K51198 and GR/K21061, EU Contract No. CHRX CT

interaction term. We have also tested the sensitivity to the4-0462, U.S. NSF Grant No. DMR-9157537, U.S. DOE
charge density used in the Hamiltonian of E4). Using the Grant No. DE-FG05-90ER45431, and NATO Collaborative

charge densities obtained from am2 LDA calculation and Research Grant No. CRG.951105. Our calculations are per-
from a fully converged LDA calculation makes no detectableformed on the CRAY-T3D at the Edinburgh Parallel Com-
difference to the calculated energies. Figure 3 shows the emputing Centre under EPSRC Grant No. GR/K42318, and the
ergy per atom obtained from variational QMC calculationsHitachi SR2001 located at Hitachi Europe’s Maidenhead
using our interaction and the Ewald interaction. It is clearheadquarters.
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