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Spin chains with a periodic array of impurities
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We investigate a spin-chain model composed of a periodic array of two kinds of Spisusd S,, which
allows us to study the spin chains with impurities, as well as the alternating spin chains, in a unified fashion.
By using the Lieb-Shultz-Mattis theorem, we first study the model rigorously, and then by mapping it to the
nonlinearo model, we extensively investigate low-energy properties with particular emphasis on the compe-
tition between the massive and massless ph#S€4.63-182807)51322-1]

Quantum spin chains have been providing a number o0bn each site is5;=S,; for j=1 (mod M) and §;=S, for
hot topics not only in condensed-matter physics but also imthers. The periodic array &, impurities is embedded in

statistical physics, quantum field theory, etc. In particularthe host spins S, with the period M, e,
the competition between the massive and massless states in

the spin chains has attracted much current interest. For ex- 5185850 505105 @ - ®S:. (2
ample, doping impurities into massive systems such as the M

Haldane-gap systefthe two-leg ladder systef® and the Thereforg by t.uning.the perioll, we can naturally interpo-
spin-Peierls systefnmay cause the massless states, andfte the dilute impurity modeldargeM) and the alternating
sometimes stabilize the long-range magnetic order. For thes®in chaindM being order of unity. The antiferromagnetic
systems it is an interesting issue to clarify how the quantu oupling J;(>0) is assumed to ha\(e a bond dependence,
coherence, which produces spin gaps, is suppressed by i i=3(1+y) for j=0 and 1(mod M; between spins with

purities to result in a gapless statalso, if the impurities are W;hslsingz)sﬂ andJ;=J for others(between the same spins

magnetic and their concentration becomes high with periodic Let us start by specifying the ground-state properties.

arrangement, the system naturally leads to the alternatin\g’ince spins are on a bipartite lattice, we can apply the Mar-

spin chains which have also been studied intensiely. oo iheorerhto Eq.(1): The ground state is specified by the
common feature in these problems is how the massive al in guantum numbe=0 (|S;—S,|N/M) for M= odd

massless :states compete with each other, providing a varie&gveﬁ, which is nondegenerate except for the trivial spin
of interesting phenomena. _ . degeneracy. Therefore the ground state of our model is either
In this paper we investigate the quantum spin chain coma spin singlet or ferrimagnetic. We are interested in the quan-
posed of the periodic array of two kinds of sga andS,,  tum effects on the spin-liquid phase, so that we will mainly
putting particular emphasis on the formation of the massiveoncentrate on the singlet cas@sld M) which possess a
and massless states. The model proposed here is relatedvariety of interesting properties. We shall show the simple
the interesting topics mentioned above, and naturally interbut remarkable fact that the universality class of the model is
polates the impurity models and the alternating spin-chairsolely determined by the impurity spi§;, as long as the
models. For example, if we consider the case of dilBfe concentration of5; spins is finite.
spins in the background of the host spins with integgrthe To begin with, we apply the LSM theorénin order to
model is related to the Haldane-gap systems with magnetiaddress the question of whether the above model can have a
impurities. On the other hand, in the high-density limit of gapless excitation. Lef™ be theM-sites translation opera-
S, spins, it describes the alternating spin chains. We willtor, which commutes with the Hamiltonid) by definition.
investigate low-energy properties of the model by using thelherefore, together with the Marshall theorem, we find that it
Lieb, Schultz and MattigLSM) theorem and nonlineas  acts on the ground-stal@,) asTM|dy)=e'¢|d,). Next we
model techniques. define the twist operatod = exy (27i/N) E'-\Lljslz], and the

I . . . i
The model we will investigate consists of two kind of corresponding twisted statd)=U|®,). The energy incre-

spins with nearest-neighbor interaction. The Hamiltonian isnent due to twist is easily calculated as
given by (W|H|¥)—(¥y|H|Wy)<constN. In order to ensure that
the twisted stat¢®d) is actually an excited state, we need to

N show the orthogonality of these states. We immediately find
H:,Zl S S+1s @) MYT M= (—1)2%MU with

with the periodic boundary conditiors;.y=S;, where Ser=[S1+(M—1)S,]/M. )
N(=MN') is the number of sites, which is assumed to beNote that the orthogonality condition is satisfied by the mi-
even integral in what follows. The spin quantum numBgr nus sign of the factor 1)2%™. Therefore, in the case
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2S.+M = odd integer, we can prove that the twisted state is i 1 B ) ) )

orthogonal to the ground stat@b,|®)=0, and hence the o[n(j)]= OdU o dmn(j)-[d,n(j)Xaun(j)]. (5

system has a gapless excitation, or alternatively, degenerate

gr.ound states. For example, this is the case for the spin Cham what follows, we assume that the behavior of the field

vy|thd51:1/2 arrgsf/zl' In gengral, tr:je eX|srt]ence of anhe|>;- n(j) is similar to that for the uniform spin chain in the con-

cited state wit (. ) energy depends on how many hall* i, m |imit. Therefore, we can divide(j) into the slowly

Integer spins are mcluded In th? unit cc_)mposedefytes. . varying part and fluctuation around it as usual,
Here we deal with the most interesting case, i.e., the |nh(j):m(j)+a(_)j+1|(j)_ This assumption should be con-

teger S, spin model withS, spins dqped, which may t.).e firmed to be valid by comparison with the results of the LSM
related to the Haldane-gap system with magnetic impuritieSaorem

Accqrdlng_to thg above theorem, it is seen in this case: |_t IS | et us first calculate the Berry phase term in the con-
the impurity spinS; that controls whether the system is

) ; . tinuum limit,
masslesgor massive with degenerate ground stpiesthe
integer S, background. For dilute impurities with half- M NIZM)
integerS;, an excited state with energy & (1/N) ensured . 2 K
by the LSM theorem may be essentially the same as an im- SB_'k=1 “ [S10k1=S2(=)H(1= b))
purity state in the Haldane-gap systems. According to exten-
sive work on the Haldane-gap systems, doping impurities X{o[n(2Mj-M+Kk)]-o[n(2Mj-2M +k)]}
induces the fre&= 1/2 degrees of freedotmear the edge of S
the valence-bond-solid sta_t%gsand they couple with the =i_1f fdzxm(almx 9,m)
doped impurity spirnS;, making a local object of the effec- 2

tive impurity state'! If we increase the concentration 8f

spins, correlations among these local impurity states become +iseﬁf f d?x1- (mx a,m) (6)
strong, and impurity bands are naturally formed by coherent

motion of effective impurity spins. Owing to the quantum

effects, they again become massl@aassive, see belgvior ~ With Sert defined in Eq.(3), wherex,=x and x;=7. To
half-integer (integey S;, which will be discussed below in derive this formula, we have taken the continuum limit with

terms of field-theoretic methods. respect toMa lattice spacing:n(2Mj — M +k) —n(2Mj

. k .
Based on the above rigorous results, we now construct @ 2M +k)~Madim(2Mj—M+k) + (—)"2al(2Mj—M
low-energy effective-field theory, which allows us to study +k), wherea is the lattice constant. This procedure implies

the model with integeB, as well as half-intege®, cases in  that we are now concerned with the most important low-
a unified way. Moreover, we can see which possibility for €1€rgy mode, although there are other massive excitation

the ground state is realized for half-integgrcases, i.e., a Mmodes because the period of the latticévisin our model.

massless state or a massive state with a degenerate grouh€ validity of this procedure will be discussed by compar-
state. For this purpose, we shall map the systéyto the N9 the results with those of the LSM theorem. It should also

nonlinears- model?3by the use of the S(2) coherent state l:_)e_noted that the continuum limit here_ cor_responds to the
path integrald In what follows, we again concentrate on the limit N/(2M)— . Namely, we assume in this approach the
systems with a singlet ground state, i.e., for the dilse finite poncentrathn M of theSl spins. 'Next, the interaction
odd. Note that the following analysis can be applied to thd€'m is rewritten in the continuum limit,
system withfinite concentratiorof impurities in the thermo-
dynamic limit. M- N/M

The coherent state in the spBirepresentation is here  Si=—J3 > [(1+%)S1Sy( 1+ Sm)+S3(1— 8k 1)
defined byl ¢)=(1+1¢|?) ~SexpS™)|Sm=S). Parametrizing k=1)=1
{=tan(p/2)e'¥, we have ({|9¢)=Sn, where
n=(sinfcosp,sindsing,cosd). By using the over- X(1_5k,M)]f dm(Mj—M+k)-n(Mj—M+k+1)
completeness relatiomdﬂ(§)|§>(g|2=21 2With the invariant
measuredu () =(2S+1)w/(1+|,]9)°d“Z, we can derive Ja
the path—iﬁt(eéral( repregengtatb'nlo)f the partition function. ~7ﬁf fdzx[(&lm)2+4lz]+const @
Namely, by staggering the spin configuration as
§=8(=)'"n(j), the partition functionZ=tr exp(~BH)  wjth g=S2+2[(1+ 7)S,— S,1S,/M.® In this way, we end
of the system (1) can be represented by ;\ith the action composed of the fieligx) andl(x). The
Z=JTI;_,Du[n(j)Jexp(=9), where the action is explicitly term of [(x) appears in a quadratic form, and can be easily
given by integrated out, which consequently results in the following

Lagrangian density

N N
. B
S=iY (-)Seln()1- 2> 3;SS J d7n(j)-n(j +1). 1 1 4
; ) = I EZE u(alm)2+;(a2m)2 + g €usM: (9,mx 4, m),

4) )

Here w[n(j)] is the Berry phase acquired by ti spin, with
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0=2miS; (=2miSuM), tween S;) and Jj=J[1+ (y,+ v,)/2] for j= others (be-
tweenS; andS,). According to the Marshall theorem, it is
2 2 easily found that the ground state of this model is singlet.
g= m ( = S—eﬁ) Though the systerfiL0) is invariant under four-sites transla-

tion T4, the LSM theorem cannot apply for any values of
S, and S,, i.e., the twisted state is not orthogonal to the
’ (9) ground state. This suggests that the system may be massive
S+ (S1—S)IM in general. However, we should also note that since the sys-
tem has spin alternation as well as bond alternation, there
could exist nontrivial massless phases between the massive
hases, as is the case for uniform spin syst¢hwe will
larify these points using nonlinearmodel techniques.
Keeping the above observations in mind, we derive the
effective theory. We have the same Lagrandi@n but with

S+2[(1+7)S,—S,1S, /M
=2Ja

v=

where S, is defined in Eq(3).

We recall here that the topological term withcan com-
pletely specify whether the system is massive or masslesg
By observing that onlyS; appears ind, we again arrive at
the conclusion thathe universality class of the system is
solely determined by the impurity spip,Svhich completely

fits in with the results of the extended LSM theorem obtained 0= 2 Ser( 1+ Yerr),

above: for half-integelS;, the system is massless even if

S,= integer becaus#= i (mod 2mi). Furthermore, for 2

integer S; we can say beyond the LSM theorem that the g= ————=,

system should be massive becadse0 (mod 2i). By us- SefrV1— 7§ﬁ

ing the above formulas, we can discuss the interesting results

deduced by the LSM theorem in more detail. The following v=2Ja(Se—AS,)\V1- yﬁﬁ, (17

statements are valid for the system with a finite concentration

of impurities. (a) Haldane-gap systeméS,= integeh be-  Where
come masslesgare still massive for half-integer (integep

S, impurities. (b) Massless spin chain&S,= half-integej

become massivéare still masslessor integer(half-integej (o _ B
S, impurities. Especially in the latter Cafq?' we would like to A8,=($178) (71517 725)/(4Sen),
recall the analysis by Eggert and AffleCkfrom which we e a2
can naively expect the following scenario: Inte@rimpu- yeﬁ:(SﬁSZ)ghSﬁ 725) = ($17 5 _
rities are screened by the two neighboring half-integer spins ($1152)°=(S1=S) (7181~ 72S2)

S, forming local integerS,—2S, objects. These effective \ye wish to study nontrivial cases, taking,=1/2 and

spins may couple with each other in a coherent way an& _ 1 a5 an example, and then generalize the discussions to
produce a gap in the way suggested by Haldane. arbitrary spin cases. To begin with, let us sgt y,=0. We

We should mention here that our mapping to theodel gy from Egs.(11) and (12) that the topological ternd is
may be justified for a high or intermediate concentration Ofdifferent from =i (mod 2mi), and therefore the system is

impurities, but not for a dilute limit. However, a qualitative massive. Even in this casg+#0 since it includes the ef-
. €

feature of whether the system is massive or not is determinegl s ¢ yhe spin alternation. Let us next introduce the bond-

solely by the topological term, and is expected 10 be coryyenaiion termy, and observe what happens if the param-

rectly specified via the present analysis so far as the impuritg,[er changes from-1 to 1 for the casey,=y,=7. At
concentration is finite in the thermodynamic limit. _ _71 the model10) becomes a set of isollatgé di?ﬁers as

- : - LY
So far we _have _been mainly cc_mcerned with the_ 'm.pu.”.tyseen from(10). This system has massive excitations, which
effects on spin chains. Here we discuss the opposite I|m|t|ng;s indeed consistent with=0 andg— = in Eq. (11). If we

case(high density ofS; sping, i.e., the alternating spin-chain increase y up to 1, the effective yor changes from
system in more detail. For example, whidn=2 with a half- Yer= —1 10 1. The co}responding valueefémhanges om0
integerS, and an integefS,, our model(1) neatly describes t06ﬁ0=37-ri 86 it is predicted that we encounter a massless
the alternating spin-chain system which has a ferrimagnetiflexed poini once a=i during this process. For the case

ground staté! as being consistent with experiments found so —1. we need more careful treatment. As naively expected
far® In this connection, modified alternating spin chains with% thié caseS, andS, spins strongl COL’J le with e>ellch F())ther '
a singlet ground statéquantum liquid phagehave been ac- 1 P gy P

. ) . ) . antiferromagnetically and the mod@l0) should behave like
tively investigated, for which quantum fluctuations should,[he uniformS=1/2 spin chain with massless excitatiofirs
play a vital role'®1°This problem may provide a new, inter- b

esting paradigm of spin chains bridging the massive anéieed we have)—3i). We should note, however, that ex-

massless Heisenberg chains. As a typical exariiple here ac_tly aty=1 the system is _separated into_ isqlated pairs_of
consider a slight extension of the Hamiltonid®) with spins, which may cause a singular behavior in the coupling

_ - _ C_ constant,g—o. Therefore, fory—1 the model exhibits a
(Srhoc?légforr];mell and 2(mod 4 and $;=S, for j=3 and 4 behavior quite similar to that for a half-integral spin chain
' y: although it is still massive.
In general, for the case with half-odd integ&rand inte-
SI®S.85,05,05,05,®---0S,0S,. 10
185185058595 %8S, (10 ger S,, we can predict that there appear massless phases
Antiferromagnetic couplings are;=J(1—1v;) for j=1  2Sg—1/2 times as the bond alternation parameter changes
(mod 4; betweer,), J;=J(1—,) for j=3 (mod 4; be- from y=—1 to 1. Itis also shown that for the cases where

Se=(S11$,)/2,

(12
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S, andS, are the same type of spins, i.e., half-odd integeranodel techniques are quite powerful to systematically study
or integers, there appeaiS2; times massless fixed points. the low-energy properties of alternating spin-chain systems.

We wish to note that in the uniform casg=S,=Sg; OUr  The authors would like to thank M. Chiba for valuable
formulas reduce to those for the ordlnary spin chain Wlthdiscussions. This work was parﬂy Supported by a Grant-in-

bond alternation, which has Sy critical points for  Aid from the Ministry of Education, Science and Culture,
— 1< y<1.2In this way, our approach based on nonlinear Japan.
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