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The magnetic phase diagram of the quasi-one-dimensional spin-chain system CsNiF3 below the Ne´el tem-
perature is determined. For magnetic fields perpendicular to the spin chains, incommensurate phases are
predicted. From linear spin-wave theory we obtain the instability line of the paramagnetic phase as a function
of the strength and the direction of the field. The system undergoes a transition to a commensurate or an
incommensurate phase depending on the direction of the magnetic field. In the commensurate phase, the
characterizing wave vector is locked to values describing a two-sublattice structure, whereas in the incommen-
surate phase the wave vector changes continuously between the corresponding two-sublattice wave vectors.
@S0163-1829~97!51706-1#

The quasi-one-dimensional magnetic compoundsABX3
(A alkaline metal,B transition metal,X halogen! have at-
tracted much interest.1,2 These materials have ferromagnetic
or antiferromagnetic intrachain interactions and weak antifer-
romagnetic interchain interactions in the plane. The systems
with integer spin~e.g., CsNiCl3) are studied in context with
the Haldane conjecture.3 CsFeCl3 is discussed as an example
of a system with a singlet ground state.1

CsNiF3 is an example of a ferromagnet with planar an-
isotropy which has been studied extensively experimentally
and theoretically.4–8 It remains in the center of focus10,11

because it is a model system with reduced dimensionality
where enhanced fluctuations have a pronounced effect on the
ordering structure. Due to the planar anisotropy the spins
will be oriented in the plane perpendicular to the chain axis.
Neutron scattering revealed the dynamics of linear and non-
linear excitations.5 The one-dimensional spin chain has no
long-range order but when applying a homogeneous field
perpendicular to the chain axis spin waves can be measured
and described within a linear spin-wave theory.9 However,
the three-dimensional properties of CsNiF3 have hardly been
studied. Recently Baehret al.10 measured the magnetic exci-
tations in the three-dimensional ordered state (T,TN52.7
K!. It could be shown that an isotropic antiferromagnetic
exchange in the hexagonal plane and the dipole-dipole inter-
action are responsible for the three-dimensional collinear
long-range order. The spins are oriented within the plane
perpendicular to the chain axis along the crystal axes of the
triangular lattice.

In the following we study the three-dimensional magnetic
structure of CsNiF3 for magnetic fields oriented in the plane.
We examine the stability of the paramagnetic phase as a
function of the direction of the field. By means of linear spin
wave theory we obtain the instability line at which the para-
magnetic spin orientation gets unstable and changes to a
canted structure. It turns out that the ground state depends
sensitively on the field direction. For certain angular domains
(Dw ic'15.6°) there exist incommensurate phases separated
by commensurate phases~of width Dwc'44.4°). Thus as a
function of the direction of the field we obtain alternating
commensurate and incommensurate spin structures. To the

best of our knowledge, this is the first time that incommen-
surate phases have been predicted in CsNiF3.

The starting point of our investigation is the spin Hamil-
tonian
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HereJ denotes the ferromagnetic nearest-neighbor intrachain
interaction,A the single-ion anisotropy,Jll 8

8 the interchain
and i indicates positions on one and the same spin chain,
whereasl indicates all spin positions.H0 is an external field
perpendicular to the chain axis. The magnetic lattice struc-
ture of CsNiF3 is a simple hexagonal structure with lattice
constantsc52.6 Å of the spin chains anda56.2 Å of the
triangular lattice in the plane. From neutron scattering10 the
coefficients in Eq.~1! are deduced toJ511.8 K,A53.3 K,
andJ8520.025 K. The value forJ8 is of the same order as
the dipole energy which is necessary for stabilizing a collin-
ear antiferromagnetic spin structure. Because of the large
planar anisotropy the spins are forced to lie in the hexagonal
plane. The classical ground state for vanishing field is given
by three possible domainsA–C ~see Fig. 1! in which a col-
linear antiferromagnetic spin structure is realized, i.e., the
rotation symmetry is broken due to the competition of the
exchange and the dipole-dipole interaction.10,12Thus the sys-
tem has an easy axis anisotropy. In the real system all three
domains are simultanously present.

Fourier transformation of the Hamiltonian@Eq. ~1!# yields
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with the nearest-neighbor exchange energies~intrachain and
interchain!
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Aq
ab denotes the Fourier transform of the long-range dipole

interaction, which is calculated by means of the Ewald sum-
mation technique.13,14

The qualitative effect of a homogeneous magnetic field is
as follows. For weak magnetic fields transverse to the spin
orientation the spins will reorient in order to gain energy
from the Zeeman term. Thus when orienting the field along
one domain direction the two others will change their ground
state immediately. For a field longitudinal to the spins a spin-
wave calculation reveals12,15 that the Ne´el state is at least
metastable up to a finite critical field which depends solely
on the dipole energy. Thus the situation for a virgin probe
neglecting effects from domain-wall energies and crystal de-
fects is as follows: Without a magnetic field the system
might be built up of the three domains in equal fractions.
Raising the magnetic field~parallel to the spins in domain
A! does not change the spin orientation in domainA but
leads to a slight reorientation in domainsB andC. Above
the the critical value the spins in domainA flip ~first-order
phase transition! to an orientation identical to either domain
B or domainC. For strong magnetic fields one finally enters
the paramagnetic phase. When the magnetic field is de-
creased thereafter, the spins order again in the two domains
but domainA is not formed any more because of the meta-
stability of this domain. The system ends up in a state, where
only domainsB andC are present.

In the following we study the excitations by means of
linear spin-wave theory. Via a Holstein-Primakoff transform-
ation we transform the spin operatorsSl

a in the Hamiltonian
@Eq. ~2!# to Bose operatorsal andal

† ~Refs. 16 and 17! and
diagonalize the quadratic form.

In the paramagnetic phase all spins are aligned along the
magnetic fieldH0. Because the ground state of CsNiF3 for
vanishing fields is not invariant with respect to a rotation
around the spin-chain axis~recall that there are three do-

mainsA–C!, the direction of the field plays a crucial role.
The field direction is parametrized byw, which is the angle
between the field and thex axis ~inset in Fig. 4!. To qua-
dratic order in the Bose operators we obtain the Hamiltonian
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with the coefficients
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and the classical ground-state energy of the paramagnetic
state
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which is independent of the direction of the field for spheri-
cal shaped systems (A0

xx5A0
yy). Here we considered only

wave vectors within the plane (qz50, Aq
yz50) due to the

strong planar anisotropy. The dispersion relation for the
paramagnetic phase is calculated via a Bogoliubov transfor-
mation to

Eq5AAq
22uBqu2. ~8!

This equation is valid for high magnetic fields. When lower-
ing the magnetic field the paramagnetic phase gets unstable
and changes to a canted spin structure. This instability is
signalled by a soft mode at the wave vectorq(w) character-
izing the phase below the paramagnetic phase. The value of
the critical fieldH0

c and the wave vectorq(w) depend on the
angle of the fieldw and can be evaluated from Eq.~8! by
setting the excitation energy to zero. This leads to the equa-
tion
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Note that this expression is independent of the ferromagnetic
exchange and the anisotropy energies as long as they are
much larger than the antiferromagnetic exchange and the di-
pole energies. Regarded as a function ofq the maximum of
this expression gives the angular-dependent critical value
H0
c(w) and the wave vectorq(w). Assuming that the phase

joining the paramagnetic is a conventional spin-flop phase
@a5b in inset of Fig. 4# or a general two-sublattice struc-
ture, the so-called intermediate phase@aÞb in inset of Fig.
4#, we expect the maximum value for the critical field at
wave vectors describing the antiferromagnetic domains,
i.e., q15 (2p/A3a) (0,1,0), q25 (p/a) (1,1/A3,0), or q3
5 (p/a) (1,21/A3,0) ~see Fig. 2!. However, the detailed
analysis shows that the paramagnetic phase gets unstable at
an incommensurate wave vectorq(w) for certain field direc-

FIG. 1. The ground state for CsNiF3 in the hexagonal plane is
one of the three shown configurations~A–C!, called domains. In
domainA the two primitive vectors are represented. The antiferro-
magnetic modulation can be described byq1, q2, andq3 for domain
A, B, andC respectively.
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tions. Before considering the general case we study the spe-
cial anglesw50° andw590°.

~i! w590°: For magnetic fields parallel to they axis the
critical value is given by

gLmBH0
cy52S~Jq82J082A0

yy1Aq
xx!. ~10!

This expression is found to have its maximum value atq1,
the antiferromagnetic wave vector of the collinear phase of
domainA. The actual value for the critical field is evaluated
with the parameters given above to~spherical shape!

H0
cy5340 mT atq~90°!5q1 . ~11!

At H0
cy the system undergoes a transition into a commensu-

rate phase, precisely to the two-sublattice phase described
by q1. Owing to the hexagonal symmetry, the critical field
for w530° is the same as forw590° but at the antiferromag-
netic wave vectorq2 characterizing domainC; for w5230°
the structure is given byq3 corresponding to domainB ~see
Fig. 5!.

~ii ! w50°: For this field direction Eq.~9! reduces to

gLmBH0
cx52S~Jq82J082A0

xx1Aq
yy!. ~12!

The maximum value is not achieved for any of the two-
sublattice wave vectors but for a wave vector with only a
qx component depending on the relative strength of the anti-
ferromagnetic exchange and the dipole energy. This follows
from the fact that the dipole componentAq

yy has a linear
wave vector dependence atq0 rather than a quadratic as
found for Jq .

18,12 Evaluation of the critical value for
CsNiF3 leads to~spherical shape!

H0
cx5290 mT atq~0!5

p

a
~1.023,0,0!. ~13!

Thus the system undergoes a transition to an incommensu-
rate phase. The incommensurate wave vector happens to be
near the wave vectorq45 (p/a) (1,0,0), characterizing a
four-sublattice structure, which describes an antiferromag-
netic modulation along thex axis.

~iii ! arbitrary w: Finally we turn to arbitrary angles, for
which the situation turns out to be nontrivial. The complete

dependence on the field directionq~w! for CsNiF3 is plotted
in Fig. 3. The wave vector componentsqx andqy are plotted
as a function of the anglew for the region in question. A
critical anglewc'7.8° is obtained above which the wave
vector is locked toq2. Varying the anglew between 0° and
7.8° the wave vector where the instability sets in changes
continuously fromq~0! to q(wc)5q2. In Fig. 4 the critical
value for the magnitude of the magnetic field is plotted as a
function of the angle for the same angular domain. Note that
the critical field is continuous even at the critical anglewc . It
has only a small kink at this point. The dashed curve results
from Eq. ~9! under the assumption that the instability point
occurs atq2 for the whole angular segment. Here we can see
that forw,wc the incommensurate structure is favored. Due
to the inversion symmetry of the lattice together withq~w!
there is a second modulation wave vector2q~w!. The result
of this investigation for all anglesw of the magnetic field is
summarized in Fig. 5: The instability line of the paramag-

FIG. 2. The Brillouin zones of the hexagonal plane. The hexa-
gon is the crystallographic and the rectangle~dashed! the magnetic
one.

FIG. 3. Wave vector (qx ,qy) at which the paramagnetic phase
gets unstable versus the direction of the external magnetic field
~solid line: qy , dashed line:qx). Parameters for CsNiF3 are used.
For w.7.8° the instability appears forq2.

FIG. 4. Critical field below which the paramagnetic phase gets
unstable for field direction between 0° and 30°. For smaller~larger!
angles the paramagnetic phase changes to an incommensurate
~commensurate! phase. The dashed curve indicates the critical field
when assuming that the soft mode occurs atq2. The inset shows the
coordinate system for a general two-sublattice spin orientation.
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netic phase is shown. There are angular regions where the
paramagnetic structure undergoes a transition to a two-
sublattice structure~annotated by the corresponding wave
vector! separated by regions drawn in thick where an incom-
mensurate structure is formed.

Examination of the commensurate phase leads to the fol-
lowing results: The commensurate phases are described near
the transition to the paramagnetic phase by a two-sublattice

structure. Calculation of the classical ground state energy12

shows that a conventional spin-flop phase which is param-
etrized by a single angle for both sublattice spins is stable
only for the field directions ofw530°1n60° and integer
values ofn. For all other field directions the commensurate
phase is an intermediate phase with two independent angles.

In summary we have studied the ground state for
CsNiF3 with a homogeneous magnetic field oriented in the
hexagonal plane. By stability investigations of the paramag-
netic phase we obtained a noncircular instability line for
fields in the hexagonal plane. The magnitude of the critical
field and the type of phase joining the paramagnetic phase
depends crucially on its direction. For certain angular do-
mains the system changes to incommensurate structures,
which are separated by commensurate~two-sublattice! ones
~Fig. 5!. To the best of our knowledge, this is the first time a
staircaselike behavior is found in a magnetic system as a
function of the direction of the field. The number of steps is
6, which corresponds to twice the number of two-sublattice
wave vectors. This staircase is quite different from a devil’s
staircase with an infinite number of lock-in steps.19,20 Our
results for CsNiF3 are in contrast to Yamazakiet al.,8 who
predicted conventional spin-flop phases for all field direc-
tions. This may result from their semiclassical model which
does not consider the full nature of the dipole-dipole inter-
action. According to our theory the magnetic phase diagram
shows a much richer structure including intermediate spin
configurations and incommensurate phases. The observation
of our predicted new phases and the wave vector dependence
is left to future experiments, e.g., neutron scattering.

This work has been supported by the German Federal
Ministry for Education and Research~BMBF! under the
Contract No. 03-SC4TUM.

1B. Schmid, B. Dorner, D. Petitgrand, P.L. Regnault, and M.
Steiner, Z. Phys. B95, 13 ~1994!; P. Lindgård and B. Schmid,
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Flügge ~Springer-Verlag, Heidelberg, 1966!, p. 37ff.
18H. Shiba, Solid State Commun.41, 511 ~1982!.
19P. Bak, Rep. Prog. Phys.45, 587 ~1982!.
20W. Selke, inPhase Transitions and Critical Phenomenona, edited

by C. Domb and J.L. Lebowitz~Academic, New York, 1993!,
Vol. 15.

FIG. 5. Angular dependence of the instability of the para-
magnetic phase for CsNiF3. The thick segments on the instability
curve correspond to directions of the magnetic fieldH0

5H0~cosw,sinw,0! for which the paramagnetic phase changes to an
incommensurate phase. These alternate with segments where a tran-
sition to a commensurate structure appears. The corresponding
wave vector is given.
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