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We investigate a spin-chain model composed of a periodic array of two kinds of spinsS1 andS2, which
allows us to study the spin chains with impurities, as well as the alternating spin chains, in a unified fashion.
By using the Lieb-Shultz-Mattis theorem, we first study the model rigorously, and then by mapping it to the
nonlinears model, we extensively investigate low-energy properties with particular emphasis on the compe-
tition between the massive and massless phases.@S0163-1829~97!51322-1#

Quantum spin chains have been providing a number of
hot topics not only in condensed-matter physics but also in
statistical physics, quantum field theory, etc. In particular,
the competition between the massive and massless states in
the spin chains has attracted much current interest. For ex-
ample, doping impurities into massive systems such as the
Haldane-gap system,1 the two-leg ladder system,2,3 and the
spin-Peierls system4 may cause the massless states, and
sometimes stabilize the long-range magnetic order. For these
systems it is an interesting issue to clarify how the quantum
coherence, which produces spin gaps, is suppressed by im-
purities to result in a gapless state.5 Also, if the impurities are
magnetic and their concentration becomes high with periodic
arrangement, the system naturally leads to the alternating
spin chains which have also been studied intensively.6 A
common feature in these problems is how the massive and
massless states compete with each other, providing a variety
of interesting phenomena.

In this paper we investigate the quantum spin chain com-
posed of the periodic array of two kinds of spinS1 andS2,
putting particular emphasis on the formation of the massive
and massless states. The model proposed here is related to
the interesting topics mentioned above, and naturally inter-
polates the impurity models and the alternating spin-chain
models. For example, if we consider the case of diluteS1
spins in the background of the host spins with integerS2, the
model is related to the Haldane-gap systems with magnetic
impurities. On the other hand, in the high-density limit of
S1 spins, it describes the alternating spin chains. We will
investigate low-energy properties of the model by using the
Lieb, Schultz and Mattis~LSM! theorem and nonlinears
model techniques.

The model we will investigate consists of two kind of
spins with nearest-neighbor interaction. The Hamiltonian is
given by

H5(
j51

N

JjSj•Sj11 , ~1!

with the periodic boundary conditionSj1N5Sj , where
N(5MN8) is the number of sites, which is assumed to be
even integral in what follows. The spin quantum numberSj

on each site isSj5S1 for j51 ~mod M ) and Sj5S2 for
others. The periodic array ofS1 impurities is embedded in
the host spins S2 with the period M , i.e.,

~2!

Therefore by tuning the periodM , we can naturally interpo-
late the dilute impurity models~largeM ) and the alternating
spin chains~M being order of unity!. The antiferromagnetic
coupling Jj (.0) is assumed to have a bond dependence,
Jj5J(11g) for j50 and 1 ~mod M ; between spins with
S5S1 andS2! andJj5J for others~between the same spins
with S5S2!.

Let us start by specifying the ground-state properties.
Since spins are on a bipartite lattice, we can apply the Mar-
shall theorem7 to Eq.~1!: The ground state is specified by the
spin quantum numberS50 (uS12S2uN/M ) for M5 odd
~even!, which is nondegenerate except for the trivial spin
degeneracy. Therefore the ground state of our model is either
a spin singlet or ferrimagnetic. We are interested in the quan-
tum effects on the spin-liquid phase, so that we will mainly
concentrate on the singlet cases~odd M ) which possess a
variety of interesting properties. We shall show the simple
but remarkable fact that the universality class of the model is
solely determined by the impurity spinS1, as long as the
concentration ofS1 spins is finite.

To begin with, we apply the LSM theorem8 in order to
address the question of whether the above model can have a
gapless excitation. LetTM be theM -sites translation opera-
tor, which commutes with the Hamiltonian~1! by definition.
Therefore, together with the Marshall theorem, we find that it
acts on the ground-stateuF0& asT

MuF0&5eifuF0&. Next we
define the twist operatorU5exp@(2pi/N)(j51

N jSj
z#, and the

corresponding twisted stateuF&5UuF0&. The energy incre-
ment due to twist is easily calculated as
^CuHuC&2^C0uHuC0&,const/N. In order to ensure that
the twisted stateuF& is actually an excited state, we need to
show the orthogonality of these states. We immediately find
TMUT2M5(21)2SeffMU with

Seff5@S11~M21!S2#/M . ~3!

Note that the orthogonality condition is satisfied by the mi-
nus sign of the factor (21)2SeffM. Therefore, in the case
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2SeffM5 odd integer, we can prove that the twisted state is
orthogonal to the ground statêF0uF&50, and hence the
system has a gapless excitation, or alternatively, degenerate
ground states. For example, this is the case for the spin chain
with S151/2 andS251. In general, the existence of an ex-
cited state withO(1/N) energy depends on how many half-
integer spins are included in the unit composed ofM sites.

Here we deal with the most interesting case, i.e., the in-
teger S2 spin model withS1 spins doped, which may be
related to the Haldane-gap system with magnetic impurities.
According to the above theorem, it is seen in this case: it is
the impurity spinS1 that controls whether the system is
massless~or massive with degenerate ground states! in the
integer S2 background. For dilute impurities with half-
integerS1, an excited state with energy ofO(1/N) ensured
by the LSM theorem may be essentially the same as an im-
purity state in the Haldane-gap systems. According to exten-
sive work on the Haldane-gap systems, doping impurities
induces the freeS51/2 degrees of freedom9 near the edge of
the valence-bond-solid states,10 and they couple with the
doped impurity spinS1, making a local object of the effec-
tive impurity state.11 If we increase the concentration ofS1
spins, correlations among these local impurity states become
strong, and impurity bands are naturally formed by coherent
motion of effective impurity spins. Owing to the quantum
effects, they again become massless~massive, see below! for
half-integer~integer! S1, which will be discussed below in
terms of field-theoretic methods.

Based on the above rigorous results, we now construct a
low-energy effective-field theory, which allows us to study
the model with integer-S1 as well as half-integer-S1 cases in
a unified way. Moreover, we can see which possibility for
the ground state is realized for half-integer-S1 cases, i.e., a
massless state or a massive state with a degenerate ground
state. For this purpose, we shall map the system~1! to the
nonlinears model12,13by the use of the SU~2! coherent state
path integrals.14 In what follows, we again concentrate on the
systems with a singlet ground state, i.e., for the caseM5
odd. Note that the following analysis can be applied to the
system withfinite concentrationof impurities in the thermo-
dynamic limit.

The coherent state in the spin-S representation is here
defined byuz&5(11uzu2)2Sexp(zS2)uS,m5S&. Parametrizing
z5tan(u/2) eif, we have ^zuSuz&5Sn, where
n5(sinucosf,sinusinf,cosu). By using the over-
completeness relation*dm(z)uz&^zu51 with the invariant
measuredm(z)5(2S11)p/(11uzu2)2d2z, we can derive
the path-integral representation of the partition function.
Namely, by staggering the spin configuration as
Sj5Sj (2) j11n( j ), the partition functionZ5tr exp(2bH)
of the system ~1! can be represented by
Z5*) j51

N Dm@n( j )#exp(2S), where the action is explicitly
given by

S5 i(
j

N

~2 ! jSjv@n~ j !#2(
j51

N

JjSjSj11E
0

b

dtn~ j !•n~ j11!.

~4!

Herev@n( j )# is the Berry phase acquired by thej th spin,

v@n~ j !#5E
0

1

duE
0

b

dtn~ j !•@]tn~ j !3]un~ j !#. ~5!

In what follows, we assume that the behavior of the field
n( j ) is similar to that for the uniform spin chain in the con-
tinuum limit. Therefore, we can dividen( j ) into the slowly
varying part and fluctuation around it as usual,
n( j )5m( j )1a(2) j11l( j ). This assumption should be con-
firmed to be valid by comparison with the results of the LSM
theorem.

Let us first calculate the Berry phase term in the con-
tinuum limit,

SB5 i(
k51

M

(
j51

N/~2M !

@S1dk,12S2~2 !k~12dk,1!#

3$v@n~2M j2M1k!#2v@n~2M j22M1k!#%

5 i
S1
2 E E d2xm•~]1m3]2m!

1 iSeffE E d2xl•~m3]2m! ~6!

with Seff defined in Eq.~3!, where x15x and x25t. To
derive this formula, we have taken the continuum limit with
respect toMa lattice spacing:n(2M j 2M1k)2 n(2M j
22M1k);Ma]1m(2M j2M1k) 1 (2)k2al(2M j2M
1k), wherea is the lattice constant. This procedure implies
that we are now concerned with the most important low-
energy mode, although there are other massive excitation
modes because the period of the lattice isM in our model.
The validity of this procedure will be discussed by compar-
ing the results with those of the LSM theorem. It should also
be noted that the continuum limit here corresponds to the
limit N/(2M )→`. Namely, we assume in this approach the
finite concentration 1/M of theS1 spins. Next, the interaction
term is rewritten in the continuum limit,

SI52J(
k51

M

(
j51

N/M

@~11g!S1S2~dk,11dk,M !1S2
2~12dk,1!

3~12dk,M !#E dtn~M j2M1k!•n~M j2M1k11!

;
Ja

2
bE E d2x@~]1m!214l2#1const ~7!

with b5S2
212@(11g)S12S2#S2 /M .15 In this way, we end

up with the action composed of the fieldsm(x) andl(x). The
term of l(x) appears in a quadratic form, and can be easily
integrated out, which consequently results in the following
Lagrangian density

L5
1

2g Fv~]1m!21
1

v
~]2m!2G1

u

8p
emnm•~]mm3]nm!,

~8!

with

RAPID COMMUNICATIONS

R14 710 55TAKAHIRO FUKUI AND NORIO KAWAKAMI



u52p iS1 ~52p iSeffM !,

g5
2

S21~S12S2!/M
S 5

2

Seff
D ,

v52Ja
S2
212@~11g!S12S2#S2 /M

S21~S12S2!/M
, ~9!

whereSeff is defined in Eq.~3!.
We recall here that the topological term withu can com-

pletely specify whether the system is massive or massless.
By observing that onlyS1 appears inu, we again arrive at
the conclusion thatthe universality class of the system is
solely determined by the impurity spin S1, which completely
fits in with the results of the extended LSM theorem obtained
above: for half-integerS1, the system is massless even if
S25 integer becauseu5p i ~mod 2p i ). Furthermore, for
integerS1 we can say beyond the LSM theorem that the
system should be massive becauseu50 ~mod 2p i ). By us-
ing the above formulas, we can discuss the interesting results
deduced by the LSM theorem in more detail. The following
statements are valid for the system with a finite concentration
of impurities. ~a! Haldane-gap systems~S25 integer! be-
come massless~are still massive! for half-integer~integer!
S1 impurities. ~b! Massless spin chains~S25 half-integer!
become massive~are still massless! for integer~half-integer!
S1 impurities. Especially in the latter case, we would like to
recall the analysis by Eggert and Affleck,16 from which we
can naively expect the following scenario: IntegerS1 impu-
rities are screened by the two neighboring half-integer spins
S1, forming local integerS222S1 objects. These effective
spins may couple with each other in a coherent way and
produce a gap in the way suggested by Haldane.

We should mention here that our mapping to thes model
may be justified for a high or intermediate concentration of
impurities, but not for a dilute limit. However, a qualitative
feature of whether the system is massive or not is determined
solely by the topological term, and is expected to be cor-
rectly specified via the present analysis so far as the impurity
concentration is finite in the thermodynamic limit.

So far we have been mainly concerned with the impurity
effects on spin chains. Here we discuss the opposite limiting
case~high density ofS1 spins!, i.e., the alternating spin-chain
system in more detail. For example, whenM52 with a half-
integerS1 and an integerS2, our model~1! neatly describes
the alternating spin-chain system which has a ferrimagnetic
ground state,17 as being consistent with experiments found so
far.6 In this connection, modified alternating spin chains with
a singlet ground state~quantum liquid phase! have been ac-
tively investigated, for which quantum fluctuations should
play a vital role.18,19This problem may provide a new, inter-
esting paradigm of spin chains bridging the massive and
massless Heisenberg chains. As a typical example,19 we here
consider a slight extension of the Hamiltonian~1! with
Sj5S1 for j51 and 2~mod 4! andSj5S2 for j53 and 4
~mod 4!, namely,

S1^S1^S2^S2^S1^S1^ •••^S2^S2 . ~10!

Antiferromagnetic couplings areJj5J(12g1) for j51
~mod 4; betweenS1!, Jj5J(12g2) for j53 ~mod 4; be-

tween S2! and Jj5J@11(g11g2)/2# for j5 others ~be-
tweenS1 andS2!. According to the Marshall theorem, it is
easily found that the ground state of this model is singlet.
Though the system~10! is invariant under four-sites transla-
tion T4, the LSM theorem cannot apply for any values of
S1 and S2, i.e., the twisted state is not orthogonal to the
ground state. This suggests that the system may be massive
in general. However, we should also note that since the sys-
tem has spin alternation as well as bond alternation, there
could exist nontrivial massless phases between the massive
phases, as is the case for uniform spin systems.20 We will
clarify these points using nonlinears model techniques.

Keeping the above observations in mind, we derive the
effective theory. We have the same Lagrangian~8!, but with

u52p iSeff~11geff!,

g5
2

SeffA12geff
2
,

v52Ja~Seff2DSg!A12geff
2 , ~11!

where

Seff5~S11S2!/2,

DSg5~S12S2!~g1S12g2S2!/~4Seff!,

geff5
~S11S2!~g1S11g2S2!2~S12S2!

2

~S11S2!
22~S12S2!~g1S12g2S2!

. ~12!

We wish to study nontrivial cases, takingS151/2 and
S251 as an example, and then generalize the discussions to
arbitrary spin cases. To begin with, let us setg15g250. We
find from Eqs.~11! and ~12! that the topological termu is
different from p i ~mod 2p i ), and therefore the system is
massive. Even in this case,geffÞ0 since it includes the ef-
fects of the spin alternation. Let us next introduce the bond-
alternation termg, and observe what happens if the param-
eter g changes from21 to 1 for the caseg15g2[g. At
g521, the model~10! becomes a set of isolated dimers, as
seen from~10!. This system has massive excitations, which
is indeed consistent withu50 andg→` in Eq. ~11!. If we
increase g up to 1, the effectivegeff changes from
geff521 to 1. The corresponding value ofu changes from 0
to u53p i . So it is predicted that we encounter a massless
fixed point once atu5p i during this process. For the case
g→1, we need more careful treatment. As naively expected,
in this case,S1 andS2 spins strongly couple with each other
antiferromagnetically and the model~10! should behave like
the uniformS51/2 spin chain with massless excitations~in-
deed we haveu→3p i ). We should note, however, that ex-
actly at g51 the system is separated into isolated pairs of
spins, which may cause a singular behavior in the coupling
constant,g→`. Therefore, forg→1 the model exhibits a
behavior quite similar to that for a half-integral spin chain
although it is still massive.

In general, for the case with half-odd integerS1 and inte-
ger S2, we can predict that there appear massless phases
2Seff21/2 times as the bond alternation parameter changes
from g521 to 1. It is also shown that for the cases where
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S1 andS2 are the same type of spins, i.e., half-odd integers
or integers, there appear 2Seff times massless fixed points.
We wish to note that in the uniform caseS15S25Seff our
formulas reduce to those for the ordinary spin chain with
bond alternation, which has 2Seff critical points for
21,g,1.20 In this way, our approach based on nonlinears

model techniques are quite powerful to systematically study
the low-energy properties of alternating spin-chain systems.
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