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We present a self-consistent, real-space calculation of the Wannier functions of Si and GaAs within density-
functional theory. We minimize the total-energy functional with respect to orbitals which behave as Wannier
functions under crystal translations and, at the minimum, are orthogonal. The Wannier functions are used to
calculate the total energy, lattice constant, bulk modulus, and the frequency of the zone-center TO phonon of
the two semiconductors with the accuracy requiredlninitio calculations. Furthermore, the centers of the
Wannier functions are used to compute the macroscopic polarization of Si and GaAs in zero electric field. The
effective charges of GaAs, obtained by finite differentiation of the polarization, agree with the results of
linear-response theorjS0163-18207)51504-9

Since their introduction in 1937, the Wannier functibns very promising way to study the electronic properties of a
(WF’s) have played an important role in the theoretical studysolid in the presence of a macroscopic electric ffeld.
of the properties of periodic solidsvery recently they have For these reasons, it is now important to devedbgnitio
been one of the main ingredients of a novel theory of themethods to compute the approximate WF's of a crystal, to
electronic polarization in terms of a Berry phdshotwith- ~ study their properties as a function of the LR, and to show in
standing, in computational applications, the representation diractice that using WF's it is possible to extract structural
the electronic wave functions with Bloch orbitals is the @1d _electrqnic properties_ of materials as accurate as those
method of choice. In fact, for periodic systems, the BlochOPt&ined with Bloch functions.

theorem allows us to exploit the translational invariance Oft Thfe WFt.S areHreIated toththetBIocfh fun(i_tlon_s b# z?“unltary
the solid, and to restrict the problem to one unit cell. The ranstormation. However, this transiormation 1S nighly non-

properties of the infinite solid are recovered with an integralunlque because the Bloch functions are determined only up

the Brilloui hich b imated with to a multiplicative phase factor which introduces a large am-
gxﬁg sjm riflouin zone, which can be approximated wi abiguity in the localization properties of the resulting WF's.

) o i .. For one-dimensional periodic solids, with a finite gap, it has
The WF's extend in principle all over the solid, and it is peen shown analytically that an appropriate choice of the
possible to compute only approximate WF's which are conphases of the Bloch functions leads to WF’s which decay
strained to be zero outside a localization regi@®R). In  exponentially in spacé.n a real solid, band crossing and
recent years, these approximate WF's turned out to be a kgyhase freedom make the problem of localization particularly
concept in the development of electronic-structure methodhard. A possible approach in this direction has been recently
whose computational cost scales linearly with the systendliscussed by Sporkmaet al® Although they obtained rea-
size*® Furthermore these Wannier-like functions provide asonably localized WF’s also for fcc transition metals, they
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did not test the accuracy of their functions against any physiebtained using a set of WF'sw, ), wheren is the band

cal properties. index, andl indicates the Bravais lattice vect®,. The
Several years ago, W. Kohn proposed to compute th&VF's are orthonormal anflv, ,,) is obtained by translating
WF'’s of solids by minimizing the total energy in a varia- the function centered at the origin byR,, i.e.,

tional scheme where the trial functions were localized. W, ) =Tg |Wop).
However, from a computational point of view the orthogo- - L
nality constraint was a major problem and a few numericaLe
experiments have been performed along these fheswa-
days, after several advances towards an oktlenethod for
electronic structure calculations, it is simpler to build an
electronic structure code entirely based on WF’s. One ex
ample is presented in this work.

The WF’s are not unique: their shape and localization in
al space are arbitrary. However the physical quantities
computed from WF’s do not depend on their shape. In par-
ticular the electronic contribution to the macroscopic polar-
ization per unit cell has a very compact expression in terms
of WF's 2 i.e., Pg= — 2= (W, r|Wo,). This expression can

be used to compute the Born effective charges which are the

”? the framewor_k of density-functional theor@:_)FT), derivative of the polarization with respect to atomic displace-
Galli and Parrinell$ introduced nonorthogonal localized or- ments in zero electric field. Using WF's this quantity is im-

bitals to minimize the total energy and to obtain the elecynqiately available from a finite numerical differentiation.

tronic ground state. In Ref. 5, a total-energy functional was |, Refs. 5 and 6 it has been shown that WF’s for a solid

proposed, which is minimized by orthogonal orbitals and has.a pe obtained directly by minimizing the following func-
the same minimum as the standard total-energy functionajjq,4)-

Within a tight-binding formalism, this energy functional has
been used to obtain almost orthogonal localized orbitals R
which reproduce the ground-state properties of silicon and Etot[{v},n]ZE > 2Qg;|m<vo’n|—%V2+VN|_|U|’m>
carbon. nohm

In this work we implement this functional in a self- +F[R]+ 7(N |—N) 1)
consistent scheme and we test extensively the practical pos- € ’
sibility to describe with Wannier functions the structural, Wherngv'mzz 81 08nm—{Vonlv1 m)» N is the integral over
electronic, and dielectric properties of materials at the levepne unit cell of the charge densifi(r) defined as
of accuracy obtained with Bloch wave functions. Focusing
on small unit cell systems we can use very large LR and _
check the convergence of the physical properties to the exact AN =2 > 2Q8 vkl ){rlv)m, 2
ground state. At variance with the approach of Refs. 4 and 5 ko hm

we use expli_ci_tly_ th<=T translational properties of_the WF’S\*/NL is the nonlocal part of the pseudopotential &fd] is
during the minimization of the total-energy functiofiaht  he sum of the local, Hartree and exchange-correlation ener-
the minimum, the orbitals are almost orthogonal and are ies. 7 is an energy parameter which is fixed in such a way

good approximation of a set of WF's for the system. We(, pe higher of the highest occupied eigenvalue. The func-
study two crystals: silicon and gallium arsenide. We usg;ynq v, ) are obtained by translatingvgy,), i.e.,

DFT in the local-density approximatidhDA ), and describe A .
the atoms with norm-conserving pseudopotentials. For eac|}]f'«”>_TR||U0’“> and therefore they do not add any addi-

system we obtain the total energy, the lattice constant, théonal degrees of freedom. The chamyg) is periodic in the
bulk modulus, and the frequency of the zone-center transdnit cell. Although no orthogqn_allty constraint is explicitly
verse optical phonon and we study their dependence on tHEP0sed on thgv; ), at the minimum, thev, ,) are ortho-
size of the LR. LR’s containing up to 342 atoms for Si andnormal and form a set of WF's for the sofid.

216 atoms GaAs are considered, and our results are com- !N our calculation, we represent the functidns,) on a
pared with converged values obtained with a plane-wavéiniform cubic real-space mesh with spacimin each direc-
(PW) pseudopotential code based on Bloch orbitals. Weion rijx=(ih,jh,kh), wherei,j,k are integers. Since it has
show that the error associated to the localization can be mad¥en shown that the WF’s of insulators can be chosen expo-
lower than the errors usually associated to the use of LDA opentially localized, we imposéij«|vo,) to be zero ifr; is
pseudopotentials. We also address the ability of the approxRutside a cubic region of sizea2z. The nonzero coeffi-
mate WF'’s to describe the macroscopic polarization of semiCients(rij|vo,,) are obtained by minimizing the total energy
conductors in zero electric field by computing the Born ef-Ed. (1). The imposition of localization is a variational ap-
fective charges of GaAs. We show that the effective chargeBroximation for the total energy which, at the minimum,
extracted from our approximate WF’s are in good agreemerf§ives orbitals which are not exactly orthonormagy in-

with those obtained with a linear-response approach basedeasing the size of the localization region the variational
on Bloch functions. estimate of the energy improves and the deviation of the

A system of N interacting electrons described in the orbitals from orthonormality is reduced. Therefore the orbit-
framework of DFT-LDA, can be studied by introducing &ls converge to a set of WF's for the system. Note that, if
N/2 orbitals which describe an auxiliary system of noninter-localization is imposed, the sums oveappearing in Eq(1)
acting electrond! In a periodic solid, the Bloch theorem and k,!) in Eqg. (2) become finite and determined by the set
allows to label these states withkavector in the first Bril-  (I.m) of LR that overlap with all the LR (@) of the first
louin zone and a band index In insulators the number of unit cell.
occupied bands is one half the number of electidgscon- In order to computeE,{{v} 7] we need to apply
tained in one unit cell. An equivalent representation can be- 2V2+V,, to lvony. We evaluate these operators directly
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= 0.050 1 spond to the values of this WF on the nodes of the real-space mesh
‘E in this direction. The lines correspond to a Fourier interpolation.
0.025
optimized with R.,=4 a.u*® Exchange and correlation ef-
NP, fects are treated using the Perdew and Zunger's
0.000 +———" T T parametrizatiot® The grid spacing has been chosen as
0.00 025 0.50 0.75 1.00 1.25 1.50 h=a/24, wherea is the size of the conventional cubic cell.
r/aexp This grid corresponds to a PW cutoff of 54.0 Ry and 49.8 Ry

for the density in the case of Si and GaAs, respectively, if
FIG. 1. Si:(a): Total energy versus the sizgg of the LR’s.(b):  one uses the experimental lattice constant. For the kinetic

Convergence of the charge density along th&l) direction. The  energy we used a very conservative choicé/lgfwhich was
lines correspond to a Fourier Transform interpolation of the valueset equal to 14. The free parametewas fixed to 3.0 Ry and
of the charge density on the nodes of the real-space mesh inside theg Ry for Si and GaAs, respectively. The values of these
eight-atom cell(full circles). a, indicates the experimental lattice parameters are sufficient to give energies converged within a
constant gep=10.26 a.u. few mRy for a given size of the LR. We compare the results

obtained with WF with those obtained using Bloch orbitals.
on the real-space grid. For the nonlocal part of the Hamildn this case we expand the Bloch orbitals in a PW basis with
tonian, we used the technique proposed by King-Smitteutoff of 48 Ry for Si and 56 Ry for GaAs, and we use 28
et al'? to optimize the Kleinman-Bylander projectbtdor a  specialk points in the irreducible Brillouin zone. With these
real-space evaluation of matrix elements. Thus, for eaclparameters the error in the total energy is lower than 0.5
atom in the positionr, the Kleinman-Bylander projector is MRY.
nonzero only on the mesh points contained in a sphere with In Fig. 1 we show the convergence of the total energy of
radiusRg,; (core region. For the kinetic-energy operator we
evaluate the Laplacian with a finite differences formula as TABLE I. Si: Error [ AE = Ex(a.r) — Ei(*)] in the total en-
Chelikowskyet al1* which delocalizes the orbital only up to ergy, lattice constantag), bulk modulus By), and frequency of the
M points in each direction, wheril is the degree of the zone-center transverse optical phonas4) for different sizes of
expansion. Once the size of the LRagg and of the core localization @ g). The numbers in square brackets in the column

regionsRS,, have been fixed(r|— %V2+\7NL|UO,n> will be for (a ) correspond to the number of atoms inside each LR. The

cut _ . .
sero outside a cube with size &,_(q+max{Mh,2R§u,}). S;tsgfcgl?)é?‘ OO:bﬁlglasthe results obtained with a standard PW code

Since the charg@(r) is periodic we evaluate it on all the

nodes of the real-space mesh within one uni_t cell and W& o (h)  AEg (MRY) a,(au) Bp(kban wro (cm™Y)

compute the Hartree energy by solving the Poisson equation

in the unit cell with a fast fourier transforigFFT). 1418] 180.7 10.47 921 594
We applied our approach to crystalline Si and GaAs. Thel9[26] 65.7 10.29 944 543

Bravais lattice is fcc and the unit cell contains two atoms.24[64] 27.8 10.24 953 520

The electronic structure is described by four occupied orbit34 [216] 5.4 10.21 951

als. We considered four LR’s centered on the bonds connect3 [347] 15

ing one atom with its four nearest neighbors. We use norme 0 10.20 941 517

conserving nonlocal pseudopotentials which have been
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TABLE Il. GaAs: Error [AE;=En(ar) —Eiw()] in the total energy, lattice constanay, bulk
modulus 8,), and frequency of the zone-center optical phonerd) for different sizes of LR'sa g . The
numbers in square brackets in the column farg) correspond to the number of atoms inside each LR. Born
effective chargesZy,), (Z&,) for As and Ga atoms, respectively. The data fgr=c are the results
obtained with a standard PW code using Bloch orbitals, and a linear-response approach for the effective

charges.

ar (h) AE;y (MRYy) ap (a.u) Bo (kban wto (em™) Z3s Z%a
19[26] 63.4 10.55 792 277 2.08 —2.28
24 [64] 26.7 10.50 807 269 1.96 -2.21
29126 11.9 10.48 804 260 2.02 —-2.20
34[216] 4.7 10.48 794 259

o0 0 10.48 760 268 2.17 —-2.34

Si computed with our method for different sizes of localiza- physical properties similar to that of Si. GaAs is a polar
tion a g and compare the results with the exact value ob-semiconductor with nonzero effective charges. Using the WF
tained by the conventional diagonalization of the Hamil-we computed the effective charges by finite differentiation of
tonian using Bloch orbitals. The figure shows that the errothe macroscopic polarization with respect to the atomic dis-
in the localization is 5 mRy if the LR contains more than placements. The convergence of the effective charges with
216 atoms. In this case the error due to the localization i$espect to the sizes of the LR’s is shown in Table II, where
cqmparable to the error introduced by the use of a real-spagg, comparison we also report the results obtained with
grid. o _ Bloch orbitals and linear responseWe note that when the

lf‘ order to measure the deviation Of. the approximateg;, o of the LR’s is equal to 20the effective charges ob-
WFs from_orthonormality, we can consz|der the. guantlty tained by displacing As or Ga are equal and opposite in sign
AN=Ng=N=2% 1 n(81,00n,m = (vonlvim)*. In silicon, \uin 0718 and, in a linear-response calculation, this accu-

increasing the size of the LR’s froma g=14h ; : I .
a =43, AN decreases from 27102 to 6.3<10°5. In Li?zt;s reached with a Brillouin zone sampling of k0

Fig. 2 we show the electronic charge density of silicon com- Finally, in Fig. 2 we show one example of Wannier-like

I he (111) direction. The ch i . oo
\F/)vlijttﬁi?] gig}g]v}/itﬁ ;LR:)zgldjlrectlon € charge 1 converge%rbltals for GaAs along the (1,1,1) direction. The WF'’s cor-

In Table | we show the total energy, the lattice constant’€SPONding to two different LR's are displayed. In both cases

the bulk modulus and the frequency of the zone-center Optit_he Wannier-like orbitals are well localized around the bond

cal phonon as a functioa,  for silicon. The convergence of center, and the center of each WF is displaced towards the
the theoretical lattice constant is very rapid, the error beingifSenic atom.
less than 1% withe, g=1%h. With this size of the LR the In conclusion, we have presented a real-space, self-
computed bulk modulus is within 10 kbar from the con- consistent computation of the WF's of Si and GaAs. The
verged value. The frequency of the zone-center transversicheme provides approximate WF’s which are constrained to
optical phonon is converged to 0.6% fayz=24h (we used be zero outside a cubic region. We showed that it is possible,
here the experimental lattice constant 10.26 a.u. by using sufficiently large LR, to extract from these WF's
In silicon the macroscopic polarization and its derivativethe structural and dynamical properties of Si and GaAs, with
with respect to the atomic displacements, the Born effectivaan accuracy comparable to the standaldinitio methods.
charges are both zero. We computed this polarization peThese results can have important implications in the future
unit cell using the equation: developments ofib initio, orderN methods based on Wan-
nier orbitals. Furthermore, we showed that the approximate
- o/ WF's can give a good estimate of the electronic polarization
Piot= —22 ;n Qnm(onl1v1,m)+ Pionss ®) in zero electric field and of its derivatives with respect to
atomic displacements. The ability of these approximate
where the presence of the mat(D{fj'm accounts for the ap- WF’s to describe the electronic structure of a solid in an
proximate orthogonality of the orbitafsHere P, is the  external electric field is currently investigated.
ionic contribution to the macroscopic polarization. We have
verified that the total polarization of Si is zefmodulus a We gratefully acknowledge A. Pasquarello and R. Resta
quantum equal t&,). The accuracy of this zero depends on for useful discussions. This work was supported by the Swiss
the degree of orthogonality of the WF’s. With our param-National Science Foundation under Grant No. 20-39528.93,
eters, we find a value of|P|=1.2x10"2 a.u. for by the U.S. National Science FoundatiSF) under Grant
a_,r=14h and 3.6<10™* a.u. fora,g=43. No. DMR-9120269, and by the Materials Sciences Division
The results for GaAs are reported in Table Il. Table Il of the U.S. Department of Energy under Contract No. DE-
shows a convergence with respectdg of the computed AC03-76SF00098.
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