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We present a self-consistent, real-space calculation of the Wannier functions of Si and GaAs within density-
functional theory. We minimize the total-energy functional with respect to orbitals which behave as Wannier
functions under crystal translations and, at the minimum, are orthogonal. The Wannier functions are used to
calculate the total energy, lattice constant, bulk modulus, and the frequency of the zone-center TO phonon of
the two semiconductors with the accuracy required inab initio calculations. Furthermore, the centers of the
Wannier functions are used to compute the macroscopic polarization of Si and GaAs in zero electric field. The
effective charges of GaAs, obtained by finite differentiation of the polarization, agree with the results of
linear-response theory.@S0163-1829~97!51504-9#

Since their introduction in 1937, the Wannier functions1

~WF’s! have played an important role in the theoretical study
of the properties of periodic solids.2 Very recently they have
been one of the main ingredients of a novel theory of the
electronic polarization in terms of a Berry phase.3 Notwith-
standing, in computational applications, the representation of
the electronic wave functions with Bloch orbitals is the
method of choice. In fact, for periodic systems, the Bloch
theorem allows us to exploit the translational invariance of
the solid, and to restrict the problem to one unit cell. The
properties of the infinite solid are recovered with an integral
over the Brillouin zone, which can be approximated with a
finite sum.

The WF’s extend in principle all over the solid, and it is
possible to compute only approximate WF’s which are con-
strained to be zero outside a localization region~LR!. In
recent years, these approximate WF’s turned out to be a key
concept in the development of electronic-structure methods
whose computational cost scales linearly with the system
size.4,5 Furthermore these Wannier-like functions provide a

very promising way to study the electronic properties of a
solid in the presence of a macroscopic electric field.6

For these reasons, it is now important to developab initio
methods to compute the approximate WF’s of a crystal, to
study their properties as a function of the LR, and to show in
practice that using WF’s it is possible to extract structural
and electronic properties of materials as accurate as those
obtained with Bloch functions.

The WF’s are related to the Bloch functions by a unitary
transformation. However, this transformation is highly non-
unique because the Bloch functions are determined only up
to a multiplicative phase factor which introduces a large am-
biguity in the localization properties of the resulting WF’s.
For one-dimensional periodic solids, with a finite gap, it has
been shown analytically that an appropriate choice of the
phases of the Bloch functions leads to WF’s which decay
exponentially in space.7 In a real solid, band crossing and
phase freedom make the problem of localization particularly
hard. A possible approach in this direction has been recently
discussed by Sporkmanet al.8 Although they obtained rea-
sonably localized WF’s also for fcc transition metals, they
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did not test the accuracy of their functions against any physi-
cal properties.

Several years ago, W. Kohn proposed to compute the
WF’s of solids by minimizing the total energy in a varia-
tional scheme where the trial functions were localized.9

However, from a computational point of view the orthogo-
nality constraint was a major problem and a few numerical
experiments have been performed along these lines.10 Nowa-
days, after several advances towards an order-N method for
electronic structure calculations, it is simpler to build an
electronic structure code entirely based on WF’s. One ex-
ample is presented in this work.

In the framework of density-functional theory~DFT!,
Galli and Parrinello4 introduced nonorthogonal localized or-
bitals to minimize the total energy and to obtain the elec-
tronic ground state. In Ref. 5, a total-energy functional was
proposed, which is minimized by orthogonal orbitals and has
the same minimum as the standard total-energy functional.
Within a tight-binding formalism, this energy functional has
been used to obtain almost orthogonal localized orbitals
which reproduce the ground-state properties of silicon and
carbon.

In this work we implement this functional in a self-
consistent scheme and we test extensively the practical pos-
sibility to describe with Wannier functions the structural,
electronic, and dielectric properties of materials at the level
of accuracy obtained with Bloch wave functions. Focusing
on small unit cell systems we can use very large LR and
check the convergence of the physical properties to the exact
ground state. At variance with the approach of Refs. 4 and 5
we use explicitly the translational properties of the WF’s
during the minimization of the total-energy functional.6 At
the minimum, the orbitals are almost orthogonal and are a
good approximation of a set of WF’s for the system. We
study two crystals: silicon and gallium arsenide. We use
DFT in the local-density approximation~LDA !, and describe
the atoms with norm-conserving pseudopotentials. For each
system we obtain the total energy, the lattice constant, the
bulk modulus, and the frequency of the zone-center trans-
verse optical phonon and we study their dependence on the
size of the LR. LR’s containing up to 342 atoms for Si and
216 atoms GaAs are considered, and our results are com-
pared with converged values obtained with a plane-wave
~PW! pseudopotential code based on Bloch orbitals. We
show that the error associated to the localization can be made
lower than the errors usually associated to the use of LDA or
pseudopotentials. We also address the ability of the approxi-
mate WF’s to describe the macroscopic polarization of semi-
conductors in zero electric field by computing the Born ef-
fective charges of GaAs. We show that the effective charges
extracted from our approximate WF’s are in good agreement
with those obtained with a linear-response approach based
on Bloch functions.

A system of N interacting electrons described in the
framework of DFT-LDA, can be studied by introducing
N/2 orbitals which describe an auxiliary system of noninter-
acting electrons.11 In a periodic solid, the Bloch theorem
allows to label these states with ak vector in the first Bril-
louin zone and a band indexn. In insulators the number of
occupied bands is one half the number of electronsNel con-
tained in one unit cell. An equivalent representation can be

obtained using a set of WF’suwl ,n&, wheren is the band
index, and l indicates the Bravais lattice vectorRl . The
WF’s are orthonormal anduwl ,n& is obtained by translating
the function centered at the origin byRl , i.e.,
uwl ,n&5T̂Rluw0,n&.

The WF’s are not unique: their shape and localization in
real space are arbitrary. However the physical quantities
computed from WF’s do not depend on their shape. In par-
ticular the electronic contribution to the macroscopic polar-
ization per unit cell has a very compact expression in terms
of WF’s,3 i.e.,Pel522(n^w0,nur uw0,n&. This expression can
be used to compute the Born effective charges which are the
derivative of the polarization with respect to atomic displace-
ments in zero electric field. Using WF’s this quantity is im-
mediately available from a finite numerical differentiation.

In Refs. 5 and 6 it has been shown that WF’s for a solid
can be obtained directly by minimizing the following func-
tional:

Etot@$v%,h#5(
n

(
l ,m

2Qn,m
0,l ^v0,nu2

1
2 ¹21V̂NLuv l ,m&

1F@ ñ#1h~Nel2Ñ!, ~1!

whereQn,m
0,l 52 d l ,0dn,m2^v0,nuv l ,m&, Ñ is the integral over

one unit cell of the charge densityñ(r ) defined as

ñ~r !5(
k,n

(
l ,m

2Qn,m
k,l ^vk,nur &^r uv l ,m&, ~2!

V̂NL is the nonlocal part of the pseudopotential andF@ ñ# is
the sum of the local, Hartree and exchange-correlation ener-
gies.h is an energy parameter which is fixed in such a way
to be higher of the highest occupied eigenvalue. The func-
tions uv l ,n& are obtained by translatinguv0,n&, i.e.,
uv l ,n&5T̂Rluv0,n& and therefore they do not add any addi-

tional degrees of freedom. The chargeñ(r ) is periodic in the
unit cell. Although no orthogonality constraint is explicitly
imposed on theuv l ,n&, at the minimum, theuv l ,n& are ortho-
normal and form a set of WF’s for the solid.5

In our calculation, we represent the functionsuv l ,n& on a
uniform cubic real-space mesh with spacingh in each direc-
tion r i jk5( ih, jh,kh), wherei , j ,k are integers. Since it has
been shown that the WF’s of insulators can be chosen expo-
nentially localized, we imposêr i jk uv0,n& to be zero ifr i jk is
outside a cubic region of size 2aLR . The nonzero coeffi-
cients^r i jk uv0,n& are obtained by minimizing the total energy
Eq. ~1!. The imposition of localization is a variational ap-
proximation for the total energy which, at the minimum,
gives orbitals which are not exactly orthonormal.5 By in-
creasing the size of the localization region the variational
estimate of the energy improves and the deviation of the
orbitals from orthonormality is reduced. Therefore the orbit-
als converge to a set of WF’s for the system. Note that, if
localization is imposed, the sums overl appearing in Eq.~1!
and (k,l ) in Eq. ~2! become finite and determined by the set
( l ,m) of LR that overlap with all the LR (0,n) of the first
unit cell.

In order to computeEtot@$v%,h# we need to apply
2 1

2¹
21V̂NL to uv0,n&. We evaluate these operators directly
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on the real-space grid. For the nonlocal part of the Hamil-
tonian, we used the technique proposed by King-Smith
et al.12 to optimize the Kleinman-Bylander projectors13 for a
real-space evaluation of matrix elements. Thus, for each
atom in the positionts , the Kleinman-Bylander projector is
nonzero only on the mesh points contained in a sphere with
radiusRcut

s ~core region!. For the kinetic-energy operator we
evaluate the Laplacian with a finite differences formula as
Chelikowskyet al.14 which delocalizes the orbital only up to
M points in each direction, whereM is the degree of the
expansion. Once the size of the LR’saLR and of the core
regionsRcut

s have been fixed,̂ r u2 1
2¹

21V̂NLuv0,n& will be
zero outside a cube with size 2(aLR1max$Mh,2Rcut

s %).
Since the chargeñ(r ) is periodic we evaluate it on all the
nodes of the real-space mesh within one unit cell and we
compute the Hartree energy by solving the Poisson equation
in the unit cell with a fast fourier transform~FFT!.

We applied our approach to crystalline Si and GaAs. The
Bravais lattice is fcc and the unit cell contains two atoms.
The electronic structure is described by four occupied orbit-
als. We considered four LR’s centered on the bonds connect-
ing one atom with its four nearest neighbors. We use norm-
conserving nonlocal pseudopotentials which have been

optimized withRcut54 a.u.15 Exchange and correlation ef-
fects are treated using the Perdew and Zunger’s
parametrization.16 The grid spacing has been chosen as
h5a/24, wherea is the size of the conventional cubic cell.
This grid corresponds to a PW cutoff of 54.0 Ry and 49.8 Ry
for the density in the case of Si and GaAs, respectively, if
one uses the experimental lattice constant. For the kinetic
energy we used a very conservative choice ofM , which was
set equal to 14. The free parameterh was fixed to 3.0 Ry and
4.0 Ry for Si and GaAs, respectively. The values of these
parameters are sufficient to give energies converged within a
few mRy for a given size of the LR. We compare the results
obtained with WF with those obtained using Bloch orbitals.
In this case we expand the Bloch orbitals in a PW basis with
cutoff of 48 Ry for Si and 56 Ry for GaAs, and we use 28
specialk points in the irreducible Brillouin zone. With these
parameters the error in the total energy is lower than 0.5
mRy.

In Fig. 1 we show the convergence of the total energy of

FIG. 1. Si:~a!: Total energy versus the sizeaLR of the LR’s.~b!:
Convergence of the charge density along the~111! direction. The
lines correspond to a Fourier Transform interpolation of the values
of the charge density on the nodes of the real-space mesh inside the
eight-atom cell~full circles!. aexp indicates the experimental lattice
constant (aexp510.26 a.u.!.

FIG. 2. GaAs: Wannier function^r uw0,1& centered on
b0,15a/8(1,1,1) along ther5x(1,1,1) direction. Full circles corre-
spond to the values of this WF on the nodes of the real-space mesh
in this direction. The lines correspond to a Fourier interpolation.

TABLE I. Si: Error @DEtot5Etot(aLR)2Etot(`)# in the total en-
ergy, lattice constant (a0), bulk modulus (B0), and frequency of the
zone-center transverse optical phonon (vTO) for different sizes of
localization (aLR). The numbers in square brackets in the column
for (aLR) correspond to the number of atoms inside each LR. The
data foraLR5` are the results obtained with a standard PW code
using Bloch orbitals.

aLR (h) DEtot ~mRy! a0 ~a.u.! B0 ~kbar! vTO ~cm21)

14 @8# 180.7 10.47 921 594
19 @26# 65.7 10.29 944 543
24 @64# 27.8 10.24 953 520
34 @216# 5.4 10.21 951
43 @342# 1.5
` 0 10.20 941 517
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Si computed with our method for different sizes of localiza-
tion aLR and compare the results with the exact value ob-
tained by the conventional diagonalization of the Hamil-
tonian using Bloch orbitals. The figure shows that the error
in the localization is 5 mRy if the LR contains more than
216 atoms. In this case the error due to the localization is
comparable to the error introduced by the use of a real-space
grid.

In order to measure the deviation of the approximate
WF’s from orthonormality, we can consider the quantity
DN5Nel2Ñ52( l ,m,n(d l ,0dn,m2^v0,nuv l ,m&)2. In silicon,
increasing the size of the LR’s fromaLR514h to
aLR543h, DN decreases from 2.731023 to 6.331025. In
Fig. 2 we show the electronic charge density of silicon com-
puted along the (111) direction. The charge is converged
within 0.1% withaLR529h.

In Table I we show the total energy, the lattice constant,
the bulk modulus and the frequency of the zone-center opti-
cal phonon as a functionaLR for silicon. The convergence of
the theoretical lattice constant is very rapid, the error being
less than 1% withaLR519h. With this size of the LR the
computed bulk modulus is within 10 kbar from the con-
verged value. The frequency of the zone-center transverse
optical phonon is converged to 0.6% foraLR524h ~we used
here the experimental lattice constanta510.26 a.u.!.

In silicon the macroscopic polarization and its derivative
with respect to the atomic displacements, the Born effective
charges are both zero. We computed this polarization per
unit cell using the equation:

Ptot522(
n

(
l ,m

Qn,m
0,l ^v0,nur uv l ,m&1Pions, ~3!

where the presence of the matrixQn,m
0,l accounts for the ap-

proximate orthogonality of the orbitals.6 Here Pions is the
ionic contribution to the macroscopic polarization. We have
verified that the total polarization of Si is zero~modulus a
quantum equal toRl). The accuracy of this zero depends on
the degree of orthogonality of the WF’s. With our param-
eters, we find a value ofuPtotu51.231022 a.u. for
aLR514h and 3.631024 a.u. foraLR543h.

The results for GaAs are reported in Table II. Table II
shows a convergence with respect toaLR of the computed

physical properties similar to that of Si. GaAs is a polar
semiconductor with nonzero effective charges. Using the WF
we computed the effective charges by finite differentiation of
the macroscopic polarization with respect to the atomic dis-
placements. The convergence of the effective charges with
respect to the sizes of the LR’s is shown in Table II, where
for comparison we also report the results obtained with
Bloch orbitals and linear response.17 We note that when the
size of the LR’s is equal to 29h the effective charges ob-
tained by displacing As or Ga are equal and opposite in sign
within 0.18, and, in a linear-response calculation, this accu-
racy is reached with a Brillouin zone sampling of 10k
points.

Finally, in Fig. 2 we show one example of Wannier-like
orbitals for GaAs along the (1,1,1) direction. The WF’s cor-
responding to two different LR’s are displayed. In both cases
the Wannier-like orbitals are well localized around the bond
center, and the center of each WF is displaced towards the
arsenic atom.

In conclusion, we have presented a real-space, self-
consistent computation of the WF’s of Si and GaAs. The
scheme provides approximate WF’s which are constrained to
be zero outside a cubic region. We showed that it is possible,
by using sufficiently large LR, to extract from these WF’s
the structural and dynamical properties of Si and GaAs, with
an accuracy comparable to the standardab initio methods.
These results can have important implications in the future
developments ofab initio, order-N methods based on Wan-
nier orbitals. Furthermore, we showed that the approximate
WF’s can give a good estimate of the electronic polarization
in zero electric field and of its derivatives with respect to
atomic displacements. The ability of these approximate
WF’s to describe the electronic structure of a solid in an
external electric field is currently investigated.

We gratefully acknowledge A. Pasquarello and R. Resta
for useful discussions. This work was supported by the Swiss
National Science Foundation under Grant No. 20-39528.93,
by the U.S. National Science Foundation~NSF! under Grant
No. DMR-9120269, and by the Materials Sciences Division
of the U.S. Department of Energy under Contract No. DE-
AC03-76SF00098.

TABLE II. GaAs: Error @DEtot5Etot(aLR)2Etot(`)# in the total energy, lattice constant (a0), bulk
modulus (B0), and frequency of the zone-center optical phonon (vTO) for different sizes of LR’saLR . The
numbers in square brackets in the column for (aLR) correspond to the number of atoms inside each LR. Born
effective charges (ZAs* ), (ZGa* ) for As and Ga atoms, respectively. The data foraLR5` are the results
obtained with a standard PW code using Bloch orbitals, and a linear-response approach for the effective
charges.

aLR (h) DEtot ~mRy! a0 ~a.u.! B0 ~kbar! vTO ~cm21) ZAs* ZGa*

19 @26# 63.4 10.55 792 277 2.08 22.28
24 @64# 26.7 10.50 807 269 1.96 22.21
29 @126# 11.9 10.48 804 260 2.02 22.20
34 @216# 4.7 10.48 794 259
` 0 10.48 760 268 2.17 22.34
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