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Low-energy properties of antiferromagnetic spin-1/2 Heisenberg ladders
with an odd number of legs
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An effective low-energy description for multileg spinHeisenberg ladders with an odd number of legs is
proposed. Using a recently developed Monte Carlo loop algorithm and exact-diagonalization techniques, the
uniform and staggered magnetic susceptibility and the entropy are calculated for ladders with one, three, and
five legs. These systems show a low-temperature scaling behavior similar t sipiins with longer ranged
unfrustrated exchange interactions. The spinon velocity does not change as the number of legs increases, but
the energy scale parameter decreases markgsii.63-182807)50806-X

Recently, antiferromagnetic Heisenberg spiladders at- L 13 . -
tracted much interest, following the discovery of a spin gap ~ H&=2>, | > 3,8 8% +J (S S%5)
in the 2-leg laddet Also, the crossover from the single chain =1 1n=t
to the two-dimensional2D) square lattice, obtained by as-
sembling chains to form “ladders” of increasing width, is x(é}‘iﬁl-§}‘ﬁ2)_(§}°t.§}2ﬁ2)(§}fﬁl.§}<j£3)) )
far from smoott. Heisenberg ladders with an even number
of legs, n;, have a spin gap and short-range correlations,
while odd-leg ladders have no gap and power-law correla- —_—— - . ) ,
tions. These theoretical predictions have been verified exivhereS;7=S5; ;+§ o+ 51,3 is the total spin of thgth rung,
perimentally, in materials such &¥0),P,0, (Ref. 3 and  9n = J1 =x @ana(J/J0)%, with a;,=1, a,,=—1/9, a; 5
the homologous series of cuprates SICU, . ;0,,,* which = ~103/243, 8;,=0, a;,=—8/27, 8;35=—49/162, a3,
contain weakly coupled arrays of ladders. =a3,=0, a33=32/243, and)=(16/81) J}/J% .°
Here, we concentrate on odd-leg ladders. Our goal is to The last term in Eq(2) will be neglected, since the cor-
derive a low-energy description in terms ®f1 chains with ~ rections in the energy of the low-lying energy states due to
longer range effective interactions, and examine the evoluthis term are smallH$) has then the form of a single chain
tion with increasing number of leg®),. The Heisenberg with effective nearest neighboiNN) coupling J;, next-
Hamiltonian for ladders is nearest neighbofNNN) coupling J,, and with exchange
couplingJ; between rung spins separated by three unit cells.
Therefore the low-lying energy states of the 3-leg ladder can
be mapped onto those ofJa-J,-J5 chain. In this effective
H=J, >3 . S.,+ I> S .S, (1)  system the NNN interactions arg (J,<0), while the
o ’ 1 v NNNN interactions are AFJ;>0). Consequently, both the
second and the third term in E(R) enhance the overall AF
quasilong-range order. Note, that the third-order corrections
in Eq. (2) affectJ; andJ, strongly since the corresponding
coefficients are large. So one must perform the calculations
at least up to third order.

wherei andj enumerate the rungs, 7' label the legs, and
the sum marked by~ (]) runs over nearest neighbors along

legs (rungg. Periodic boundary conditions are chosen along To testHgf’f’ we calculate the temperature-dependent uni-

B e o oo PrEen o suscepiity. (1), for 3. lderusing e Quar
' ) . pect the supere> 9%m Monte CarlalQMC) loop algorithm’~° and compare to
tp be rough!y isotropic.J, =J)). Howevgr,_lt IS educational susceptibilities obtained for the effectivly-J,-J; model.
first to consider the strongly anisotropic limd (>J)). We consider large enough systems, such that finite-size ef-
In the completely anisotropic limit J/J, =0), each fecis are negligible. All results are extrapolated to a Trotter
eigenfunction is a direct product of one-rung states whos@me interval A7—0. Further, we compare with recent re-
lowest-lying multiplet is a spin doublet, separated by a gapsyits obtained by Greveet al° using the same algorithm.
of orderJ, from the first excited state. The ground state of At low temperatures, where only the statestif are rel-
the whole system is thereforé-2old degenerate. A finite evant, the susceptibilities of the 3-leg ladders with small
value ofJ lifts this degeneracy. Our goal is to formulate an J;/J, coincide with those of the correspondin-J,-J;
effective HamiltonianH ., in this 2--dimensional subspace chain. This can be seen in the inset of Fig. 1, where we show
M of rung doublets which describes the low-energy properthe susceptibility per rung of the 3-leg ladder with
ties. For the case of the 3-leg ladder, to third order inJ;/J, =0.2 together with the susceptibilities of the corre-
Jy/3,, we get sponding effective models in first, second, and third order in
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From Fig. 1, it is clear that with increasing/J, the

020 | Si9.21.0 | quality of the description of the 3-leg ladder by the third-
order effective model becomes worse. Tdngalitative fea-
0.16 tures of the temperature dependence of the susceptibility,
’ however, are correctly given even in the isotropic case
g Jj13.=1, e.g., the slope of(T) is increasing, while the
s oy zero-temperature valug(0) remains more or less constant,
= asJj/J, increasegsee Fig. 1
= 0.08 Calculating the effective Hamiltonian of the 3-leg ladders
. N to nth order leads to a spin-chain Hamiltonian with interac-
--- 2" order N . . . .
0.04 —— 1% order tion terms between spins which are separated by upunit
011 = o5 v s cells. All these interactions are invariant under translations
0.00 s : : and rotations. Consequently, for very low temperatures the
0.0 02 T%‘ 06 08 3-leg ladders can be mapped onto thel Wess-Zumino-
1]

Witten (WZW) nonlinearo model®? which is determined
FIG. 1. Susceptibility of the 3-leg ladder for differeljt/J, and by a spinon velocity,v, and an energy scale parameter,
- : , To. For T < Ty, x(T) of this model read$® up to
of the corresponding effective models. The filled symbols show the’ 0 3 0 X
data for the 3-leg ladders and the open symbols those of the corr@((INT) ™)
sponding third-order effective model. The crosses show the suscep-

tibility of the correspondingl;-J, chains in the mapping of the x(T)= 1 + 1 1 _ In(In(To/T) +1/2)
3-leg ladders td;-J, chains(for details see text The inset shows 2w A |In(To/T) 2In°(To/T)
the susceptibility per rung of the 3-leg ladder witVJ, =0.2 to- (3

gether with those of the corresponding effective models in first, T) apbroaches itd=0 value v(0)=1/(2 with infi-
second, and third order i#/J, . The error bars are smaller or in X(T) app x(0) (2mv)

order of the symbols nite slope.T, should be< A, and characterizes the interac-
y ’ tions between the spinons. The smallgy the stronger the

Jj/3, . While the first-order effective modéh single chain interactions, and the fastg(T) increases with temperature.
with only NN interactions gives only a qualitative descrip- | "€ low-temperature regime of the universality class of
tion of the 3-leg ladder at low temperaturegT) of the  SPIN _chal_ns with a rotationally and translatlonally_mvarlant
effective model in third order irdj/J, coincides with the ~Hamiltonian (to which also the 3-leg ladders belonig de-
susceptibility per rung of the 3-leg ladder up to a crossoveférmined by only two parameters, and To. However, the
temperature. Above this temperatuséT) of the 3-leg lad- determ|nat|on_ ofv and T, for the 3-leg ladder is difficult.
der is larger, due to the presence of additional states in th@MC calculations cannot be performed down to low enough
3-leg ladder which are not included in the subspade temperatures such that a fit to the_above _fcﬁﬁ)nglv_es reli-
The crossover temperature is of the order of the 4ap able est|_mates fpv and T,. EspeciallyT, is considerably
the higher lying states in the 3-leg ladder. It can be estimatefnderestimated in all cases. _
best by considering the entropy of both the 3-leg ladder and _T° Overcome this problem we first map the 3-leg ladder to
the corresponding effective modkiFig. 2). Just above the &9J1-J2 chain and then study the one-to-one mapping of this
crossover temperature, the additional states lead to a risk-J2 chain to the WZW model: Iy, J;)< (v, To). The
« e T in the entropy. Consequently, fitting the form Mapping toJ;-J, chains is always possible since the Igw-
e AT to the difference of the entropy per rung of the 3-leg"@nge is charac'gerized by only two paramgters which can be
ladder and the entropy of the corresponding effective modefhosen ass, J, instead ofv, To. The mapping of the 3-leg

gives a rough estimate af. We find A~ J, more or less ladder toJ;-J, chains is done as follows. For smdl|/J,
independent of/J, . we can use the third-order result fd; and J, [Eq. (2)],

neglectingJs, sinceJ; is small. Otherwise we fiy(T) of
J;-J, chains for lowT to x(T) of the 3-leg laddefsee Fig.

10 4= (') 1) which gives estimates of the valuds andJ, (see Table
L= 0 J,J,=0.4 |)

0.8 ] The mapping {,,J,)<(v,To) can be studied, using ex-
g’ P ai—— act diagonalization methods.andT, are determined by the
= === finite-size scaling of the energy gap between the excited state

— — _ _ .13
% 0.5 E(k=m, S,=1) and the ground staté(k=0, S,=0):
<]
g E(k=m, $,=1)~E(k=0,S,=0)
0.2
mo 1 1 N In(In(L/Lg) +1/2)
T L\ 7T 2In(L/Ly) 4n’(L/Ly) /)’
o'oo.o 05 1.0 1.5 (4)

T/,
' whereE(k,S,) is the lowest energy with wave vectkrand

FIG. 2. Entropy of the 3-leg ladder for differedf/J, (solid ~ z component of spir§, for a chain of lengthL. L, is the
lines) and of the corresponding effective modémshed lings characteristic scaling length of the chain. As a consequence
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J,, are given for different);/J, . The spinon velocity and the
energy scale paramet&p for the 3-leg ladders are also listed. The
value enclosed in brackets was obtained by fitting {rdata (Ref.

TABLE |. For low temperatures, 3-leg ladders can be mapped
onto J;-J, chains. The corresponding coupling constadtsand

10) to Eq. (7).

0 1 0 /2 2.6

0.1 0.985 —0.033 1.61 1.64
0.2 0.961 -0.071 1.63 1.28
0.4 0.86 -0.17 1.63 0.78

0.6 0.76 -0.30 1.65 0.57
0.8 0.67 —-0.47 1.73 0.47

1.0 0.61 -0.61 1.81 0.4f0.34]

of the equivalence of the imaginary time direction and the
space direction,Ly=v/Ty. Fitting Eq. (4) for different
lengths using exact diagonalization givesas well asT,,.
The results for different fractions, /J, are plotted in Fig. 3.
An alternate possibility to determine and T is to map
the J;-J, chains onto theO(3) nonlinear ¢ model with
0=m. For the coupling constang one finds g=4
(1—4J3,/3;) Y21 Therefore the spinon velocity can be

Wri

tten as

_’7TJ1 1 4J2
v= 2 Jl.
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g
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3
aQ
= 012
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0.11 b
0.10 t : :
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T/J,

FIG. 4. Susceptibility of the 3-leg ladder with/J, =0.2 and
its effective models. The error bars are smaller or in order of the
symbols.

In Table I, the estimated values, T, (following the
above-described procedirare given for various 3-leg lad-
ders. The spinon velocity increases, wihillg decreases with
increasingd; /J, .

The values fow and Ty can now be put back into E¢3)
which gives the low-temperature susceptibilities of the cor-
responding 3-leg ladders. This is shown in the example of
Jy/3,=0.2 in Fig. 4. Together with the QMC data for the
3-leg ladder itself and its third-order effective model, we
get the susceptibility for the 3-leg ladder with good precision
on the whole temperature range from zero temperature to
highT.

Grevenet al. recently calculated the correlation length

Logarithmic corrections, on the other hand, depend on @f isotropic ladders? using also the QMC loop algorithm.

mass scaleA, which is generated dynamically in the
model, and for smally, A =1/aexp(—2n/g), wherea is the

lattice spacind?® Since Ty A,

The results fow andT, [Egs.(5) and(6)] are plotted in Fig.
3 together with those obtained by finite-size scaling.

T ™ 1 4J2
o*xex EV \]_1 .

6.0

+—e finite size scaling
— O(3) nonlinear c—model

4.0 -

v/d,

2.0

0.0

-3.0 -2.0 -1.0
3,14,

FIG. 3. Spinon velocityp, and energy scale paramet@&g, of
the J;-J, chains, determined by finite-size scaling analysigcles

0.0

respectively by mapping to th@(3)-nonlinearo model.

For T<T, the inverse of the correlation length in the WZW-
model can be written &%

1 1 1 In(n(To/T)+1/2)
M N2 T T2 T AT @)

Fitting the dat& for n,=3 to the above forniEq. (7)] also
gives an estimate off,. In the isotropic case we find
To=0.34); which is in good agreement with our restiee
Table ). For the 5-leg-laddeT is already=0.1]);.

Finally, we examine the static structure facto(,),
defined by Ng=number of siteps

1 Lo o= o=
Clkky) =5 2 e DHK0S 5 )

Si,j,7n71
and show that it can be calculated from the effective model
without introducing additional physical parameters.
C(m,m) can be written ass; ;(—1)" " I(S* S*)/3L, where
S'=S ,-S,+S sis the staggered spin of one rung. In the
limit Jj=0 the correlations of the staggered rung spins are
simply related to those of the uniform rung spins by

(S SN =MS™ S, ®

with A =25/9 for all temperatures, where only the states in
M are relevant. Fod# 0 the “wave function” of the spin-

1 degree of freedom at each rung is spread out over a certain
number of unit cells. On one hand, this gives rise to the
longer range interactions, described above, and on the other
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FIG. 5. The fractionn = (S §)/(S*- S at i — j|>1 for dif-
ferentJ;/J, .

hand, it affects the correlatio§™ S and(S*- S*). For
large distance$i —j|>1, however (S S and (S S°)
are still related by Eq(8) but with a renormalized value
of \.

Here, we calculatex numerically, using QMC simu-
lations. The values are plotted in Fig. 5 for differelptJ,
and extrapolating td;=0 leads to a value.=2.78 which
agrees with the analytical result 25/9. At low the cor-
relation length é&>1 and C(m,7), as well as C(w,0)
=3 (=1)" (S §*)/3L are dominated by correlations
with |i—j|>1. Additionally, C(w,0) per rung of the 3-
leg ladder differs only slightly fromC(#) of the single
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chain. Consequently at low temperatur€(m,m)s eq
=NC(7,0)3.eg~NC(7)singie /3. Grevenet al. have calcu-
lated C( 7, 7)3.4eq fOr Jy=J, and C()single ch. ' From their
data we determin€(, 1) 3_jeq/ C(7) single ch=2.55, which is
in good agreement with our valug3=2.64 (see Fig. 5.

The above considerations can be generalized to an
arbitrary odd-leg ladder witm, legs. There are no qualita-
tive differences. The overall AF quasilong-range order, how-
ever, increases with increasimg. Therefore, especially the
ratio |J,/J,| of the effective Hamiltoniar i is larger. The
logarithmic corrections increase markedly,( decreases
and theT—0 behavior sets in at lower temperature ras
increases. The zero temperature vaj@), on theother
hand, is almost independent of. This implies that the
spinon velocity of odd-leg ladders depends only slightly on
the number of legs.

In conclusion, we have proposed an effective spghain
model which describes the low-energy properties of odd-leg
ladders. The temperature dependenceof, and C(, )
for the effective system is shown to be consistent with that of
the original model at low enough temperatures. The effective
model requires two parameters, e.g., a spinon velaciynd
an energy scalely. With an increasing number of legs,
does not change, buf, decreases rapidly. The exchange
interactions of the corresponding effective model become
longer ranged, and antiferromagnetic correlations are en-
hanced.

The calculations were performed on the Intel Paragon of
the ETH Zuich. The support of the Schweizerischer Nation-
alfond was gratefully acknowledged.
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