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The integrability of the one-dimensional long-range supersymmetrict-J model has previously been estab-
lished for both open systems and those closed by periodic boundary conditions through explicit construction of
its integrals of motion. Recently the system has been extended to include the effect of magnetic flux, which
gives rise to a closed chain with twisted boundary conditions. While thet-J model with twisted boundary
conditions has been solved for the ground state and full energy spectrum, proof of its integrability has so far
been lacking. In this paper we extend the proof of integrability of the long-range supersymmetrict-J model
and its SU(mun) generalization to include the case of twisted boundary conditions.@S0163-1829~97!51606-7#

Solvable models have attracted attention from both the
high-energy and condensed-matter communities. These mod-
els provide important examples where it is possible to deal
with many degrees of freedom without having to resort to
perturbation theory. Interesting models in condensed-matter
physics that have been solved include the short-range spin
model,1 delta-function Bose gas,2 delta-function electron
gas,3,4 the Hubbard model,5 the Luttinger model,6 the mag-
netic impurity model and the Anderson impurity model.7,8

In one dimension, ever since Haldane and Shastry inde-
pendently introduced the 1/r 2 spin model,9,10 there has been
considerable interest in the model and its generalizations,
such as the long range supersymmetrict-J model11–14and its
multicomponent SU(mun) version ~wherem and n denote
the number of bosonic and fermionic species, respectively!.
All of these models are characterized by having a ground-
state wave function which takes on a Jastrow product form,
and by having quasiparticle scattering matrices of a very
simple form, as in the continuous Calogero-Sutherland sys-
tems describing nonrelativistic quantum particles.15 In par-
ticular, the Haldane-Shastry spin model can also be identified
as a free system composed of identical particles obeying
Haldane’s generalized Pauli principle,16 and obeying a gen-
eralized statistical distribution function at finite
temperature.17 In 1992, Gebhard and Ruckenstein introduced
the long-range Hubbard model, in which the electrons are
described by the 1/r Hubbard model. It is noteworthy that
this 1/r Hubbard model is integrable for any on-site energy;
the full energy spectrum and thermodynamics have been
solved explicitly.18 At half-filling and in the limit of large
interaction, this model reduces to the SU(2) Haldane-
Shastry spin chain. For less than half-filling, but still in the
limit of U5`, the system remains characterized by eigen-
functions of a Jastrow product form.

Recently there has been considerable interest in adding
magnetic flux to the Haldane-Shastry-type models. For a
one-dimensional ring threaded by flux, this reduces to the
problem of incorporating twisted boundary conditions. A
twisted version of the long-range integrable Haldane-Shastry
spin chain has been introduced, and was solved in the ratio-

nal flux case.19 Subsequently, this was generalized to the
case of the long-ranget-J model with twisted boundary
conditions.20,21 In particular, it was shown that the irrational
flux case can be treated identically,21 indicating that there is
no essential difference between rational and irrational flux.
Based on the exact solutions, it is natural to expect that the
long-range models remain integrable despite the twisted
boundary conditions. However, until now this has remained
an open problem. In this paper, we provide a proof of the
integrability of the long-ranget-J model and its SU(mun)
generalization with twisted boundary conditions by explicitly
constructing an infinite number of simultaneous constants of
motion. This construction is a straightforward extension of
the methods used in the absence of flux,22–27 and is moti-
vated by the mapping of the closed ring onto an equivalent
open system where the flux is manifested in twisted bound-
ary conditions. A further consequence of this mapping is that
it yields a unified treatment of the integrability of both the
open and closed chains.

Because of the subtleties involved with introducing mag-
netic flux into a model with long-range interactions, we fol-
low the procedure of Ref. 19, and start with an open chain
which is subsequently closed through appropriate boundary
conditions to form a ring ofN sites. The Hamiltonian of the
SU(1u2) t-J model on this open lattice takes the form
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wherePG is the Gutzwiller projection onto single occupancy
and the operatorsc and c† are the usual fermion operators
that satisfy standard fermionic anticommutation relations.
The summation overs is to sum over all the spin compo-
nents of the electrons,s5↑,↓ for SU(1u2). The spin ex-
change operatorP̂a,b is given by
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and the electron density operator isna5(scas
† cas . The lat-

tice permutation form of this Hamiltonian may be made ex-
plicit by introducing the graded permutation operator

Pa,b
n,n8 which exchanges particles of speciesn andn8 at lo-

cationsa andb ~wheren,n850,↑,↓ with 0 denoting a hole!.
Written in terms ofP, the Hamiltonian becomes
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where the Gutzwiller projection is no longer necessary since
the graded permutation operator does not generate doubly
occupied states. In this form, the SU(mun) generalization is
immediately obvious.

For a finite open chain withL sites, integrability is
achieved when the lattice positionsqa lie at the roots of the
Lth Hermite polynomial.22 In the limit L→` these roots
become equally spaced, and translational invariance is re-
stored. It is precisely in this limit that it is possible to close
the chain by demanding twisted boundary conditions. We
allow a separate twistfn for each independent speciesn, so
that the twisted boundary conditions for a ring ofN sites may
be encoded by the requirement that

Pa,b1 lN
n,n8 5zlN~fn2fn8!Pa,b

n,n8 , ~4!

wherez is the primitiveNth root of unity. Note that the basic
period for the spectral flow corresponds tofn running from
0 to 1. Since the resulting closed system is translationally
invariant, we single out one period and reexpress the Hamil-
tonian, after gauge transformation, asH05E01H where19
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now defines the long-range supersymmetrict-J model on a
periodic ring. The offsetE05p2/3N accounts for exchanges
lN units apart~which is present inH0 but not in the periodic
H), and may be interpreted as a shift in the ground-state
energy from finite-size effects. The sum overl ensures the
appropriate periodicity of the ring under translations, and
yields the inverse trigonometric potential21
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This expression is piecewise linear and continuous inf,
leading to many remarkable features of this model.19–21 In
the case of periodic boundary conditions (f50), the physi-
cal properties of the supersymmetrict-J model on a uniform
closed chain have been studied previously.11–14

To provide a proof for the long-ranget-J model with
twisted boundary conditions, we are motivated by the previ-
ous results on the integrabilities of the uniform long-range
t-J model with periodic boundary conditions, and the non-

uniform long-range t-J model with open boundary
conditions,26,27which were generalizations of the spin chain
results.22–25Proof of the integrability proceeds by first map-
ping the species-exchange Hamiltonian, Eq.~5!, to a lattice
permutation equivalent using slave-boson techniques. The
resulting Hamiltonian then acts on wave functionsc written
in the formc(q1n1 ,q2n2 , . . . ,qNnN), whereqi andn i label
the position and SU(mun) ‘‘spin’’ of particle i . Acting on
such wave functions, and using the fact that$qi% span the
lattice due to single occupancy, the Hamiltonian becomes
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where the particle exchange operatorMi j is defined by

Mi jc~ . . . ,qis i , . . . ,qjs j , . . . !

[c~ . . . ,qjs i , . . . ,qis j , . . . !. ~8!

Note that the fermionic and bosonic nature of the individual
species is fully encoded in the wavefunctions;c→6c under
simultaneous interchange of position and spin. This indepen-
dence of the exchange operator from the particle statistics
ensures that the proof of integrability holds forall
SU(mun) extended t-J models, and not just for the
SU(1u2) case.

Based on the integrability proof for the open chain and for
the ring closed by periodic boundary conditions studied in
Refs. 22 and 23, we introduce the generalized operators

p j5 i(
kÞ j

ufn j
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whereuf(n) is the ~twisted! periodic version of 1/r
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As in the case forJf(n), this sum may be performed, yield-
ing

uf~n!5
2p i

N

zbf cn

12z2n ~11!

~for nonintegralf). Note thatf enters discontinuously, with
a jump inuf(n) at integral values off. A careful treatment
of convergence issues for integralf indicates that the actual
value of the infinite sum in Eq.~10! is the average of the
values ofuf(n) before and after the discontinuity. Neverthe-
less, for a consistent treatment of the invariants, we take Eq.
~11! as the definition ofuf(n) for all values off. A conse-
quence of this asymmetry is to pick a preferred ordering,
thus breaking the parity symmetryu2f(2n)52uf(n),
which otherwise holds for nonintegralf. Nevertheless, this
particular choice of ordering gives

u0~n!5
2p i

N

1

12z2n , ~12!

in agreement with previous results in the absence of flux.22,23

Overall, this subtle treatment of integral twists indicates that,
surprisingly enough, it is actually thezero flux case that is
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exceptional; this case corresponds to working on top of the
locations of the cusps in the spectral flow itself.

Explicit evaluation of the commutators brings out a dis-
tinction between integral and nonintegral twists:

@p i ,p j #5H 2p

N
zf i j qi jM i j ~p i2p j ! for f i jPZ

0 otherwise,

~13!

where f i j5fn i
2fn j

and qi j5qi2qj . Using the relation

(zf i j qi jM i j )p j5p i(z
f i j qi jM i j ), valid wheneverf i jPZ, the

above commutator may be reexpressed in a form similar to
that of Ref. 23,

@p i ,p j #5H 2p

N
@zf i j qi jM i j ,p i # for f i jPZ

0 otherwise.

~14!

From here it is obvious that the commutation results of
Fowler and Minahan23 are easily generalized to the present
case. Therefore the infinite set of Hermitian operators

I M5(
i

p i
M ~15!

~whereM50,1,2,. . . ), provides a set of mutually commut-
ing operators,@ I M ,I N#50, regardless of the individual spe-
cies twists. Note that the commutation is trivial for noninte-
gral relative twists, and is basically a consequence of the
simple open chain result,@p0 a ,p0 b#50, where

p0 a5 i (
bÞa

1

qa2qb
Mab ~16!

is the corresponding open chain operator@compare with Eq.
~9!#.

For a finite open chain, it is known that thep0 operators
do not commute with the Hamiltonian,22

@H0 ,p0 a#52i (
bÞa

1

~qb2qa!3
. ~17!

However, in making the system periodic, the odd exponent
in Eq. ~17! allows the cancellation of terms exchanging to
the left and right. As a result, we find

@H,p i #50 ~18!

for the periodic case, regardless of the relative twist angles. It
is now clear that the mutually commuting set of operators,
$I M% for M50,1,2,. . . , provide explicit constants of motion
of the HamiltonianH, and hence proves the integrability of
the long-range SU(mun) t-J model on a ring~for either
twisted or untwisted boundary conditions!.

In conclusion, we have provided a proof for the integra-
bility of the long-ranget-J models with twisted boundary
conditions by explicitly constructing an infinite set of mutu-
ally commuting constants of motion. This proof generalizes
previous results for rings without flux, and makes use of the
viewpoint that the closed chain is simply a periodic version
of the open system. A consequence of this similar treatment
for both closed and open chains is the demonstration that the
key property behind the integrability of these models is sim-
ply the permutation nature of the system. These results have
filled a gap in that the integrability condition for the twisted
t-J model was as yet unknown, in spite of the fact that sev-
eral thorough studies of the long-range model in the presence
of flux have been provided.
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