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We study a system composed of two thin crossed lamellar gratings, with lamellae composed of a Drude
metal. We show that such a system can yield striking behavior for wavelengths of electromagnetic radiation
much longer than the grating period, with reflectance, transmittance, and absorptance being independent of
wavelength. We thus present periodic models that can duplicate the behavior of thin critical metallic films
while having a much simpler and more practical geometry than they.@S0163-1829~97!52524-0#

Thin metallic films can readily be made of metals like
gold and silver that display very striking optical behavior:
the reflectance, transmittance, and absorptance of the films
are practically independent of wavelength over a spectral
range from the end of the visible to the far infrared.1–7 The
structure of such metallic films is complicated, and has been
investigated in detail.1–7 It has been argued that the compli-
cated structure has in fact a fractal nature, and that this is an
essential feature of models that can successfully explain
wavelength independent optical behavior over such a wide
spectral range.

One interesting recent study8 has presented a model for
the wavelength independent behavior, based on a generalized
form of Ohm’s law, with Ohmic parameters replacing the
complex dielectric constants of the thin film constituents. As
well, a dynamic effective medium approximation is in-
volved.

In order to see whether the linkage between fractal geom-
etry and wavelength independent optical behavior is indeed
necessary, we have investigated a simple periodic structure
that is amenable to a perturbation analysis of a rigorous elec-
tromagnetic scattering formulation.9,10 The structure, shown
in Fig. 1, consists of two identical lamellar gratings, with
orthogonal periodicity axes, placed one behind the other with
a separationS. Each lamellar grating has segments com-
posed of alternately a dielectric with constant equal to that of
the background material~«151! and a metal whose complex
dielectric constant is conveniently represented as a power
law:

«25 i «̃k2p, ~1!

where«̃ is a constant of proportionality that characterizes the
long wavelength behavior of the metal in question, andk
52p/l is the wave number of the radiation impinging nor-
mally on the crossed grating. Such a power law accurately
models the behavior of metals like gold, silver, and alumi-
num in the midinfrared and beyond. In fact, such metals have
the exponentp close to unity and the imaginary part of the
dielectric constant much larger than the real part; they are
called Drude metals.

A rigorous modal method has been elaborated to deal
with the diffraction by lamellar gratings.11,12The method re-
lies on solving a transcendental equation to find the propa-
gation constantm of the modes along thez axis:
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where b i
25k2« i2m2 ( i51,2) describes the spatial varia-

tions of the modes along thex axis for ~say! grating 1 in the
dielectric and metallic regions, respectively. The quantityf
is polarization dependent: for the case where the incident
electric field is along they axis ~Ei polarization!, f51,
while for the other principal polarization (H i), f5«2 /«1.
Expression~2! is in fact a generalization to electromagnetic
theory of the fundamental equation of the well-known
Kronig-Penney model13 of solid state physics.

FIG. 1. The geometry of a crossed lamellar grating.
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The diffraction properties of lamellar gratings, when the
incident radiation has a wavelength much in excess of the
grating periodd, are dominated by the dispersion behavior of
the lowest or acoustic mode~see, for example Ref. 14!. An
asymptotic analysis of Eq.~2! shows that theEi dispersion
relation is to leading order:

m25k2«o , where «o5(
i
gi8« i . ~3!

Here, «o is the ordinary dielectric constant of the grating,
wheregi85gi /d, and the sum runs over the two species mak-
ing up the grating. In fact, this equation generalizes naturally
to ann species lamellar grating.

For H i polarization, the dispersion equation is

m25k2«x , with «x
215(

i
gi8/« i , ~4!

where«x is the extraordinary dielectric constant of the grat-
ing. Equations~3! and~4! suggest the lamellar grating 1 can
be replaced by a uniaxial crystal at long wavelengths.9,15–17

Given the dielectric constant«2 has magnitude far larger
than unity, we have

«x'1/g18 and «o' ig28«̃k
2p. ~5!

In consequence,m for the case of the acoustic band inH i
polarization is always a linear function ofk, while for Ei
polarization the acoustic band varies in form according to the
spectral indexp, in a way governed by the equation

mo5k12p/2Aig28«̃. ~6!

Note that, asp increases, the acoustic band becomes increas-
ingly steep neark50, until, whenp52 the acoustic band is
lost entirely as the lowest band tends to a nonzero value at
k50. In fact, for all values ofp>2, the lowest branch of the
dispersion relation approaches that appropriate to a perfectly
conducting lamellar grating, so that the results of the diffrac-
tion by lamellar gratings withp>2 are for long wavelengths
identical to those of perfectly conducting gratings inH i po-
larization.

In Fig. 2 we display the dispersion diagram for the seven
lowest bands resulting from the solution of Eq.~2! for a
lamellar grating with alternating air and silver elements.
Note that the values ofumou have been scaled by
K52p/d, so that ask tends to zero, all the higher bands
tend to integer values, while the acoustic band is well repre-
sented by estimate~6!.

Given the dispersion relation for the lowest mode and the
structure of the corresponding modal fields, we can solve the
diffraction problem by an individual grating to leading order.
We find forEi polarization that the reflection and transmis-
sion coefficients are, respectively,
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2YE/2

11YE/2
, tE'

1

11YE/2
. ~7!

For the case ofH i polarization, the corresponding results are

r H'
ikh1YH/2

11YH/2
, tH'

1

11YH/2
, ~8!

where h is the thickness of the grating~see Fig. 1!. The
grating admittances18 for the two polarizations are given by

YE'2 ikh«o , YH'2 ikh~11«x!. ~9!

Note that, using Eq.~5!, YH is of orderk, as isr H , while
tH is, to leading order, unity.

It is interesting that Eqs.~7!–~9! resemble the expressions
~3.6! of Sarychevet al.8 However, our derivation is more
general, being based on a power law variation for the com-
plex dielectric constant, while Sarychevet al.8 express their
answer in terms of the long wavelength conductivitysm .

The analysis of the energy properties of the composite
structure of Fig. 1 requires the use of a coherent ray tracing
argument, in which the diffraction properties of each grating
are characterized by scattering matrices. In the case of long
wavelengths, much greater than either the period of the grat-
ing or the separationS, evanescent coupling can be neglected
and the problem can be solved using only the specular or
undiffracted orders~in both reflection and transmission!
whose phase change across the gap is negligible. We can
derive expressions for the transverse reflected and transmit-
ted fields,r andt, in terms of the corresponding components
of the incident field vectorI . For example

t5r21Tr~ I2Rr21Rr!21TI , ~10!

whereR5diag(rE , rH) andT5diag(tE , tH) denote the reflec-
tion and transmission scattering matrices, and wherer is an
orthogonal matrix that performs the field rotation needed to
be able to apply Eqs.~7!–~9! when dealing with fields inci-
dent on the second grating~which is rotated by 90° with

FIG. 2. The dispersion curves forEi polarization, for a single
lamellar grating withd50.5mm and with silver elements of width
g250.375mm. The dashed curve represents the acoustic band esti-
mated from Eq.~6!; the dispersion characteristics of this band con-
trol the long wavelength properties of the grating. The bands con-
verging to um0u/K51,2,3 as k approaches zero correspond to
nonpropagating orders in the grating.
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respect to the first!. This then yields the specular order re-
flection and transmission coefficients for the crossed lamellar
grating:

r 12'r E1
r HtE

2

12r Er H
'r E'tE21, ~11!

t12'
tEtH

12r Er H
'tE , ~12!

with both r 12 andt12, to leading order, being independent of
the polarization of the incident radiation.

From Eqs.~5!–~9!

YE5g28h«̃k12p, ~13!

so thatr 12 andt12 are independent of wavelength forl@d, if
and only if p51. Hence, wavelength-independent reflec-
tance, transmittance, and absorptance are achieved by incor-
porating Drude metals into structured systems. Ifp51, we
find the reflectanceR and transmittanceT are

R5uQu2T, T5u11Qu22, ~14!

whereQ5g28h«̃/2, while the absorptanceA512R2T. We
maximize the absorptance if the quantity«̃ is real, and we
find the optimal value occurs whenQ51, in which caseA
5 1

2 , T5R5 1
4 . This is in fact the highest possible absorp-

tance that can be achieved by a structure much thinner than
the free space wavelengthl. Sarychevet al.8 have com-
mented on this as the optimal value, but in their system it
was achieved only for area fractions of metal near 50%. The
system of Fig. 1 can be tuned to achieve the optimum for any
value ofg285g2 /d by varyingh for a given«̃ ~or metal!.

Experimental studies of the silver and gold films tend to
give wavelength-independent absorptance values around
0.40, and reflectances and transmittances both around 0.30
for all wavelengths larger than approximately 1mm, and for
metal area fractions in the range 60–70 %. One experimental
study6 of a thin silver film used the measured reflectances
and transmittances to deduce effective refractive index val-
ues as a function of wavelength. In keeping with Eq.~6! for
p51, both the real and imaginary parts of the refractive
index were proportional toAl, with the imaginary part being
slightly higher than the real part~in keeping with absorp-
tance values less than the optimal 0.50).

In Fig. 3 we display theoretical curves calculated for a
particular case of the structure of Fig. 1. A rigorous diffrac-
tion formulation10 was used to calculate the properties of a
single lamellar grating, and then the coherent ray tracing
method leading to Eqs.~11! and~12! was used to obtain the
reflectance, transmittance, and absorptance for unpolarized
light of the crossed lamellar grating. The thickness of the
grating was obtained by setting the quantityQ equal to unity.
The absorptance in Fig. 3 settles in to its long wavelength
limit of 0.50 for l.40 mm.

In order to show the variety of periodic structures that
may exhibit wavelength-independent behavior, we have used
a rigorous diffraction formulation for biperiodic gratings19,20

to study the diffraction by thin structures in aluminum. Both
a monolayer of spheres placed in square array and a square
array of air holes in an aluminum sheet have been modelled.
We have used the actual optical constants for aluminum21 in
the wavelength range up to 30mm, and a Drude fit for the
data between 20 and 30mm as a means of extrapolation
beyond the tabulated range. For each structure, we have been
able to find a value of radius givingA50.50,R5T50.25,

FIG. 3. The reflectanceR, transmittanceT, and absorptance
A, for normally incident radiation, as a function of wavelength
(l), for the structure of Fig. 1 withd50.5mm, silver elements of
width g250.375mm and thicknessh50.560 nm, and separationS
52d.

FIG. 4. The reflectanceR, transmittanceT, and absorptance
A, for normally incident radiation, as a function of wavelengthl,
for a monolayer of aluminum spheres with radius 0.1580mm and
period 0.5mm along bothx andy axes.
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independent of wavelength. For example, in Fig. 4 we show
reflectance, transmittance, and absorptance as a function of
wavelength for a monolayer of spheres with radius 0.1580
mm. Both reflectance and transmittance vary strongly in the
resonance region around the grid period and up to around 5
mm, before settling in to their long wavelength values of
0.25. We have also shown that for an angle of incidence of
60° the optimal radius becomes somewhat polarization de-
pendent~0.1534mm for TE waves, and 0.1632mm for TM
waves!.

Note that our results show that, once periodic systems
attain values ofR and T near 0.25, they remain thereafter
near these values. By contrast, the model of Sarychevet al.8

gives a plateau region in whichR andT are effectively con-
stant, after whichR decreases towards zero whileT increases
towards unity.

The studies reported here have shown the variety of thin
periodic systems that can yield wavelength-independent re-
flectance, transmittance, and absorptance, provided they are
composed of Drude metals. Periodic systems are not only

easier to model rigorously than random systems, but they are
also capable of providing reproducible and nonfragile de-
signs for possible applications.

One interesting difference between the results for periodic
systems presented here and experimental results of disor-
dered systems is that the latter revert to wavelength-
independent behavior much more rapidly than the former.
Typically, thin silver and gold films show this behavior from
around 1mm on, whereas the regular systems we have in-
vestigated do not exhibit it until around 40mm. Further the-
oretical and experimental studies will be needed to elucidate
the reasons for this, and we are preparing a detailed account
of them.
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