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Alternating commensurate-incommensurate structures in the magnetic phase diagram of CsNi
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The magnetic phase diagram of the quasi-one-dimensional spin-chain system; ®shi® the Nel tem-

perature is determined. For magnetic fields perpendicular to the spin chains, incommensurate phases are
predicted. From linear spin-wave theory we obtain the instability line of the paramagnetic phase as a function
of the strength and the direction of the field. The system undergoes a transition to a commensurate or an
incommensurate phase depending on the direction of the magnetic field. In the commensurate phase, the
characterizing wave vector is locked to values describing a two-sublattice structure, whereas in the incommen-
surate phase the wave vector changes continuously between the corresponding two-sublattice wave vectors.
[S0163-18207)51706-1

The quasi-one-dimensional magnetic compouAd®X;  best of our knowledge, this is the first time that incommen-
(A alkaline metal,B transition metal X halogen have at- surate phases have been predicted in CgNiF
tracted much interest® These materials have ferromagnetic ~ The starting point of our investigation is the spin Hamil-
or antiferromagnetic intrachain interactions and weak antifertonian
romagnetic interchain interactions in the plane. The systems
with integer spin(e.g., CsNiC}) are studied in context with
the Haldane conjectureCsFeC} is discussed as an example
of a system with a singlet ground state.

H=—232i ss+1+AE| (S)?

CsNiF; is an example of a ferromagnet with planar an- _ 3 sB 4 pABygegh Hoa-
isotropy which has been studied extensively experimentally ;ﬁ ; G- )5S~ gumeHo Z S
and theoretically® It remains in the center of foctfs' B

because it is a model system with reduced dimensionality
where enhanced fluctuations have a pronounced effect on theereJ denotes the ferromagnetic nearest-neighbor intrachain
ordering structure. Due to the planar anisotropy the spingteraction,A the single-ion anisotropyJ;, the interchain
will be oriented in the plane perpendicular to the chain axisand i indicates positions on one and the same spin chain,
Neutron scattering revealed the dynamics of linear and nonghereagd indicates all spin positionsd, is an external field
linear eXCitati0n§. The one-dimensional Spin chain has no perpendicu|ar to the chain axis. The magnetic lattice struc-
long-range order but when applying a homogeneous fielgure of CsNiR; is a simple hexagonal structure with lattice
perpendicular to the chain axis spin waves can be measurednstantsc=2.6 A of the spin chains and=6.2 A of the
and described within a linear spin-wave thedrjowever, triangular lattice in the plane. From neutron scattefirige
the three-dimensional properties of Cshiffave hardly been coefficients in Eq(1l) are deduced td=11.8 K,A=3.3 K,
studied. Recently Baefat al}° measured the magnetic exci- andJ’ = —0.025 K. The value fod’ is of the same order as
tations in the three-dimensional ordered stafec{Ty=2.7 the dipole energy which is necessary for stabilizing a collin-
K). It could be shown that an isotropic antiferromagneticear antiferromagnetic spin structure. Because of the large
exchange in the hexagonal plane and the dipole-dipole intelanar anisotropy the spins are forced to lie in the hexagonal
action are responsible for the three-dimensional collineaplane. The classical ground state for vanishing field is given
long-range order. The spins are oriented within the plan®y three possible domais—C (see Fig. 1 in which a col-
perpendicular to the chain axis along the crystal axes of thénear antiferromagnetic spin structure is realized, i.e., the
triangular lattice. rotation symmetry is broken due to the competition of the
In the following we study the three-dimensional magneticexchange and the dipole-dipole interactf8r? Thus the sys-
structure of CsNik for magnetic fields oriented in the plane. tem has an easy axis anisotropy. In the real system all three
We examine the stability of the paramagnetic phase as @omains are simultanously present.
function of the direction of the field. By means of linear spin  Fourier transformation of the Hamiltonig&q. (1)] yields
wave theory we obtain the instability line at which the para-
magnetic spin orientation gets unstable and changes to a
canted structure. It turns out that the ground state depends
sensitively on the field direction. For certain angular domains
(A@ic~15.6°) there exist incommensurate phases separated — gL e VNHo- S, 2
by commensurate phasésf width A p.~44.4°). Thus as a
function of the direction of the field we obtain alternating with the nearest-neighbor exchange energiiesachain and
commensurate and incommensurate spin structures. To theterchain
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mainsA-C), the direction of the field plays a crucial role.

® = = = = iy The field direction is parametrized ky, which is the angle
- - - - R A " between the field and the axis (inset in Fig. 4. To qua-
<_7<_—'<_ - N VAR, dratic order in the Bose operators we obtain the Hamiltonian
T H= EEIM + % Aqagaq—'— E( Bqaqa—q+ Bz; agatq (5)
N
© \ A y with the coefficients
NN NN y
NN Aq=S(2(Jp—Jg) +A+235—2J)+ g ueHo
NN NN % +S(cos o(2AF — AYY) +sinf o (2AF — AY)
* — AZ—sin2gAYY), ©®)
FIG. 1. The ground state for CsNjFn the hexagonal plane is qu S(—A+Aéz— SinzgoAéX— COSz(pAéy‘l' SinZ(pAéy)

one of the three shown configuratios—C), called domains. In
domainA the two primitive vectors are represented. The antiferro-and the classical ground-state energy of the paramagnetic
magnetic modulation can be describeddqyq,, andqgs for domain  state
A, B, andC respectively.
ESy=— NS (Jo+J5+ (coS pAX+ sirfpAYY))

— g usNSHy, @)

Jq=2Jcoqy, ©)
' agx /3aqy which is independent of the direction of the field for spheri-
J,=2J'| cosmq,+2c0s=—Ccos\/—].

4 G 2 2 @ cal shaped systemsAf*=AYY). Here we considered only

. . ithi — yz_
AZ* denotes the Fourier transform of the long-range dipolg"aVe Vectors within the planeg¢=0, A;"=0) due to the
interaction, which is calculated by means of the Ewald sumStrong planar anisotropy. The dispersion relation for the

mation techniqué® paramagnetic phase is calculated via a Bogoliubov transfor-
The qualitative effect of a homogeneous magnetic field jgnation to
as follows. For weak magnetic fields transverse to the spin >
— /A2 R 2
orientation the spins will reorient in order to gain energy Eq= Aq_|Bq| . ®)

from the Zeeman term. Thus when orienting the field along].
one domain direction the two others will change their grounq
state immediately. For a field longitudinal to the spins a spin

wave calculation reyeq’.‘l%w that the Nel state is at least signalled by a soft mode at the wave vealfrp) character-
metastable up to a finite critical f'.eld \.Nh'Ch dep'?”‘?'s SOIEElyizing the phase below the paramagnetic phase. The value of
on the dipole energy. Thus the situation for a virgin probe, ", ) c
. . : the critical fieldHg and the wave vectay(¢) depend on the
neglecting effects from domain-wall energies and crystal de- )
fects is as follows: Without a magnetic field the systemang.Ie ththe f'?ld‘f’ and can be evalua’;]e_d Ifro(rjn E(ﬁ)hby
might be built up of the three domains in equal fractionsig:'mz’t & excitation energy to zero. This leads to the equa-
Raising the magnetic fiel¢parallel to the spins in domain
A) does not change the spin orientation in domAirbut e/ b XX
leads to a slight reorientation in domaiBsand C. Above gLueHG(@) =255~ Jg+sife(AY — AYY)
the the critical value the spins in domatnflip (first-order +C052<P(A§y— AY)—sin2pA%).  (9)
phase transitionto an orientation identical to either domain
B or domainC. For strong magnetic fields one finally enters Note that this expression is independent of the ferromagnetic
the paramagnetic phase. When the magnetic field is deexchange and the anisotropy energies as long as they are
creased thereafter, the spins order again in the two domairuch larger than the antiferromagnetic exchange and the di-
but domainA is not formed any more because of the meta-pole energies. Regarded as a functiorgahe maximum of
stability of this domain. The system ends up in a state, wher¢his expression gives the angular-dependent critical value
only domainsB andC are present. HG(¢) and the wave vectog(¢). Assuming that the phase
In the following we study the excitations by means of joining the paramagnetic is a conventional spin-flop phase
linear spin-wave theory. Via a Holstein-Primakoff transform-[ «= 8 in inset of Fig. 4 or a general two-sublattice struc-
ation we transform the spin operat®$ in the Hamiltonian  ture, the so-called intermediate ph4se# 8 in inset of Fig.

[Eg. (2)] to Bose operators, andar (Refs. 16 and J7and 4], we expect the maximum value for the critical field at

his equation is valid for high magnetic fields. When lower-
ng the magnetic field the paramagnetic phase gets unstable
‘and changes to a canted spin structure. This instability is

diagonalize the quadratic form. wave vectors describing the antiferromagnetic domains,
In the paramagnetic phase all spins are aligned along thiee., q;= (27//3a) (0,1,0), q,= (=/a) (1,1/y3,0), or gs
magnetic fieldH,. Because the ground state of Cshlifor = (mla) (1, 1/y/3,0) (see Fig. 2 However, the detailed

vanishing fields is not invariant with respect to a rotationanalysis shows that the paramagnetic phase gets unstable at
around the spin-chain axigecall that there are three do- an incommensurate wave vectyy) for certain field direc-
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FIG. 3. Wave vectordy,q,) at which the paramagnetic phase
gets unstable versus the direction of the external magnetic field
(solid line: gy, dashed lineny). Parameters for CsNifare used.

For ¢>7.8° the instability appears fap,.
FIG. 2. The Brillouin zones of the hexagonal plane. The hexa- ¢ v app @2

gon is the crystallographic and the rectan@lashed the magnetic

one. dependence on the field directigfy) for CsNiF; is plotted
in Fig. 3. The wave vector componergandqy are plotted

tions. Before considering the general case we study the spas a function of the angle for the region in question. A

cial anglesp=0° and¢=90°. _ critical angle ¢,~7.8° is obtained above which the wave
(i) =90°: For magnetic fields parallel to theaxis the  vector is locked tay,. Varying the anglep between 0° and
critical value is given by 7.8° the wave vector where the instability sets in changes

continuously fromg(0) to q(¢¢) =0,. In Fig. 4 the critical
value for the magnitude of the magnetic field is plotted as a
This expression is found to have its maximum valugiat ~ function of the angle for the same angular domain. Note that
the antiferromagnetic wave vector of the collinear phase ofhe critical field is continuous even at the critical angle It
domainA. The actual value for the critical field is evaluated has only a small kink at this point. The dashed curve results

gLusHY =2S(3;— 3g— AYY + A (10)

with the parameters given above (&pherical shape from Eq. (9) under the assumption that the instability point
. occurs af, for the whole angular segment. Here we can see
Hg’=340 mT atq(90°)=q;. (1) that for < ¢, the incommensurate structure is favored. Due

to the inversion symmetry of the lattice together wifty)

cy L {
AttHO hthe SVSterT‘ ulndter%ﬁest\i tranz:nf[)tp mtoha cor(r;men_i% ere is a second modulation wave vectay(¢). The result
fate phase, precisely 1o the two-sublatice phase descri this investigation for all angleg of the magnetic field is

by g;. Owing to the hexagonal symmetry, the critical field ; P . i i ;
for ¢—30° is the same as fas=90° but at the antiferromag- summarized in Fig. 5: The instability line of the paramag

netic wave vecton, characterizing domaig; for ¢=-—30°
the structure is given bygs corresponding to domaiB (see
Fig. 5.

(ii) ¢=0°: For this field direction Eq(9) reduces to

240

230 |

gLmeHE =2S(Jg—Jo— Ay + AY). (12 220
The maximum value is not achieved for any of the two- E
sublattice wave vectors but for a wave vector with only ax 49 |
0, component depending on the relative strength of the anti-?
ferromagnetic exchange and the dipole energy. This follows
from the fact that the dipole componeA}’ has a linear
wave vector dependence qf rather than a quadratic as
found for J,.'®'? Evaluation of the critical value for
CsNiF; leads to(spherical shape

200 r

190

180

au
Hg*=290 mT atq(0)= —(1.023,0,0. (13 170 - .
a 0 @, 30
Thus the system undergoes a transition to an incommensu-
rate phase. The incommensurate wave vector happens to be g 4. critical field below which the paramagnetic phase gets
near the wave vectog,= (w/a) (1,0,0), characterizing a ynstable for field direction between 0° and 30°. For smalige)
fOU!’-SUb|attICG_ structure, Whl(?h describes an antlfﬁ‘“’OYT‘agangles the paramagnetic phase changes to an incommensurate
netic modulation along the axis. (commensurajephase. The dashed curve indicates the critical field

(iii) arbitrary ¢: Finally we turn to arbitrary angles, for when assuming that the soft mode occurgatThe inset shows the
which the situation turns out to be nontrivial. The completecoordinate system for a general two-sublattice spin orientation.
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structure. Calculation of the classical ground state ertérgy
q, shows that a conventional spin-flop phase which is param-

etrized by a single angle for both sublattice spins is stable

only for the field directions ofp=30°+n60° and integer

y
H
d, q, values ofn. For all other field directions the commensurate
phase is an intermediate phase with two independent angles.
In summary we have studied the ground state for
CsNiF; with a homogeneous magnetic field oriented in the
QR

. hexagonal plane. By stability investigations of the paramag-
H, netic phase we obtained a noncircular instability line for
fields in the hexagonal plane. The magnitude of the critical
field and the type of phase joining the paramagnetic phase
9, depends crucially on its direction. For certain angular do-
mains the system changes to incommensurate structures,
which are separated by commensurdteo-sublatticg ones
9, (Fig. 5). To the best of our knowledge, this is the first time a
staircaselike behavior is found in a magnetic system as a
FIG. 5. Angular dependence of the instability of the para_functu_)n of the direction of t_he field. The number of steps is
magnetic phase for CSNiF The thick segments on the instability ©: which corresponds to twice the number of two-sublattice
curve correspond to directions of the magnetic fiek,  Wave vectors. This staircase is quite different from a devil's
=H,y(cosp,sing,0) for which the paramagnetic phase changes to arStaircase with an infinite number of lock-in S_téﬁ%o Our
incommensurate phase. These alternate with segments where a tr&ﬁsu!ts for CsNik are in contrast to Yamazalet a'-; th
sition to a commensurate structure appears. The correspondirgfedicted conventional spin-flop phases for all field direc-
wave vector is given. tions. This may result from their semiclassical model which
does not consider the full nature of the dipole-dipole inter-
. . . action. According to our theory the magnetic phase diagram
netic phase is shown. There are angular regions where thsefﬁows a much richer structure including intermediate spin
paramagnetic structure undergoes a transition to a two-_ . . . 9 P!
; , configurations and incommensurate phases. The observation
sublattice structurdannotated by the corresponding wave X
. L . of our predicted new phases and the wave vector dependence
vecton separated by regions drawn in thick where an incom- ! .
. is left to future experiments, e.g., neutron scattering.
mensurate structure is formed.
Examination of the commensurate phase leads to the fol- This work has been supported by the German Federal
lowing results: The commensurate phases are described neédinistry for Education and ResearctBMBF) under the
the transition to the paramagnetic phase by a two-sublattic€ontract No. 03-SC4TUM.
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