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An effective low-energy description for multileg spin-1
2 Heisenberg ladders with an odd number of legs is

proposed. Using a recently developed Monte Carlo loop algorithm and exact-diagonalization techniques, the
uniform and staggered magnetic susceptibility and the entropy are calculated for ladders with one, three, and
five legs. These systems show a low-temperature scaling behavior similar to spin-1

2 chains with longer ranged
unfrustrated exchange interactions. The spinon velocity does not change as the number of legs increases, but
the energy scale parameter decreases markedly.@S0163-1829~97!50806-X#

Recently, antiferromagnetic Heisenberg spin-1
2 ladders at-

tracted much interest, following the discovery of a spin gap
in the 2-leg ladder.1 Also, the crossover from the single chain
to the two-dimensional~2D! square lattice, obtained by as-
sembling chains to form ‘‘ladders’’ of increasing width, is
far from smooth.2 Heisenberg ladders with an even number
of legs, nl , have a spin gap and short-range correlations,
while odd-leg ladders have no gap and power-law correla-
tions. These theoretical predictions have been verified ex-
perimentally, in materials such as~VO!2P2O7 ~Ref. 3! and
the homologous series of cuprates Srn21Cun11O2n ,

4 which
contain weakly coupled arrays of ladders.

Here, we concentrate on odd-leg ladders. Our goal is to
derive a low-energy description in terms ofS5 1

2 chains with
longer range effective interactions, and examine the evolu-
tion with increasing number of legs,nl . The Heisenberg
Hamiltonian for ladders is

H5Ji (
↔

SW i ,t• SW j ,t 1 J'(
l

SW i ,t•SW i ,t8 , ~1!

wherei and j enumerate the rungs,t, t8 label the legs, and
the sum marked by↔ (l) runs over nearest neighbors along
legs ~rungs!. Periodic boundary conditions are chosen along
the leg direction and open boundary conditions perpendicular
to it. For the known materials we expect the superexchange
to be roughly isotropic (J'5Ji). However, it is educational
first to consider the strongly anisotropic limit (J'@Ji).

In the completely anisotropic limit (Ji /J'50), each
eigenfunction is a direct product of one-rung states whose
lowest-lying multiplet is a spin doublet, separated by a gap
of orderJ' from the first excited state. The ground state of
the whole system is therefore 2L-fold degenerate. A finite
value ofJi lifts this degeneracy. Our goal is to formulate an
effective Hamiltonian,Heff , in this 2

L-dimensional subspace
M of rung doublets which describes the low-energy proper-
ties. For the case of the 3-leg ladder, to third order in
Ji /J' , we get

Heff
~3!5(

j51

L F (
n51

3

JnSW j
tot
•SW j1n

tot 1 J̃ „~SW j
tot
•SW j13

tot !

3~SW j11
tot

•SW j12
tot !2~SW j

tot
•SW j12

tot !~SW j11
tot

•SW j13
tot !…G , ~2!

whereSW j
tot5SW j ,11SW j ,21SW j ,3 is the total spin of thej th rung,

Jn 5 J' (l an,l(Ji /J')
l , with a1,151, a1,2521/9, a1,3

52103/243, a2,150, a2,2528/27, a2,35249/162, a3,1
5a3,250, a3,3532/243, andJ̃5(16/81) Ji

3/J'
2 .5

The last term in Eq.~2! will be neglected, since the cor-
rections in the energy of the low-lying energy states due to
this term are small.Heff

(3) has then the form of a single chain
with effective nearest neighbor~NN! coupling J1, next-
nearest neighbor~NNN! coupling J2, and with exchange
couplingJ3 between rung spins separated by three unit cells.
Therefore the low-lying energy states of the 3-leg ladder can
be mapped onto those of aJ1-J2-J3 chain. In this effective
system the NNN interactions areF (J2,0), while the
NNNN interactions are AF (J3.0). Consequently, both the
second and the third term in Eq.~2! enhance the overall AF
quasilong-range order. Note, that the third-order corrections
in Eq. ~2! affect J1 andJ2 strongly since the corresponding
coefficients are large. So one must perform the calculations
at least up to third order.

To testHeff
(3), we calculate the temperature-dependent uni-

form susceptibility,x(T), for 3-leg ladders6 using the Quan-
tum Monte Carlo~QMC! loop algorithm,7–9 and compare to
susceptibilities obtained for the effectiveJ1-J2-J3 model.
We consider large enough systems, such that finite-size ef-
fects are negligible. All results are extrapolated to a Trotter
time intervalDt→0. Further, we compare with recent re-
sults obtained by Grevenet al.10 using the same algorithm.

At low temperatures, where only the states inM are rel-
evant, the susceptibilities of the 3-leg ladders with small
Ji /J' coincide with those of the correspondingJ1-J2-J3
chain. This can be seen in the inset of Fig. 1, where we show
the susceptibility per rung of the 3-leg ladder with
Ji /J'50.2 together with the susceptibilities of the corre-
sponding effective models in first, second, and third order in
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Ji /J' . While the first-order effective model~a single chain
with only NN interactions! gives only a qualitative descrip-
tion of the 3-leg ladder at low temperatures,x(T) of the
effective model in third order inJi /J' coincides with the
susceptibility per rung of the 3-leg ladder up to a crossover
temperature. Above this temperature,x(T) of the 3-leg lad-
der is larger, due to the presence of additional states in the
3-leg ladder which are not included in the subspaceM.

The crossover temperature is of the order of the gapD to
the higher lying states in the 3-leg ladder. It can be estimated
best by considering the entropy of both the 3-leg ladder and
the corresponding effective model11 ~Fig. 2!. Just above the
crossover temperature, the additional states lead to a rise
} e2D/T in the entropy. Consequently, fitting the form
e2D/T to the difference of the entropy per rung of the 3-leg
ladder and the entropy of the corresponding effective model
gives a rough estimate ofD. We findD' J' more or less
independent ofJi /J' .

From Fig. 1, it is clear that with increasingJi /J' the
quality of the description of the 3-leg ladder by the third-
order effective model becomes worse. Thequalitative fea-
tures of the temperature dependence of the susceptibility,
however, are correctly given even in the isotropic case
Ji /J'51, e.g., the slope ofx(T) is increasing, while the
zero-temperature valuex(0) remains more or less constant,
asJi /J' increases~see Fig. 1!.

Calculating the effective Hamiltonian of the 3-leg ladders
to nth order leads to a spin-chain Hamiltonian with interac-
tion terms between spins which are separated by up ton unit
cells. All these interactions are invariant under translations
and rotations. Consequently, for very low temperatures the
3-leg ladders can be mapped onto thek51 Wess-Zumino-
Witten ~WZW! nonlinears model,6,12 which is determined
by a spinon velocity,v, and an energy scale parameter,
T0. For T ! T0, x(T) of this model reads12,13 up to
O„(lnT)23

…

x~T!5
1

2pv
1

1

4pv F 1

ln~T0 /T!
2
ln„ln~T0 /T!11/2…

2ln2~T0 /T! G
~3!

x(T) approaches itsT50 valuex(0)51/(2pv) with infi-
nite slope.T0 should be& D, and characterizes the interac-
tions between the spinons. The smallerT0, the stronger the
interactions, and the fasterx(T) increases with temperature.

The low-temperature regime of the universality class of
spin chains with a rotationally and translationally invariant
Hamiltonian~to which also the 3-leg ladders belong! is de-
termined by only two parameters,v and T0. However, the
determination ofv and T0 for the 3-leg ladder is difficult.
QMC calculations cannot be performed down to low enough
temperatures such that a fit to the above form~3! gives reli-
able estimates forv and T0. EspeciallyT0 is considerably
underestimated in all cases.

To overcome this problem we first map the 3-leg ladder to
a J1-J2 chain and then study the one-to-one mapping of this
J1-J2 chain to the WZW model: (J1 , J2)↔ (v, T0). The
mapping toJ1-J2 chains is always possible since the low-T
range is characterized by only two parameters which can be
chosen asJ1, J2 instead ofv, T0. The mapping of the 3-leg
ladder toJ1-J2 chains is done as follows. For smallJi /J'

we can use the third-order result forJ1 and J2 @Eq. ~2!#,
neglectingJ3, sinceJ3 is small. Otherwise we fitx(T) of
J1-J2 chains for lowT to x(T) of the 3-leg ladder~see Fig.
1! which gives estimates of the valuesJ1 andJ2 ~see Table
I!.

The mapping (J1 ,J2)↔(v,T0) can be studied, using ex-
act diagonalization methods.v andT0 are determined by the
finite-size scaling of the energy gap between the excited state
E(k5p, Sz51) and the ground stateE(k50, Sz50):13

E~k5p, Sz51!2E~k50, Sz50!

5
p v
L S 12

1

2 ln~L/L0!
1
ln„ln~L/L0!11/2…

4ln2~L/L0!
D ,

~4!

whereE(k,Sz) is the lowest energy with wave vectork and
z component of spinSz for a chain of lengthL. L0 is the
characteristic scaling length of the chain. As a consequence

FIG. 1. Susceptibility of the 3-leg ladder for differentJi /J' and
of the corresponding effective models. The filled symbols show the
data for the 3-leg ladders and the open symbols those of the corre-
sponding third-order effective model. The crosses show the suscep-
tibility of the correspondingJ1-J2 chains in the mapping of the
3-leg ladders toJ1-J2 chains~for details see text!. The inset shows
the susceptibility per rung of the 3-leg ladder withJi /J'50.2 to-
gether with those of the corresponding effective models in first,
second, and third order inJi /J' . The error bars are smaller or in
order of the symbols.

FIG. 2. Entropy of the 3-leg ladder for differentJi /J' ~solid
lines! and of the corresponding effective models~dashed lines!.
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of the equivalence of the imaginary time direction and the
space direction,L05v/T0. Fitting Eq. ~4! for different
lengths using exact diagonalization givesv as well asT0.
The results for different fractionsJ2 /J1 are plotted in Fig. 3.

An alternate possibility to determinev andT0 is to map
the J1-J2 chains onto theO~3! nonlinear s model with
u5p. For the coupling constantg one finds g54
(124J2 /J1)

21/2.14 Therefore the spinon velocity can be
written as

v5
pJ1
2
A12

4J2
J1

. ~5!

Logarithmic corrections, on the other hand, depend on a
mass scaleL, which is generated dynamically in thes
model, and for smallg, L51/aexp(22p/g), wherea is the
lattice spacing.15 SinceT0}L,

T0}expF2
p

2
A12

4J2
J1

G . ~6!

The results forv andT0 @Eqs.~5! and~6!# are plotted in Fig.
3 together with those obtained by finite-size scaling.

In Table I, the estimated valuesv,T0 ~following the
above-described procedure! are given for various 3-leg lad-
ders. The spinon velocity increases, whileT0 decreases with
increasingJi /J' .

The values forv andT0 can now be put back into Eq.~3!
which gives the low-temperature susceptibilities of the cor-
responding 3-leg ladders. This is shown in the example of
Ji /J'50.2 in Fig. 4. Together with the QMC data for the
3-leg ladder itself and its third-order effective model, we
get the susceptibility for the 3-leg ladder with good precision
on the whole temperature range from zero temperature to
high T.

Grevenet al. recently calculated the correlation lengthj
of isotropic ladders,10 using also the QMC loop algorithm.
ForT!T0 the inverse of the correlation length in the WZW-
model can be written as16

1

j~T!
'TS 22

1

ln~T0 /T!
1
1

2

ln„ln~T0 /T!11/2…

ln2~T0 /T! D . ~7!

Fitting the data10 for nl53 to the above form@Eq. ~7!# also
gives an estimate ofT0. In the isotropic case we find
T050.34Ji which is in good agreement with our result~see
Table I!. For the 5-leg-ladderT0 is already&0.1Ji .

Finally, we examine the static structure factorC(p,p),
defined by (Ns5number of sites!

C~kx ,ky!5
1

Ns
(

i , j ,t,t8
eikx~ i2 j !1 iky~t2t8!^ SW i ,t•SW j ,t8&

and show that it can be calculated from the effective model
without introducing additional physical parameters.
C(p,p) can be written as( i , j (21)i1 j^SW i

st
•SW j

st&/3L, where
SW i
st5SW i ,12SW i ,21SW i ,3 is the staggered spin of one rung. In the
limit Ji50 the correlations of the staggered rung spins are
simply related to those of the uniform rung spins by

^SW i
st
•SW j

st& iÞ j5l^SW i
tot
•SW j

tot& iÞ j , ~8!

with l525/9 for all temperatures, where only the states in
M are relevant. ForJiÞ0 the ‘‘wave function’’ of the spin-
1
2 degree of freedom at each rung is spread out over a certain
number of unit cells. On one hand, this gives rise to the
longer range interactions, described above, and on the other

TABLE I. For low temperatures, 3-leg ladders can be mapped
onto J1-J2 chains. The corresponding coupling constants,J1 and
J2, are given for differentJi /J' . The spinon velocityv and the
energy scale parameterT0 for the 3-leg ladders are also listed. The
value enclosed in brackets was obtained by fitting thej-data~Ref.
10! to Eq. ~7!.

Ji /J' J1 /Ji J2 /Ji v/Ji T0 /Ji

0 1 0 p/2 2.6
0.1 0.985 20.033 1.61 1.64
0.2 0.961 20.071 1.63 1.28
0.4 0.86 20.17 1.63 0.78
0.6 0.76 20.30 1.65 0.57
0.8 0.67 20.47 1.73 0.47
1.0 0.61 20.61 1.81 0.41@0.34#

FIG. 3. Spinon velocity,v, and energy scale parameter,T0, of
theJ1-J2 chains, determined by finite-size scaling analysis~circles!
respectively by mapping to theO~3!-nonlinears model.

FIG. 4. Susceptibility of the 3-leg ladder withJi /J'50.2 and
its effective models. The error bars are smaller or in order of the
symbols.
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hand, it affects the correlations^SW i
st
•SW j

st& and ^SW i
tot
•SW j

tot&. For
large distancesu i2 j u@1, however,^SW i

st
•SW j

st& and ^SW i
tot
•SW j

tot&
are still related by Eq.~8! but with a renormalized value
of l.

Here, we calculatel numerically, using QMC simu-
lations. The values are plotted in Fig. 5 for differentJi /J'

and extrapolating toJi50 leads to a valuel52.78 which
agrees with the analytical result 25/9. At lowT, the cor-
relation length j@1 and C(p,p), as well asC(p,0)
5( i , j (21)i1 j^SW i

tot
•SW j

tot&/3L are dominated by correlations
with u i2 j u@1. Additionally, C(p,0) per rung of the 3-
leg ladder differs only slightly fromC(p) of the single

chain. Consequently at low temperature,C(p,p)3-leg
5lC(p,0)3-leg'lC(p)single ch./3. Grevenet al. have calcu-
latedC(p,p)3-leg for Ji5J' andC(p)single ch..

10 From their
data we determineC(p,p)3-leg/C(p)single ch.52.55, which is
in good agreement with our valuel/352.64 ~see Fig. 5!.

The above considerations can be generalized to an
arbitrary odd-leg ladder withnl legs. There are no qualita-
tive differences. The overall AF quasilong-range order, how-
ever, increases with increasingnl . Therefore, especially the
ratio uJ2 /J1u of the effective HamiltonianHeff is larger. The
logarithmic corrections increase markedly (T0 decreases!
and theT→0 behavior sets in at lower temperature asnl
increases. The zero temperature valuex(0), on theother
hand, is almost independent ofnl . This implies that the
spinon velocity of odd-leg ladders depends only slightly on
the number of legs.

In conclusion, we have proposed an effective spin-1
2 chain

model which describes the low-energy properties of odd-leg
ladders. The temperature dependence ofx, j, andC(p,p)
for the effective system is shown to be consistent with that of
the original model at low enough temperatures. The effective
model requires two parameters, e.g., a spinon velocityv and
an energy scale,T0. With an increasing number of legs,v
does not change, butT0 decreases rapidly. The exchange
interactions of the corresponding effective model become
longer ranged, and antiferromagnetic correlations are en-
hanced.

The calculations were performed on the Intel Paragon of
the ETH Zürich. The support of the Schweizerischer Nation-
alfond was gratefully acknowledged.
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