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We study the overlap of two different eigenfunctions as compared with self-overlap in the framework of an
infinite-dimensional version of the disordered tight-binding model. Despite a very sparse structure of the
eigenstates in the vicinity of the Anderson transition, their mutual overlap is still found to be of the same order
as self-overlap as long as the energy separation is smaller than a critical value. The latter fact explains the
robustness of the Wigner-Dyson level statistics everywhere in the phase of extended states. The same picture
is expected to hold for usuald-dimensional conductors, ensuring thesb form of the level repulsion at a critical
point. @S0163-1829~97!51724-3#

Recently, there has been considerable growth of interest
in constructing a unified picture of wave functions and
energy-level statistics for disordered conductors in the vicin-
ity of Anderson metal-insulator transition.1–12 Coming from
the metallic phase, a typical wave functionC i(r ) is extended
and covers all the sample volume randomly, but uniformly.
When the system approaches the point of the Anderson tran-
sition Ec , these extended eigenfunctions become less and
less homogeneous in space, showing regions with larger and
smaller amplitudes, and eventually forming a multifractal
structure in the vicinity ofEc .

To characterize the degree of nonhomogeneity quantita-
tively, it is convenient to use the inverse participation ratio
~IPR! I (E)5*dr a(r ,E), where

a~r ,E!5^uC i~r !u4&E[DK (
i

uC i~r !u4d~E2Ei !L , ~1!

D is the mean level spacing and the angular brackets stand
for the disorder averaging. For extended states this quantity
is inversely proportional to the system volume:
I (E)5C(E)L2d, with L andd standing for the system size
and spatial dimension, respectively. The coefficientC in this
relation measures a fraction of the system volume where
eigenfunction is appreciably nonzero. For random homoge-
neous statesC;1, whereas close to the mobility edgeE
5Ec it becomes large and diverges likeC(E)}uE2Ecu2m,
m.0,13 signaling an increasing sparsity of eigenfunctions.
Just at the mobility edge eigenfunctions occupy a vanishing
fraction of the system volume and IPR scales likeI (E)
}L2d1h,h.0. Such a behavior reflects fractal@actually,
multifractal ~Refs. 14, 2 and 4!# structure of critical eigen-
states. At last, in the insulating phase any eigenstate is con-
centrated in a domain of finite extensionj l , and IPR stays
finite in the limit of infinite system sizeL→`.

This transparent picture serves as a basis for a qualitative
understanding of spectral properties of disordered conduc-
tors. Indeed, as long as eigenstates are well extended they

overlap substantially, and corresponding energy levels repel
each other in the same way as do eigenvalues of large ran-
dom matrices studied by Wigner and Dyson. As a result, the
Wigner-Dyson~WD! statistics describes well the energy lev-
els in a good metal.15,16 In contrast, in the insulating phase,
different eigenfunctions corresponding to levels close in en-
ergy are localized far apart from one another, and their over-
lap is negligible. This is the reason for the absence of corre-
lations of energy levels in this regime—the so-called Poisson
statistics.

However, close to the transition point such a reasoning
should be used with caution. Naively one may expect that
sparse~multifractal in the critical point! eigenstates fail to
overlap, which would result in essential weakening of level
correlations close to the mobility edge and vanishing level
repulsion atE5Ec . However, a thorough investigation
shows1,3,5–9 that even at the mobility edge levels repel each
other strongly, though the entire statistics is different from
the WD one. One of the main purposes of the present paper
is to resolve this apparent contradiction. We will show that
critical eigenstates for nearby levels are strongly correlated,
and overlap well in spite of their sparse structure.

The overlap of two different eigenstatesC i andC j cor-
responding to energy separationuEi2Ej u5v can be charac-
terized by comparing the correlation function

s~r ,E,v!5^uC i~r !u2uC j~r !u2&uE,v

[D2R2
21~v!3K (

i , j
uC i~r !u2uC j~r !u2

3d~E2Ei !d~E1v2Ej !L ~2!

at vÞ0 with a(r ,E), the latter function playing in such a
context the role of the eigenfunction self-overlap. Here
R2(v) denotes the two-level correlation function
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R2~v!5D2K (
i j

d~E2Ei !d~E1v2Ej !L . ~3!

To study the functions(r,E,v) analytically, we consider an
exactly solvable model of the Anderson transition—the so-
called sparse random matrix~SRM! model.17,18 This model
deals with largeN3N matrices~real symmetric or Hermit-
ian!, whose entriesHi j are independent random variables
characterized by the probability distribution

P~Hi j !5~12p/N!d~Hi j !1~p/N!h~Hi j ! , ~4!

whereh(z)5h(2z) is any even distribution function having
finite second moment. The parameterp.0 has a meaning of
mean nonzero elements per row. Forp.1 the model de-
scribes a connected graph having locally a treelike structure
with random connectivity. On a larger scale there exist large
loops involving typically of the order of lnN sites. In the
limit N→` the influence of loops is negligible, and the
model belongs to the same universality class as disordered
tight-binding model on the infinite tree~Bethe lattice!. The
latter model was thoroughly investigated by various
methods,19,20 and shown to possess an Anderson transition.

Additional interest in the structure of eigenfunctions on
treelike structures is attributed to a recent paper.21 There the
problem of quasiparticle lifetime induced by Coulomb inter-
action in mesoscopic samples was mapped onto a disordered
treelike tight-binding model in Fock space, which is similar
to the Bethe lattice and SRM models and thus undergoes the
localization transition. The fact that in the vicinity of the
transition the corresponding extended eigenfunctions are ex-
tremely sparse made the authors of the paper21 conclude that
the level statistics differs from the WD one for such a re-
gime. However, such a conclusion would be at variance with
the results of an explicit calculation of the level-level corre-
lation function performed in the framework of the SRM
model,17 where it was shown thatR2(v) is given by the WD
form everywhere in the region of delocalized states up to the
transition pointE5Ec .

It is necessary to mention that the SRM model has some
considerable advantage when compared with the more con-
ventional Bethe lattice model. That is, quantities like the IPR
are not unambiguously defined in the Bethe lattice in the
phase of extended states. Indeed, they require a consideration
of a large but finite lattice to be well defined, and their lim-
iting behavior may depend crucially on the boundary condi-
tions imposed.22 In contrast, all sites of the SRM model are
essentially equivalent, and the model is free from boundary
problems. The general expression for the IPR was derived in
Ref. 18, and its critical behavior analyzed in Ref. 23.

Actually, the SRM model can be used to construct an
effective mean-field theory of Anderson localization23 valid
at d5`.24 Critical properties of such theories first discov-
ered on the level of nonlinears models25,26 turn out to be
quite peculiar. In particular, the coefficientC(E) diverges
close to the transition point likeC(uE2Ecu!Ec)
}exp(constuE2Ecu21/2),23 in contrast to the expected
power-law behavior for conventionald-dimensional systems.
The origin of such a critical dependence was explained in
Refs. 23 and 24, and stems from the fact thatC(E) is deter-
mined essentially by the ‘‘correlation volume’’V(j) ~i.e.,

the number of sites at a distance smaller than correlation
length j), which is exponentially large, V(j)
}exp( constj), for treelike structures, whereasV(j)}jd for
a d-dimensional lattice. Keeping this difference in mind, one
can translate all the results obtained in the framework ofd
5` models to their finite-dimensional counterparts.24

To calculate the overlap function defined in Eq.~2! we
follow Ref. 27 and use the identity relatinga(r ,E) and
s(r ,E,v) to advanced and retarded Green functions
GR,A(r ,E)5( i51

N @ uC i(r )u2/@E6 ih2Ei)# ;h→01:

2p2@D21a~r ,E!d~v!1D22R̃2~v!s~r ,E,v!#

5 Re@^GR~r ,E!GA~r ,E1v!2GR~r ,E!GR~r ,E1v!&# ,

~5!

whereR̃2(v) is the nonsingular part of the level-level corre-
lation function:R2(v)5R̃2(v)1d(v/D). Let us consider
for definiteness the ensemble of the real symmetric SRM,
corresponding to systems with unbroken time-reversal in-
variance. For any site indexr51, . . . ,N, we introduce one
eight-component supervectorF†5(FR

† ,FA
†) consisting of

two four-component supervectorsFs
†5(fs,b1 ,fs,b2 ,fs, f* ,

2fs, f), where indicess5R,A and b, f are used to label
advanced-retarded and boson-fermion subspaces, respec-
tively. The ensemble-averaged products^GsGs8& for the
RSM model in the limitN@1 can be extracted from Ref. 17
and Appendix D of Ref. 23 and is given by

^Gs~r ,E!Gs8~r ,E1v!&

5~12 4
3ds,s8!E DQ^fs,b1fs,b1fs8,b1fs8,b1&gT

3expS iprvN

4
StrQL D ;

^•••&gT5E dF~••• !expF i2EF†LF1pgT~F!G . ~6!

The functiongT(F)[g0(F
†T†TF;F†LF) satisfies the in-

tegral equation

gT~C!5^@hF~F†LC!21#&gT , ~7!

wherehF(t)5*dz e2 i tzh(z) is the Fourier transform of the
distribution of nonzero elements of the SRM. The 838 su-
permatricesT satisfy the conditionT†LT5L, where L
5 diag(1,1,1,1,21,21,1,1), and belong to a graded coset
space whose explicit parametrization can be found in Refs.
15 and 28. The supermatricesQ are expressed in terms of
T asQ5T21LT. At last, the matrixL5 diag(1,1,1,1,21,
21,21,21), and the density of statesr is expressed
in terms of the solution of the equation Eq.~7! as
r(E)522g0x /(pB2), where B25*dz h(z)z2, g0x
5]g0(x,y)/]xux,y50 , x5F†F, and y5F†LF.

When deriving Eq.~6!, an evaluation of a functional in-
tegral by the saddle-point method has been employed; see
details in Refs. 17 and 23. An accurate consideration shows
that such a procedure is legitimate as long as~i! the matrix
sizeN ~playing in our model the role of the volume! is large
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enough@much larger than the coefficientC(E) determining
the size dependence of IPR, see above#; and ~ii ! the energy
differencev is small enough@much smaller thanC21(E)#.
ThoughC(E) is exponentially large near the transition point,
it depends on the energyE only, so that when we keepE
fixed and increase the system sizeN, the number of levels in
the intervalC21(E) becomes arbitrarily large, since the level
spacing scales as 1/N.

Expanding both sides of Eq.~7! overC, one can express
^fs,b1fs,b1fs8,b1fs8,b1&gT in terms of the matrixQ as

^fs,b1fs,b1fs,b1fs,b1&gT

5
4!

B4
F12 g0,xxQb1b1

ss Qb1b1
ss 1g0,xyQb1b1

ss 1g0,yyG ,

^fR,b1fR,b1fA,b1fA,b1&gT
~8!

52
4

B4
@g0,xx~Qb1b1

RR Qb1b1
AA 12Qb1b1

RA Qb1b1
AR !

1g0,xy~Qb1b1
RR Qb1b1

AA !1g0,yy# ,

where g0,xx5]2g0 /]x
2ux,y50 , g0,yy5]2g0 /]y

2ux,y50 , g0,xy
5]2g0 /]x]yux,y50 , andB45*dz h(z)z4. This allows us to
represent the right-hand side of Eq.~5! in the following
form:

2p2@D21a~r ,E!d~v!1D22R̃~v!s~r ,E,v!#

52
4

B4
g0xx Rê ~Qb1b1

RR Qb1b1
AA 12Qb1b1

RA Qb1b1
AR

2 1
2 @Qb1b1

RR Qb1b1
RR 1Qb1b1

AA Qb1b1
AA # !&Q , ~9!

where

^•••&Q5E dQ~••• !expS iprvN

4
StrQL D .

The integrals overQ matrices are the standard ones,15 yield-
ing

Rê Qb1b1
RR Qb1b1

AA &Q5122R2
~0!~v/D!,

^Qb1b1
RA Qb1b1

AR &Q52
2iD

p~v1 i0!
, ^Qb1b1

RR Qb1b1
RR &Q

5^Qb1b1
AA Qb1b1

AA &Q51 , ~10!

where R2
(0)(v/D) is the level correlation function in the

Gaussian orthogonal ensemble. Substituting this into Eq.~9!,
we finally find

s~r ,E,v!5 1
3 a~r ,E!5

1

N2

4g0,xx
p2r2B4

. ~11!

The coefficient13 in Eq. ~11! corresponds to the case of
unbroken time-reversal symmetry~orthogonal ensemble!.
For the unitary ensemble~broken time reversal symmetry!
the same consideration yields the coefficient1

2 instead, so
that the general relation reads

s~r ,E,v!5
b

b12
a~r ,E! , ~12!

whereb is the conventional symmetry parameter equal to
b51 (2) for the orthogonal~unitary! ensembles. This rela-
tion between the overlap of two different eigenfunctions
s(r ,E,v) and self-overlapa(r ,E) constitutes the main re-
sult of the present publication. It is valideverywherein the
phase of extended eigenstates, up to the mobility edge
E5Ec , provided the number of sites~the system volume!
exceeds the correlation volume. In particular, it is valid in
the critical regionuE2Ecu!Ec , where a typical eigenfunc-
tion is very sparse and self-overlap~hence the IPR! grows
like exp( constuE2Ecu21/2).23

Equation ~12! implies the following structure of eigen-
functions within an energy intervaldE5v,C21(E). Each
eigenstate can be represented as a productC i(r )
5c i(r )FE(r ). The functionFE(r ) is an eigenfunction en-
velope of ‘‘bumps and dips’’ which is smooth on a micro-
scopic scale comparable with the lattice constant. It is the
same for all eigenstates around energyE, reflects underlying
gross~multifractal! spatial structure, and governs the diver-
gence of self-overlap at the critical point. In contrast,c i(r )
is Gaussian white-noise component fluctuating in space on
the scale of the lattice constant. It fills in the ‘‘smooth’’
componentFE(r ) in an individual way for each eigenfunc-
tion, but is not critical, i.e., is not sensitive to the vicinity of
the Anderson transition. These Gaussian fluctuations are re-
sponsible for the factorb/(b12) ~which is the same as in
the corresponding Gaussian ensemble! in Eq. ~12!.

As was already mentioned, this picture is valid in the
energy windowdE;C21(E) around the energyE, the num-
ber of levels in this window being large asdE/D
;NC21(E)@1 in the thermodynamic limitN→`. These
states form a kind of Gaussian ensemble on a spatially non-
uniform ~multifractal for E→Ec! backgroundFE(r ). Since
the eigenfunction correlations are described by formula~12!,
which has exactly the same form as in the Gaussian en-
semble, it is not surprising that the level statistics has the
WD form everywhere in the extended phase.17

We believe on physical grounds that the same picture
should hold for a conventionald-dimensional conductor.
First of all, the general mechanism of the transition is the
same ind,` andd5` models. Furthermore, the sparsity
~multifractality! of eigenstates near the transition point takes
its extreme form ford5` models,24 so that, since strong
correlations~12! take place atd5` it would be very surpris-
ing if they do not hold at finited as well. Finally, Eq.
~12! was proven by an explicit calculation in the
weak-localization regime,27 where s(r,E,v)5 @b/(b
12)# a(r,E)5V22@11P(r,r)#, with V being the system
volume andP(r,r) the diffusion propagator.

ReplacingC(E) by thed-dimensional correlation volume
;jd, we conclude that, forE close toEc, Eq.~12! should be
valid for v,Dj , whereDj}1/j

d is the level spacing in the
correlation volume. For largerv, s(r,E,v) is expected to
decrease asv2h/d according to the scaling arguments,2,4,12

so that we finds(r,E,v)/a(r,E);(v/Dj)
2h/d, up to a nu-

merical coefficient of order of unity. Again, for any value of
the energyE in the delocalized phase, taking the system size
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L large enough,L@j, we have a large number of levels
dE/D;Dj /D}(L/j)d in the energy windowdE, where Eq.
~12! holds, so that the level correlation will be of the WD
form.

Finally, let us consider what happens when we go from
the critical regime (j large, butL@j) to the critical point
(j@L). For this purpose, let us keep the system sizeL
fixed and change the energy towardEc , so thatj increases.
When j is comparable to the system size,j;L, we have
Dj;D. This is the border of applicability of the above con-
sideration. Correspondingly, we find

s~r ,E,v!/a~r ,E!;1, v,D, ~13!

ands(r ,E,v)/a(r ,E);(v/D)2h/d for v.D. WhenE fur-
ther approachesEc , the correlation lengthj@L becomes
irrelevant, so that these results will hold in the critical point
(j5`). Of course, Eq.~13! is not sufficient to ensure the
WD statistics in the critical point, since there is only of order
of one level within its validity rangedE;D. Indeed, the
numerical simulations show that the level statistics on the
mobility edge is different from the WD one.1,3,5–7

However, Eq.~13! allows us to make an important con-
clusion concerning the behavior ofR2(v) at smallv,D, or,
what is essentially the same, the behavior of the nearest-
neighbor spacing distributionP(s), s5v/D, at s,1. For

this purpose, it is enough to consider only two neighboring
levels. Let their energy difference bev0;D. Let us now
perturb the system by a random potentialV(r ) with ^V(r )&
50 and^V(r )V(r 8)&5Gd(r2r 8). For the two-level system
this reduces to a 232 matrix $Vi j %,i , j51,2, with elements
Vi j5*ddr V(r )C i* (r )C j (r ). The crucial point is that the
variances of the diagonal and off-diagonal matrix elements
are, according to Eq.~13!, equal to each other up to a factor
of order of unity:

^V11
2 &/^uV12

2 u&5s~r ,E,v!/a~r ,E!;1 . ~14!

The distance between the perturbed levels is given by
v5@(V112V221v0)

21uV12u2#1/2. Choosing the amplitude
of the potential in such a way that the typical energy shift
V11;D, and using Eq.~14! and the standard symmetry con-
sideration, we immediately conclude that in the critical point
P(s).cbs

b for s!1 with a coefficientcb of order of unity,
in agreement with the numerical findings.3,5,7
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