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Strong eigenfunction correlations near the Anderson-localization transition
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We study the overlap of two different eigenfunctions as compared with self-overlap in the framework of an
infinite-dimensional version of the disordered tight-binding model. Despite a very sparse structure of the
eigenstates in the vicinity of the Anderson transition, their mutual overlap is still found to be of the same order
as self-overlap as long as the energy separation is smaller than a critical value. The latter fact explains the
robustness of the Wigner-Dyson level statistics everywhere in the phase of extended states. The same picture
is expected to hold for usudkrdimensional conductors, ensuring #feform of the level repulsion at a critical
point. [S0163-182807)51724-3

Recently, there has been considerable growth of interesiverlap substantially, and corresponding energy levels repel
in constructing a unified picture of wave functions andeach other in the same way as do eigenvalues of large ran-
energy-level statistics for disordered conductors in the vicindom matrices studied by Wigner and Dyson. As a result, the
ity of Anderson metal-insulator transitidin*?> Coming from  Wigner-Dyson(WD) statistics describes well the energy lev-
the metallic phase, a typical wave functigh(r) is extended els in a good metdf® In contrast, in the insulating phase,
and covers all the sample volume randomly, but uniformly.different eigenfunctions corresponding to levels close in en-
When the system approaches the point of the Anderson tramrgy are localized far apart from one another, and their over-
sition E;, these extended eigenfunctions become less anip is negligible. This is the reason for the absence of corre-
less homogeneous in space, showing regions with larger ardtions of energy levels in this regime—the so-called Poisson
smaller amplitudes, and eventually forming a multifractalstatistics.
structure in the vicinity ofe,.. However, close to the transition point such a reasoning

To characterize the degree of nonhomogeneity quantitashould be used with caution. Naively one may expect that
tively, it is convenient to use the inverse participation ratiosparse(multifractal in the critical point eigenstates fail to
(IPR) I(E)=fdr «(r,E), where overlap, which would result in essential weakening of level

correlations close to the mobility edge and vanishing level
" 4 repulsion atE=E.. However, a thorough investigation
a(r,B)=(¥i(n|*e=A EI [Wi(DI*S(E-E) ), (D showd35that even at the mobility edge levels repel each
other strongly, though the entire statistics is different from
A is the mean level spacing and the angular brackets startie WD one. One of the main purposes of the present paper
for the disorder averaging. For extended states this quantitig to resolve this apparent contradiction. We will show that
is inversely proportional to the system volume: critical eigenstates for nearby levels are strongly correlated,
I(E)=C(E)L ™9, with L andd standing for the system size and overlap well in spite of their sparse structure.
and spatial dimension, respectively. The coeffici@rih this The overlap of two different eigenstatds and V; cor-
relation measures a fraction of the system volume whergesponding to energy separatifi — Ej| = w can be charac-
eigenfunction is appreciably nonzero. For random homogeterized by comparing the correlation function
neous state€€~1, whereas close to the mobility edde
=E, it becomes large and diverges liIK{E)x|E—E|~*,
1013 signaling an increasing sparsity of eigenfunctions.
Just at the mobility edge eigenfunctions occupy a vanishing
fraction of the system volume and IPR scales liKE) EAszl(w)X<Z |Wi(n)[2[W(n)]?
xL~9%7 »>0. Such a behavior reflects fractpdctually, H
multifractal (Refs. 14, 2 and ¥ structure of critical eigen-
states. At last, in the insulating phase any eigenstate is con- X S(E—E;)o(E+ w—Ej)> 2
centrated in a domain of finite extensign, and IPR stays
finite in the limit of infinite system sizé — .

This transparent picture serves as a basis for a qualitativet o #0 with «(r,E), the latter function playing in such a
understanding of spectral properties of disordered condusontext the role of the eigenfunction self-overlap. Here
tors. Indeed, as long as eigenstates are well extended th&®s(w) denotes the two-level correlation function

o(r,E,0) =i ¥;(N*|e.0
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) the number of sites at a distance smaller than correlation

Ro(w)=A IE S(E—-E))d(E+w—E;j)). (3  length £), which is exponentially large, V(&)

! «exp( consté), for treelike structures, where®§ &) £9 for

To study the functionr(r,E, w) analytically, we consider an @d-dimensional lattice. Keeping this difference in mind, one
exactly solvable model of the Anderson transition—the so-can translate all the results obtained in the frameworkl of

called sparse random matri8RM) model'”'® This model =% models to their finite-dimensional counterpdfts.

deals with largeN x N matrices(real symmetric or Hermit- 10 calculate the overlap function defined in E@) we
ian), whose entriesH;; are independent random variables follow Ref. 27 and use the identity relating(r,E) and
characterized by the probability distribution o(r,E,w) to advanced and retarded Green functions

GRA(rE)=3/L [|Wi(r)|)[Exin—E;)];n—0":
P(Hij)=(1—p/N)S(H;j) + (p/N)h(H})) , (4)

27 A" a(r,E)8(w)+ A ?Ry(w)a(r,E,0)]

whereh(z) =h(—z) is any even distribution function having
finite second moment. The parameper 0 has a meaning of = RA(GH(r,E)GA(r,E+w)~GN(r,E)GX(r E+w))],
mean nonzero elements per row. Hor-1 the model de- (5)
scribes a connected graph having locally a treelike structure ~ . )
with random connectivity. On a larger scale there exist largaVhereRz(w) is the nonsingular part of the level-level corre-
loops involving typically of the order of N sites. In the lation function: Ry(w)=R,(w)+ é(w/A). Let us consider
limit N—o the influence of loops is negligible, and the for definiteness the ensemble of the real symmetric SRM,
model belongs to the same universality class as disorderegbrresponding to systems with unbroken time-reversal in-
tight-binding model on the infinite tre@ethe latticg. The  variance. For any site index=1,... N, we introduce one
latter model was thoroughly investigated by variouseight-component supervectab = (P ,QDL) consisting of
methods;>?and shown to possess an Anderson transition.two four-component supervecto! = (b b1, bo.v2, d% ¢,

Additional interest in the structure of eigenfunctions on-—¢, (), where indicess=R,A and b,f are used to label
treelike structures is attributed to a recent pe?ﬁé'mere the advanced-retarded and boson-fermion subspaces, respec-
problem of quasiparticle lifetime induced by Coulomb inter- tively. The ensemble-averaged produ¢@aGa'> for the

action in mesoscopic samples was mapped onto a disorderggsy) model in the limitN>1 can be extracted from Ref. 17
treelike tight-binding model in Fock space, which is similar ;g Appendix D of Ref. 23 and is given by

to the Bethe lattice and SRM models and thus undergoes the

localization transition. The fact that in the vicinity of the )gG"(r E)G” (r E+w))
transition the corresponding extended eigenfunctions are ex- ' ’
tremely sparse made the authors of the pdpmmnclude that

the level statistics differs from the WD one for such a re- =(1—‘3—‘5(,'(,,)f DQ(¢sb195,01P0" b1®0’ bi)gr
gime. However, such a conclusion would be at variance with

the results of an explicit calculation of the level-level corre- i TpwN

lation function performed in the framework of the SRM xexr{ 4 SUQA);

modell” where it was shown th&,(w) is given by the WD

form everywhere in the region of delocalized states up to the i
transition pointE=E.. <"'>9T=f dd)(---)exp{EECDTLCDvagT((I)) . ()
It is necessary to mention that the SRM model has some
considerable advantage when compared with the more coRthe functiong(®)=go(® T Td; P TLD) satisfies the in-
ventional Bethe lattice model. That is, quantities like the IPRiggra| equation
are not unambiguously defined in the Bethe lattice in the
phase of extended states. Indeed, they require a consideration gT(\p)=<[hF(cpTL\p) — 1]>9T , (7
of a large but finite lattice to be well defined, and their lim- _
iting behavior may depend crucially on the boundary condiwherehg(t)=fdz e "h(z) is the Fourier transform of the
tions imposec?.2 In contrast, all sites of the SRM model are distribution of nonzero elements of the SRM. Thg & su-
essentially equivalent, and the model is free from boundarpermatricesT satisfy the conditionT'LT=L, where L
problems. The general expression for the IPR was derived i diag(1,1,1,1-1,—1,1,1), and belong to a graded coset
Ref. 18, and its critical behavior analyzed in Ref. 23. space whose explicit parametrization can be found in Refs.
Actually, the SRM model can be used to construct anl5 and 28. The supermatric€¥ are expressed in terms of
effective mean-field theory of Anderson localizafidwalid T asQ=T *AT. At last, the matrixA = diag(1,1,1,1+-1,
at d=o.2* Critical properties of such theories first discov- —1,—1,—1), and the density of statep is expressed
ered on the level of nonlinear model€>?®turn out to be in terms of the solution of the equation Eq7) as
quite peculiar. In particular, the coefficie@(E) diverges p(E)=—2go/(7B,), where B,=[dz N2)z?, go
close to the transiton point likeC(|E—E(<E;)  =dgo(X,y)/dX|xy-0, X=P'®, and y=0TL®.
ocexp(conshE—EC|‘1’2),23 in contrast to the expected When deriving Eq(6), an evaluation of a functional in-
power-law behavior for conventiondtdimensional systems. tegral by the saddle-point method has been employed; see
The origin of such a critical dependence was explained irdetails in Refs. 17 and 23. An accurate consideration shows
Refs. 23 and 24, and stems from the fact tBE) is deter- that such a procedure is legitimate as long(iaghe matrix
mined essentially by the “correlation volumeV(&) (i.e.,  sizeN (playing in our model the role of the volumes large
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enough[much larger than the coefficie@(E) determining B

the size dependence of IPR, see afipeed (i) the energy o(r,Eo)= 512 T 5alr,E) (12)
differencew is small enougimuch smaller thar€ ~(E)].

ThoughC(E) is exponentially large near the transition point,

it depends on the enerdy only, so that when we kee  where 8 is the conventional symmetry parameter equal to
fixed and increase the system sitethe number of levels in  8=1 (2) for the orthogonalunitary) ensembles. This rela-
the intervalC ~(E) becomes arbitrarily large, since the level tion between the overlap of two different eigenfunctions

spacing scales asN/ o(r,E,w) and self-overlap(r,E) constitutes the main re-
Expanding both sides of E7) over ¥, one can express Sult of the present publlication. It is valiei/erywherein.the
<¢(r,b1¢(r,bl¢(r’,b1¢u-’,bl>g1- in terms of the matrixQ as phase of extended eigenstates, up to the mobility edge
E=E., provided the number of siteghe system volume
(bob1P0,0190,01P0b1)g; exceeds the correlation volume. In particular, it is valid in
the critical region|E— E.|<E., where a typical eigenfunc-
4171 tion is very sparse and self-overldpence the IPRgrows
B_4 Ego,xegﬁ)ngﬁ)l'F gO,nygﬁ)l_'— Goyy| > like exp( COHQE_ EC| _1/2) 23

Equation (12) implies the following structure of eigen-
functions within an energy intervalE=w<C~%(E). Each
(8) eigenstate can be represented as a produdg(r)
=¢;(r)®g(r). The function®(r) is an eigenfunction en-
[gOXX(Qb 2 Qb \ + +20QRA QAR velope of “bumps and dips” which is smooth on a micro-
1 1 scopic scale comparable with the lattice constant. It is the

(PRb1PRO1PALIPA L) g;

N + same for all eigenstates around enegyreflects underlying
gO'XV(leb b b )T oyyl gross(multifracta) spatial structure, and governs the diver-

where = 520/ Ix ’ — 2200/ ’ gence of.self—ov_erlap_at the critical point. In .cont'ragt(r)
_(9290?5)”((3“ 900 an|<;é40 fgozyyh(z)zgoTrzsglyloSvs%OsX)t/o is Gaussian white-noise component fluctuating in space on
X,y=01

the scale of the lattice constant. It fills in the ‘“smooth”
represent the right-hand side of E(p) in the followin ; e .
foPm: ¢ ® ¢ component®(r) in an individual way for each eigenfunc-

tion, but is not critical, i.e., is not sensitive to the vicinity of
27 A" Ya(r,E)8(w)+ A R(w) o (r,E,0)] the Anderson transition. These Gaussian fluctuations are re-
sponsible for the factop/(B+2) (which is the same as in
the corresponding Gaussian ensemioieEq. (12).
~ g, oo Re((QR5, Qb +2Q05, Qbib, As was already mentioned, this picture is valid in the
energy windowsE~C~*(E) around the energl, the num-
—3[QR leb by +Q0% 0,Qb bl])>Q , (99  ber of levels in this window being large a$E/A
~NC Y{(E)>1 in the thermodynamic limiN—o. These
where states form a kind of Gaussian ensemble on a spatially non-
i mowN uniform (multif_ractal for E— E.) backgro_undCDE(r). Since
(++)q= f dQ(-- -)exr{ P StrQA). the eigenfunction correlations are described by fornili,

4 which has exactly the same form as in the Gaussian en-
semble, it is not surprising that the level statistics has the
WD form everywhere in the extended phase.

We believe on physical grounds that the same picture
Re(QRR QA4 >Q=1—2R(20)(w/A), should hold for a conventionadl-dimensional conductor.
First of all, the general mechanism of the transition is the
same ind<w andd=c models. Furthermore, the sparsity
(multifractality) of eigenstates near the transition point takes
its extreme form ford=c models?* so that, since strong
:<QAA AA bo=1 (10) correlationg12) take place atl= o it would be very surpris-
ing if they do not hold at finited as well. Finally, Eq.

where R®(w/A) is the level correlation function in the (12 was proven by an explicit calculation in  the

Gaussian orthogonal ensemble. Substituting this into®q. ~Weak-localization, regimé, where o(r,E,)=[B/(B
we finally find +2)] a(r,E)=V~1+II(r,r)], with V being the system

volume andlI(r,r) the diffusion propagator.
1 490xx ReplacingC(E) by thed-dimensional correlation volume
202B, p°B,’ 11 ~ &9, we conclude that, foE close toE,, Eq(12) should be
valid for <A, whereA ;« 1/¢% is the level spacing in the
The coefficient in Eq. (11) corresponds to the case of correlation volume. For large®, o(r,E,w) is expected to
unbroken time-reversal symmetrforthogonal ensemble decrease as~ 7% according to the scaling argumeRts
For the unitary ensembléroken time reversal symmejry so that we finda(r,E,w)/a(r,E)~(w/A§)*’”d, up to a nu-
the same consideration yields the coefficigninstead, so merical coefficient of order of unity. Again, for any value of
that the general relation reads the energ)E in the delocalized phase, taking the system size

The integrals ove® matrices are the standard orfégjeld-
ing

2iA
(QR%5,Qbi )o= T 0+i0)’ (Q55, Q65,00

o(r,E,w)=3%a(r,E)=
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L large enoughl>¢, we have a large number of levels this purpose, it is enough to consider only two neighboring

5E/A~A§/A0<(L/§)d in the energy windowsE, where Eg.

levels. Let their energy difference hey~A. Let us now

(12) holds, so that the level correlation will be of the WD perturb the system by a random potentigl) with (V/(r))

form.

=0 and{V(r)V(r'))=T38(r—r"). For the two-level system

Finally, let us consider what happens when we go fromthis reduces to a2 matrix {Vj;},i,j=1,2, with elements

the critical regime £ large, butL>¢) to the critical point

=[d% V(r)¥}(r)¥(r). The crucial point is that the

(é>L). For this purpose, let us keep the system dize variances of the diagonal and off-diagonal matrix elements

fixed and change the energy towdtd, so that¢ increases.
When £ is comparable to the system sizé;-L, we have
A ~A. This is the border of applicability of the above con-
sideration. Correspondingly, we find

o(r,E,w) a(r,E)~1, (13

ando(r,E,w)/ a(r,E)~(w/A)~ 7% for o>A. WhenE fur-
ther approache&,., the correlation lengtié>L becomes

w<A,

are, according to Eq13), equal to each other up to a factor
of order of unity:

(V2)I{IV2))=o(r,E,w)la(r,E)~1. (14)

The distance between the perturbed levels is given by

0=[(V11— Vot 0g) %+ |V15?1¥2 Choosing the amplitude

of the potential in such a way that the typical energy shift
Vi11~A, and using Eq(14) and the standard symmetry con-

irrelevant, so that these results will hold in the critical pomtsideration, we immediately conclude that in the critical point

(é=). Of course, Eq(13) is not sufficient to ensure the
WD statistics in the critical point, since there is only of order
of one level within its validity rangeSE~A. Indeed, the

P(s):cﬁsﬁ for s<1 with a coefficientc; of order of unity,
in agreement with the numerical finding3’

numerical simulations show that the level statistics on the We are grateful to Y. Gefen and V. E. Kravtsov for stimu-

mobility edge is different from the WD onle®>~*
However, Eq.(13) allows us to make an important con-
clusion concerning the behavior Bf(w) at smallw<A, or,

lating discussions. Financial support from SFB 195
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