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The reversible nucleation and growth of two-dimensional islands during the submonolayer stage of epitaxial
growth is studied with self-consistent rate equations and kinetic Monte Carlo simulations. In contrast to most
previous work, we take account of the effects of both a finite energy barrier to the detachment of atoms from
islands and a finite barrier to the incorporation of adatoms into islands. A correct boundary condition for the
diffusion field at island edges is derived that takes account of these processes. For small detachment rates,
quantitative agreement is obtained between the solutions to the rate theory and the simulations for the average
monomer and island densities as a function of coverage.@S0163-1829~97!50404-8#

Scanning tunnelling microscopy studies1 have generated
renewed interest2 in the rate equation description3 of sub-
monolayer homoepitaxial growth. The qualitative correct-
ness of such rate theories was established long ago. But re-
cently, Bales and Chrzan4 were able to show that a self-
consistent form of this theory5 actually yieldsquantitative
agreement for adatom and average island densities as a func-
tion of coverage when compared to kinetic Monte Carlo
simulations that include deposition, single adatom diffusion,
and irreversible aggregation to growing islands. Given this
success, it is natural to inquire whether similar results can be
obtained for the case ofreversibleaggregation, i.e., situa-
tions where the detachment of atoms from the perimeter of
islands of any size is permitted. That is the purpose of the
present work.

We begin with the rate equation analysis. The dynamical
variables are the average areal densities of two-dimensional
~2D! islands composed ofs atoms^ns&. When detachment
processes can occur,6 the equation of motion for the adatom
density is
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while those for the density of two-dimensional islands of size
s>2 are
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. ~2!

In these formulas,F is the deposition rate,D is the adatom
diffusion constant,ks is the rate at which an island of size
s captures atoms deposited directly onto itself,ts

21 is the
mean rate at which atoms escape from an island of sizes

after detachment, and the capture numberss is a measure of
the efficiency with which an island of sizes captures atoms
from the monomer population.

Since the ratioD/F emerges naturally as a control param-
eter in scaling analyses of Eq.~1! and Eq.~2! ~Refs. 2,3,6!
we focus here on the other rate coefficients defined there.
The geometrical assignment

ks5s ~3!

for the direct impingement factors is expected to be valid
when the transport of atoms to the perimeter of islands upon
which they land is rapid compared to the rate at which the
islands gather atoms deposited directly onto the substrate. In
practice,4 this is true for coverages up to the precoalescence
regime of island density saturation in the absence of a large
energetic barrier7 to the downward motion of atoms over step
edges.

The treatment of the capture numbers is more subtle. A
self-consistent mean-field treatment4 begins by writing a
diffusion-reaction equation for the adatom densityn1(r ,t)
outside of a typical~circular! island of radiusRs :

]n1
]t

5D¹2n11J2Dj22n1 , ~4!

where by comparison with Eq.~1!,
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and

j225~F/D !k112s1^n1&1(
s>2

ss^ns&. ~6!

Now subtract Eq.~1! from Eq.~4! and assume that the quan-
tity n12^n1& is stationary to obtain

¹2n1~r !2j22@n1~r !2^n1&#50. ~7!
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The radially symmetric solution to the Helmholtz equation
@Eq. ~7!# that satisfies the boundary condition,

lim
r→`

n1~r !5^n1& , ~8!

is

n1~r !5^n1&2AK0~r /j! , ~9!

whereK0 is the modified Bessel function of order zero and
A is a constant determined by the boundary condition to Eq.
~7! at the island edger5Rs .

The boundary condition at the island edge is obtained
from a mass balance argument. A microscopic form for the
flux at the edge of an average island of sizes is set equal to
the macroscopic flux proportional to the gradient of the ada-
tom density from Eq.~9!, i.e.,

2pRsD
]n1
]r U

Rs

5msGsn1~Rs1a!2
vs11^ns11&

^ns&
, ~10!

wherevs is the rate at which atoms detach from an island of
size s, Gs5De2Ds /kT is the rate at which atoms join an
island of sizes along any of thems paths that connect next-
nearest-neighbor sites to nearest-neighbor sites adjacent to
the island~for large islandsms→2pRs/a), andn1(Rs1a) is
the density of adatoms at such sites. The quantityDs ac-
counts for the possibility that the energy barrier to adatom
incorporation into an island may differ from the adatom dif-
fusion barrier. Note that an adatom which contributes to the
outgoing rate@last term in Eq.~10!# from an island of size
s necessarily detached for an island of sizes11. The total
outgoing rate per unit area isws11^ns11&. One then divides
by ^ns& to obtain the average rate per island of sizes.

Equation~10! takes the form of a true boundary condition
whenevern1(Rs1a)5n1(Rs)1a(]n1 /]r )uRs is an adequate
approximation:

~2pRsD2amsGs!
]n1
]r U
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5msGsn1~Rs!2
vs11^ns11&

^ns&
.

~11!

The alternate form

]n1
]r U

Rs

5bs@n1~Rs!2neq~Rs!# ~12!

follows from the observation that

neq~Rs!5
vs11^ns11&
msGs^ns&

~13!

is the concentration of adatoms in equilibrium with an island
of sizes and the definition of

bs
215~2pRs /ms!e

Ds /kT2a ~14!

for the step kinetic coefficient. In contrast to Chernov’s
prescription,8 Eq. ~12! reduces to

n1~Rs!5neq~Rs! ~15!

in the limit of no attachment barrier (Ds50!. Of course, the
usual perfect sink conditionn1(Rs)50 is recovered when
the detachment rate vanishes.

The constantA in Eq. ~9! is found using Eq.~12! from
which the net rate is computed to be

2pRsD
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5
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@^n1&2ns~eq!# ,

~16!

where the shorthand notationK0(s)[K0(Rs /j) and
K1(s)[K1(Rs /j) has been introduced for the Bessel func-
tions. One can also express Eq.~16! in terms of the capture
numberss and escape ratets11 directly from the rate equa-
tions. This gives a single equation

2pRsDK1~s!

bs
21K1~s!1jK0~s!

@^n1&2ns~eq!#

5Dss^n1&2
^ns11&

ts11^ns&
~17!

from which to extract two coefficients. One can show that
the choice ofss andts11 is arbitrary as long as Eq.~17! is
satisfied. It is conventional5 and convenient to choose the
capture number to be independent of the microscopic detach-
ment rate by equating the first term on both sides of Eq.~17!.
Hence,

ss5
2pRsK1~s!

bs
21K1~s!1jK0~s!

. ~18!

With this choice for the capture number,ts
21 must satisfy

1

ts
5

vsss21

ms21e
2Ds21 /kT

. ~19!

Note that Eq.~18! reduces to the capture number expression
for irreversible growth4,5 when bs→`, i.e., large islands
with no attachment barrier, whiless→bs2pRs when
Ds→`.

All effects of detachment are carried throughts
21 which

in the above formulation becomes the rate at which detached
atoms escape into the effective medium without returning.
Equation ~19! correctly reflects the fact that an atom that
detaches from an island of sizes either returns to the island
or escapes to infinity in the diffusion field of an island of size
s21.

Equations~1!, ~2!, ~3!, ~18!, and~19!, together constitute
our self-consistent rate theory for reversible island growth in
the precoalescence regime. For a practical application, it re-
mains only to specify the ratioD/F and the functionsvs and
Rs . We do this below for a simple model of homoepitaxy.
However, for the purpose of testing our rate theory against
kinetic Monte Carlo~KMC! simulation, the precise choice of
detachment rates is not important so long as they are chosen
the same in both.

Popular homoepitaxial growth models9,10 employ atomic
detachment rules that depend on local bonding geometry
rather than island size. Such rules naturally generate dynami-
cally evolving island morphologies for which the average
detachment ratesvs are difficult to estimate. However, for
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large compact islands and slow growth rates the adatom den-
sity essentially satisfies the Gibbs-Thomson relation.11 Since
Eq. ~13! is valid in this limit, it will be the case that

vs52pRsDn`exp~G/Rs!, ~20!

wheren` is the density of adatoms in equilibrium with a
straight step andG is a constant. Accordingly, welegislate
that Eq.~20! shall be the detachment rate for islands of all
sizes in both the KMC simulations and the rate equation
analysis. Other choices may be more suitable to model other
situations such as heteroepitaxy.12

The rules of the simulation are~i! atoms are deposited
randomly onto the sites of a square lattice of size 5003500
at a rateF; ~ii ! adatoms on the bare substrate migrate to
nearest-neighbor sites at a rate 4D/a2; ~iii ! a new island is
created when two adatoms collide;~iv! adatoms that reach
the perimeter of an island by diffusion from the substrate and
atoms that are deposited on top of an island are instantly
transported to the perimeter site that is closest to the island
center;~iv! atoms on the perimeter that lay farthest from the
island center detach at a ratevs and are placed onto a next-
nearest-neighbor site of the substrate;~v! atoms cannot jump
up onto the top of islands or desorb from the substrate.

Rule ~iv! guarantees that the islands will be as circular as
possible. This minimizes the uncertainty for the choice of
island radiiRs in the rate equations. Nonetheless, the geo-
metrical choiceRs5As/p turns out to be somewhat inaccu-
rate for small island sizes. Hence, in the present work, we
use the empirical form

Rs5As1As/p2A1/p ~21!

that well describes the radius of the nearly circular islands
that result from the foregoing simulations rules.

Figure 1 illustrates the coverageu5Ft dependence of the
adatom density and total island densityN5(s.1^ns& as ob-
tained from the KMC simulations~solid curves! and by nu-
merical integration of the rate equations~dashed curves! for
D/F5107, Ds50, G54, and four values ofv05Dn` .
These parameters were chosen to produce agreement with
atomistic simulations we performed similar to those reported
in Ref. 10. Note the clear maximum inN(u) that develops
for large values ofv0 when the dissociation rate for dimers
finally exceeds their birth rate. This feature should be detect-
able in submonolayer growth experiments at elevated tem-
peratures.

The results of Fig. 1 extend to the case of reversible ag-
gregation the conclusion of Bales & Chrzan4 that quantita-
tive agreement can be achieved between KMC simulations
and self-consistent rate equations for mean homoepitaxial
island densities. However, when the detachment rates be-
come large, we have discovered a discrepancy between the
two that can be attributed only to an inadequacy of the rate
equations. Figure 2 compares our KMC and rate equation
results for the total island density at a fixed coverage as a
function of the mean detachment ratev0. Clearly, the rate
equations underestimate the saturated island density in a
manner that worsens as the detachment rate increases.

We attribute this effect to the fact that Eqs.~6! and ~7!
presume that a monomer diffusing in the vicinity of an island
of sizes encounters auniformdensity of other islands at all
radial distances greater thanRs .

5 But, as is well known,
there is actually a depletion zone around each island that is
free of islands of any size.13 Atoms that detach from a parent
island cannot be captured immediately by other islands~and
hence escape the parent! since they first must traverse the
depletion zone. The result is an overestimate of the escape
rate ts

21 that artificially depresses the saturated island den-
sity and increases the monomer density. Indeed, preliminary
calculations that generalize the formalism presented here to

FIG. 1. Comparison of KMC~solid lines! with rate theory
~dashed lines!. For panel a~b!, v0 varies from the top~bottom!
curve to bottom ~top! curve as 0.0, 331026, 331025, and
1.631024, respectively.

FIG. 2. Comparison of KMC~solid lines! with rate theory
~dashed lines! for the total number densityN ~squares! and mono-
mer densitŷ n1& ~circles! versusv0 at a fixed coverage of 0.1 ML.
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include this depletion zone effect largely eliminate the dis-
crepancy seen in Fig. 2. These results will be reported in
detail elsewhere.14

In summary, we have formulated and tested a self-
consistent rate equation treatment of two-dimensional island
densities during submonolayer homoepitaxy that takes ac-
count of atomic detachment from island edges. Correct
boundary conditions were derived for a diffusion-reaction
equation that describes the density of monomers outside of
an island that both captures atoms~with a possible extra
barrier to the incorporation process! and releases atoms by

detachment. For small detachment rates, quantitative agree-
ment for average densities was obtained between the rate
equations and kinetic Monte Carlo simulations. Systematic
deviations were observed for higher detachment rates and a
probable origin and possible remedy noted.
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