1 JUNE 1997-II

Spin-state transition in layered perovskite cobalt oxides: $La_{2-x}Sr_xCoO_4$ (0.4 $\leq x \leq 1.0$)

Y. Moritomo, K. Higashi, K. Matsuda, and A. Nakamura

Center for Integrated Research in Science and Engineering (CIRSE) and Department of Applied Physics,

Nagoya University, Nagoya 464-01, Japan

(Received 25 November 1996; revised manuscript received 26 March 1997)

Magnetic and transport properties are investigated for single crystals of layered perovskite cobalt oxides, $La_{2-x}Sr_xCoO_4$ ($0.4 \le x \le 1.0$). The effective magnetic moment μ_{eff} is found to decrease with increasing x (or increasing the number of Co³⁺ ions) from $\approx 4.0\mu_B$ for x=0.4-0.5 to $\approx 2.6\mu_B$ for x=0.8-1.0, accompanied by a steep reduction of the resistivity ρ_{ab} and Wiess temperature Θ . These drastic changes of the magnetic and electronic properties suggest a spin-state transition of the Co³⁺ ions from the high-spin to the intermediate-spin state. [S0163-1829(97)51422-6]

Extensive studies on the normal-state properties in cuprate superconductors have aroused renewed interest in the correlated dynamics of spins and charges in perovskite transition-metal oxides with 3d electrons. Among a number of barely metallic 3d-electron systems, the cobalt oxides are especially interesting because of their unusual magnetic behaviors originating from the subtle balance between the crystal-field-splitting Δ and the intersite interaction energy J (Hund's-rule coupling). The ground state of $LaCoO_3$ is a nonmagnetic insulator: Co^{3+} shows nominally the d^6 configuration and forms the low-spin (LS; configuration t_{2a}^6) state due to the crystal-field splitting barely dominating the exchange interaction ($\Delta > 3J$). LaCoO₃ undergoes a spinstate transition around 90 K from the nonmagnetic LS state to a magnetic state,^{1,2} which was considered to be the high-spin (HS; $t_{2g}^4 e_g^2$) state.^{1,2} However, there is a controversy in the interpretations: for example, the valence-band x-ray photoemission spectroscopy (XPS) spectrum is quite different from that of a HS compound.³ It has been recently pointed out that the oxides corresponding to the high formal oxidation state may be a negative charge-transfer system in the Zaanen-Sawatzky-Allen (ZSA) scheme,⁴ resulting in an essential modification of the electronic structure, in particular possible stabilization of the intermediate-spin (IS) state.⁵ Recently, Korotin et al.⁶ calculated the electronic structure of $LaCoO_3$ in the local-density approximation $LDA\!+\!U$ approach, and found two IS states $(t_{2g}^5 e_g^1)$ slightly above the LS ground state.

In this paper, we report on the magnetic and electronic properties of perovskite cobalt oxides $La_{2-x}Sr_xCoO_4$ ($0.4 \le x \le 1.0$) with a layered structure. The parent compound La_2CoO_4 (x=0.0; d^7) is an antiferromagnetic insulator with S=3/2 (HS state for Co^{2+}).⁷ In the solid solution, we can control the averaged *d*-electron number per a Co site from 7 (x=0) to 6 (x=1) without changing the two-dimensional Co-O-Co network. In the ZSA scheme, La_2CoO_4 (x=0; d^7) and $LaSrCoO_4$ (x=1; d^6) are classified into the charge-transfer-type insulator with the optical gap of $E_{gap}=5-6$ eV (Ref. 8) and 0.95 eV,⁹ respectively. Matsuura *et al.*¹⁰ have reported that the system remains insulating or semiconducting for $0.0 \le x \le 1.5$. Nevertheless, the barely mobile e_g electrons may affect the spin state of the Co³⁺ ions in the inter-

mediate concentration region. Another aspect of the layeredtype perovskite oxides is that the two-dimensional confinement of the Co-O-Co network (CoO₂ sheet) significantly reduces the one-electron bandwidth of the e_{o} electrons as compared with the cubic perovskite compound with a three-dimensional Co-O-Co network. Then, it may be possible that repulsive Coulombic interaction between the less itinerant electrons induces a charge- and spin-ordered state. Such a charge-ordered state is frequently observed in the layered-type perovskite oxides, when the carrier concentration takes a commensurate value (e.g., x=1/8, 1/3, or 1/2).¹¹⁻¹³ We have grown single crystals of La_{2-x}Sr_xCoO₄ with finely controlling x and carefully investigated the change of the magnetic and electronic properties including their anisotropy. We have observed significant reduction of resistivity with increasing x beyond ~ 0.7 , and concomitant reduction of the effective moment μ_{eff} from $\approx 4.0 \mu_{B}$ to $\approx 2.6 \mu_B$. We have ascribed these changes to a transition of the spin state of the Co³⁺ ions from the HS ($x \le 0.6$) to the IS state ($x \ge 0.8$), because the transfer of the e_{σ} electron between the $\operatorname{Co}^{2+}(d^7)$ and $\operatorname{Co}^{3+}(d^6)$ sites is expected to stabilize the IS Co^{3+} state.

Single crystals of $La_{2-x}Sr_xCoO_4$ (0.4 $\leq x \leq 1.0$) were grown by the floating-zone method at a feeding speed of 5 mm/h. A stoichiometric mixture of commercial La2O3, SrCO₃, and CoO powder was ground and calcined three times at 1050 °C for 24 h. Then, the resulting powder was pressed into a rod with a size of 5 mm $\phi \times 60$ mm and sintered at 1300 °C for 48 h. The ingredient could be melted congruently in a flow of air $(0.4 \le x \le 0.7)$ or O₂ (0.8) $\leq x \leq 1.0$). For the concentration range of $0.4 \leq x \leq 0.7$, large single crystals, typically 4 mm in diameter and 30 mm in length, were obtained with two well-defined facets, which correspond to the crystallographic *ab* plane. For $x \ge 0.8$, however, the obtained crystal is rather small and is easily cleaved along the ab plane. Powder x-ray-diffraction measurements at room temperature and Reitveld analysis¹⁴ indicate that the crystals were single phase without detectable impurity. The crystal symmetry is tetragonal (I4/mmm; Z=2) over the whole concentration range $(0.4 \le x \le 1.0)$. The obtained lattice constants are listed in Table I together with the conditions for the crystal growth. The lattice constant amonotonously decreases with increase of x, while c shows a local maximum at $x \sim 0.5$.

R14 725

© 1997 The American Physical Society

TABLE I. Lattice constants and growth conditions for $La_{2-x}Sr_xCoO_4$ single crystals

x	a (Å)	c (Å)	Atmosphere	Feed
0.4	3.8410(2)	12.5235(9)	air	5 mm/h
0.5	3.8404(1)	12.5379(3)	air	5 mm/h
0.6	3.8363(1)	12.5313(2)	air	5 mm/h
0.7	3.8303(2)	12.5089(7)	air	5 mm/h
0.8	3.8235(2)	12.4910(6)	air	5 mm/h
1.0	3.8097(4)	12.4788(6)	O ₂	5 mm/h

First, we show in Fig. 1 the temperature dependence of in-plane component ρ_{ab} of resistivity measured up to ~500 K for $La_{2-x}Sr_{x}CoO_{4}$ with varying x. A broken curve represents resistivity for a LaCoO₃ crystal (cited from Ref. 15), which shows a crossover behavior around 500 K from a thermally activated semiconductive to a conducting state. For four-probe resistivity measurements, the crystal was cut into a rectangular shape, typically of $3 \times 1 \times 1$ mm³, and electrical contacts were made with a heat-treatment-type silver paint. We tried to measure the out-of-plane component ρ_c , but failed due to the large contact resistance. The ρ_{ab} -T curves for $0.4 \le x \le 0.7$ exhibit an insulating behavior with a thermal activation energy of ~ 500 meV, which is much larger than that for LaSrMnO₄ [\sim 70 meV (Ref. 13)] with the same layered structure. With further hole doping, the absolute magnitude of ρ_{ab} steeply drops: resistivity at 300 K decreases from $\sim 2000 \ \Omega$ cm for x=0.7 to $\sim 100 \ \Omega$ cm for x=0.8. Especially, the ρ_{ab} -T curve for $x \ge 0.8$ does not obey the thermal-activation law and increases more weakly than

FIG. 1. In-plane component ρ_{ab} of resistivity for $La_{2-x}Sr_xCoO_4$ single crystals. Broken curve is for the cubic perovskite $LaCoO_3$ (cited from Ref. 15).

FIG. 2. In-plane (filled circles; $1/\chi_{ab}$) and out-of-plane (open circles; $1/\chi_c$) components of inverse susceptibility for $La_{2-x}Sr_xCoO_4$ single crystals. Susceptibilities were measured under a field of 0.5 T after cooling down to 5 K in the field (FC). The solid lines are the Curie-Weiss fittings.

 $\sim \exp(-E_a/k_BT)$ with decreasing temperature. Note that the absolute magnitude of resistivity for x=1.0 is almost of the same order as that for LaCoO₃ (broken line).

Now, let us proceed to the magnetic properties for $La_{2-x}Sr_{x}CoO_{4}$. The temperature dependence of magnetization M was measured under various fields up to 5 T using a superconducting quantum interference device (SQUID) magnetometer.¹⁶ The magnitude of M is proportional to the external field H apart from the low-temperature region $(\leq 100 \text{ K})$, where a spin-glass behavior is observed (vide infra). Figure 2 shows temperature dependence of in-plane (filled circles; $1/\chi_{ab} = H/M_{ab}$) and out-of-plane (open circles; $1/\chi_c$) components of inverse susceptibility measured under a field of 0.5 T after cooling down to 5 K in the field (FC). The χ -T curves obey the Curie-Weiss law above ~100 K, as shown by least-square-fitted straight lines. The χ_{ab} (filled circles) is much larger than the χ_c (open circles), as exemplified by x=0.4 and 0.6. Nevertheless, the effective moments estimated from χ_{ab} and χ_c are almost the same (see the upper panel of Fig. 3). Judging from the magnitude of $\mu_{\rm eff}(=3.5-4.2\mu_{\rm B})$ for $0.4 \le x \le 0.6$, the Co³⁺ and Co²⁺ ions are considered to take the HS state: the effective moment of the isolated HS Co $^{3+}$ (Co $^{2+})$ ion is 4.90 μ_B (3.87 $\mu_B). With$ further increasing x, μ_{eff} considerably decreases and becomes $\approx 2.6\mu_{\rm B}$. Such a small magnitude of $\mu_{\rm eff}$ may be ascribed to the IS ${\rm Co}^{3+}$ state ($\mu_{\rm eff}=2.85\mu_{\rm B}$) or the LS Co^{3+} state ($\mu_{eff}=0$), rather than to the HS Co^{3+} state. Concomitantly, Θ estimated from χ_{ab} decreases with x from \sim 200 K for x=0.4 to \sim 0 K for x=0.8-1.0. A similar trend is also observed for the Θ value estimated from χ_c , even though the absolute value is different. Of course, we should

FIG. 3. Effective moment μ_{eff} per Co site, Weiss temperature Θ , and in-plane component $\rho_{ab,400 \text{ K}}$ of resistivity at 400 K for $\text{La}_{2-x}\text{Sr}_x\text{CoO}_4$ single crystals. Open and closed circles in the upper and middle panel mean that the values were estimated from the in-plane χ_{ab} and out-of-plane χ_c components of susceptibility, respectively.

be careful with the effect of hybridization of the d^6 state with the $d^7 \underline{L}$ state in these materials due to the strong covalency, since the hybridization may affect the μ_{eff} and Θ values.

In Fig. 3 are summarized the thus obtained x dependence of $\mu_{\rm eff}$, (upper panel), Θ (middle panel), and in-plane component $\rho_{ab,400 \text{ K}}$ of resistivity at 400 K (lower panel) for $La_{2-x}Sr_{x}CoO_{4}$. Filled and open circles in the upper and middle panel represent the values estimated from χ_{ab} and $\chi_{\rm c}$, respectively. Θ and $\rho_{ab,400\ K}$ are the crude measures for the strength of the intersite exchange interaction and the itineracy of the doped carriers, respectively. With increasing x, $\mu_{\rm eff}$ steeply decreases at x=0.7-0.8 and becomes a small value ($\mu_{eff} \approx 2.6 \mu_B$). Concomitantly, Θ and $\rho_{ab,400 \ K}$ drop to small values, implying that the itinerant e_{ρ} electrons induce some ferromagnetic interaction, which competes with the original superexchange antiferromagnetic interaction. These observed changes of the magnetic and transport properties in the higher-x (≥ 0.8) region are well explained if we consider the IS state for $\operatorname{Co}^{3+}(d^6)$. In an ionic picture, the Co^{3+} ions are considered to take either the LS or HS state, depending on the ratio between Δ and J: if the energy of the LS state $E_{\rm LS}$ is taken to be zero, then $E_{\rm IS} = \Delta - J$ and $E_{\rm HS} = 2\Delta - 6J$, and hence the IS state would always lie higher. Now, let us consider the transfer of e_{q} electron of the neighboring d^{7} state to the d^6 states with various spin configurations. Figure 4 shows the schematic representations of the d^6 state with (a) LS, (b) IS, and (c) HS spin configurations. The system gains

FIG. 4. Schematic representations of transfer of an e_g electron of the d^7 state to the d^6 states with various spin configurations: (a) low-, (b) intermediate-, and (c) high-spin states.

the maximal kinetic energy with the IS spin configuration [Fig. 4(b)], because the d^7 state produced by the electron transfer would have the lowest energy. It should be noted that the itinerant e_g electrons can mediate a ferromagnetic interaction between the neighboring Co spins, analogous to the case of the double-exchange mechanism.¹⁷ This can be the origin of the reduction of Θ in the high-*x* region.

The above idea, i.e., filling-induced spin-state transition from the HS state to the IS state, is supported also by the optical conductivity $\sigma(\omega)$ spectrum for $L_{2-x}Sr_xCoO_4$.^{8,9} In the case of $La_{1.5}Sr_{0.5}CoO_4$ (x=0.5), a single broad band is observed at ~3 eV, making a contrast with the spectrum of $LaSrCoO_4$ (x=1.0), in which two broad bands are observed at ~2 eV and ~3.5 eV. Such a change of the electronic structure suggests variation of the spin state of the Co^{3+} ions. Especially, the overall $\sigma(\omega)$ spectrum for $LaSrCoO_4$ (x=1.0) bears a close resemblance to that for $LaCoO_3$,¹⁸

FIG. 5. (a)–(c) Temperature dependence of in-plane component χ_{ab} of susceptibility for La_{2-x}Sr_xCoO₄ single crystals. Open and filled circles represent that the data were obtained after cooling down to 5 K in zero field (ZFC) and in the field of $\mu_0 H=10$ mT (FC), respectively. (d) Anisotropy of susceptibility for x=0.5.

implying that the spin state of the Co^{3+} ions for LaSrCoO₄ is similar to that for LaCoO₃, i.e., the IS state.

Finally, let us discuss the magnetic transitions at lower temperature for $La_{2-x}Sr_xCoO_4$. We show in Figs. 5(a), 5(b), and 5(c) the in-plane component χ_{ab} of magnetic susceptibility measured under a field of 10 mT; open and filled circles indicate that the data was measured after cooling down to 5 K in zero field (ZFC) and in the field (FC), respectively. For x=0.4 [Fig. 5(a)] and 0.6 [Fig. 5(c)], a cusp structure is observed at $T_g \sim 20$ K in the ZFC data, suggesting a spin-glass (SG) transition. Similar SG transitions are observed for the $La_{1-x}Sr_{1+x}MnO_4$ system¹³ at $T_g=20-25$ K as well as $La_{0.92}Sr_{0.08}CoO_3$ (Ref. 2) at $T_g=24$ K. However, the spin-glass behavior seems to disappear for x=0.5 [see Fig. 5(b)], and χ_{ab} shows a broad maximum at ~ 60 K. As seen in Fig. 5(d), χ_c is nearly temperature independent. These behaviors suggest a long-range spin ordering below

- ¹V. G. Bhide, D. S. Rajoria, G. R. Rao, and C. N. R. Rao, Phys. Rev. B **6**, 1021 (1972).
- ²K. Asai, P. Gehring, H. Chou, and G. Shirane, Phys. Rev. B **40**, 10 982 (1989).
- ³M. Abbate, J. C. Fuggle, A. Fujimori, L. H. Tjeng, C. T. Chen, R. Porze, G. A. Sawatzky, H. Eisaki, and S. Uchida, Phys. Rev. B 47, 16 124 (1993).
- ⁴J. Zaanen, G. A. Sawatzky, and J. W. Allen, Phys. Rev. Lett. 55, 418 (1985).
- ⁵R. H. Potze, G. A. Sawatzky, and M. Abbate, Phys. Rev. B **41**, 11 501 (1993).
- ⁶M. A. Korotin, S. Yu. Ezhov, I. V. Solovyev, V. I. Anisimov, D. I. Khomskii, and G. A. Sawatzky, Phys. Rev. B **53**, R2926 (1996).
- ⁷K. Yamada, M. Matsuda, Y. Endo, B. Keimer, R. J. Birgeneau, S. Onodera, J. Mizusaki, T. Matsuura, and G. Shirane, Phys. Rev. B **39**, 2336 (1989).
- ⁸S. Uchida, H. Eisaki, and S. Tajima, Physica B **186-188**, 875 (1993).
- ⁹Y. Moritomo, T. Arima, and Y. Tokura, J. Phys. Soc. Jpn. 64, 4117 (1995).
- ¹⁰T. Matsuura, J. Tabuchi, J. Mizusaki, S. Yamauchi, and K. Fueki, J. Phys. Chem. Solids **49**, 1403 (1988).
- ¹¹J. M. Tranquada, B. J. Sternlieb, J. D. Axe, Y. Nakamura, and S.

~60 K.¹⁹ Such a peculiarity for x=0.5 might be originating in the commensurability of x with the lattice periodicity and resultant real- space ordering of the doped carriers. Detailed neutron-scattering measurements using the single crystal are now in progress.

In summary, we have measured magnetic and transport properties for single crystals of layered perovskite-type cobalt oxide, $La_{2-x}Sr_xCoO_4$ ($0.4 \le x \le 1.0$). Effective magnetic moment μ_{eff} , Weiss temperature Θ , and in-plane component $\rho_{ab,400 \text{ K}}$ of resistivity were found to decrease significantly with increasing *x* beyond ~0.7. These abrupt changes in the magnetic and electronic properties suggest a spin-state transition of the Co³⁺ ions from the HS state to the IS state.

This work was supported by a Grant-In-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan and also from the Murata Science Foundation.

Uchida, Nature (London) 337, 561 (1995).

- ¹²C. H. Chen, S-W. Cheong, and A. S. Cooper, Phys. Rev. Lett. 71, 2461 (1993).
- ¹³Y. Moritomo, Y. Tomioka, A. Asamitus, and Y. Tokura, Phys. Rev. B **51**, 3297 (1995); B. J. Sternlieb, J. P. Hill, C. Wildgruber, G. M. Luke, B. Nachumi, Y. Moritomo, and Y. Tokura, Phys. Rev. Lett. **76**, 2169 (1996).
- ¹⁴F. Izumi, *The Rietveld Method*, edited by R. A. Young (Oxford University Press, London, 1993), Chap. 13; Y-I. Kim and F. Izumi, J. Ceram. Soc. Jpn. **102**, 401 (1994).
- ¹⁵S. Yamaguchi, Y. Okimoto, H. Taniguchi, and Y. Tokura, Phys. Rev. B 53, R2926 (1996).
- ¹⁶The *M*-*T* curves measured under a low magnetic field are slightly deformed for x=0.8 and 0.1, possibly due to intergrowth of ferromagnetic impurity phases, e.g., (La,Sr)CoO₃, although no trace of an impurity phase was detectable in the Rietveld analysis of powder x-ray diffraction patterns.
- ¹⁷P. W. Anderson and H. Hasegawa, Phys. Rev. **100**, 675 (1955).
- ¹⁸T. Arima, Y. Tokura, and J. B. Torrance, Phys. Rev. B **48**, 17 006 (1993); T. Arima and Y. Tokura, J. Phys. Soc. Jpn. **64**, 2488 (1995).
- ¹⁹In a preliminary neutron-scattering measurement [J. Hill *et al.* (unpublished)], intensities of several magnetic peaks, e. g., (0.5, 0.5, 1), are found to increase below ~40 K.