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We show that the interaction of phonons with static strain fluctuations induces an inhomogeneous shift and
a broadening of Raman spectra. The Raman scattering cross section is calculated in terms of the averaged
strain, which relaxes smoothly in real space, and of the strain correlation function. Two regimes of short- and
long-range disorder with different line shapes are found. The agreement with experiment data collected on the
3C-SiC/Si interface is satisfactory.@S0163-1829~97!51922-9#

The Raman spectra present a very complex picture and
attention to their subtle aspects was paid only recently. In
particular, it was lately discovered that the interaction of the
phonon resonances with the electron-hole continuum leads to
characteristic changes in the resonance line shape~the Fano
resonance!.1–3 The metal-insulator transition also results in
the change of Raman line shape through the electron-phonon
interaction~e.g., see the experimental results on fullerides4!.
Another aspect of this problem can be found in the interac-
tion of vibration modes with crystal imperfections~see Ref.
5 and references therein!.

In this work we consider the influence of stress inhomo-
geneity on the Raman mode. From the experimental point of
view, Raman scattering is a very useful tool to investigate
the microstrain in bulk materials and multilayered semicon-
ductor structures. However, up to now, only the line shift
resulting from a constant strain has been studied both experi-
mentally and theoretically.6,7 However, in many cases the
strain changes in samples. For instance, the strain induced by
the differences of lattice constants and thermal coefficients
between adjacent heteroepitaxial layers relaxes when moving
from the interface to the free surface. This is illustrated in
Fig. 1, where a Si~substrate!/SiC ~epilayer! interface is
drawn.

Because the strain may change its value on the large
range, one can observe the smooth strain variation in het-
eroepitaxial layers by displacing a laser spot on the lateral
surface and measuring the phonon line shiftDv (un).8 We call
this effectthe uniform shift. Since there are layers in the laser
spot with different strains, the uniform strain relaxation re-
sults in a Raman linewidthG (un)5d](Dv (un))/]z, whered
is the laser spot diameter. A typical example is shown for the
LO phonon modes of SiC in Fig. 2~left panel!. From bottom
to top, the three different spectra correspond with different
spot positions: at the interface, 1.5mm away from the inter-
face, and 3mm from the interface. The spectra show clearly
that the strain relaxes over distances;5 mm and induces a
line shiftDv (un);2 cm21. In our experimentd.1 mm, and
then the broadeningG (un) is negligible in comparison with
the observed linewidth~several cm21). We see that the very

small shift cannot explain the observed large width as well as
the asymmetry of the line shape.

In this theoretical and experimental study, we show that
the strain consists of a spatial fluctuating component besides
the term which reduces smoothly. The strain fluctuations
over distances of the order of the optical wavelength origi-
nate from dislocations, block structures and other structural
defects. In the back-scattering Raman geometry, an optical
phonon excited by light has the double light wave momen-
tum and ‘‘sees’’ smooth strain effects averaged over the
range of the light wavelength. The fluctuating strain induces
an inhomogeneous broadeningG ( inh) anda shiftDv ( inh) of
the Raman lines. To our knowledge, the influence of such a
disorder on the Raman phonons has never been considered.

We propose a model of phonon interaction with strain
fluctuations, which brings us to the asymmetric line form.
From the theoretical point of view, our problem has several
peculiar features. First, because of the small uniform split-
ting of the degenerate phonons, both interband and intraband
transitions of phonons are possible in the scattering process
by the static strain fluctuations. Second, the momentum
transfer from light to phonons is relatively small. We calcu-
late the phonon shift and width near the top of the optical
phonon branches, where the momentum transfer from the
strain fluctuations is comparable to the phonon width. Third,
since the phonon Raman scattering is determined by the pho-

FIG. 1. Raman back-scattering geometry used to investigate the
strain relaxation at a 3C-SiC/Si interface. The incident and scat-
tered light propagate parallel to thê110& direction (x8 axis!;
x,y,z are cubic axes.
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non Green’s function averaged over the strain fluctuations,
we solve the appropriate Dyson’s equation for the Green’s
function considering the interaction of phonons with the
static strain fluctuations. We emphasize that the integral
equations for the width and shift, which are functions of the
frequency transfer, are solved self-consistently. We have
found the inhomogeneous broadening and shift in terms of
the strain correlation function. Using the obtained width and
shift, we calculate the Raman line shape. Our method can be
applied also to the scattering of optical phonons by imper-
fections and other problems where the momentum transfer is
comparable to the collision rate.

We have compared the theory with Raman spectra col-
lected on two different 3C-SiC/Si samples. More experimen-
tal results, as well as the details of calculations will be pre-
sented in a later work.

The interaction of optical phonons displacements
ui(r ,v) with strain « lm(r ) in the formVi j (r )5l i j lm« lm(r )
was proposed previously for the constant strain case.6 In cu-
bic crystals there are three optical phonons in theG point
with a triple degenerate frequency (i51,2,3). The long-
range Coulomb forces split this degeneracy in such a way
that the LO phonon has a higher frequency than the two-
times degenerate TO modes.

The averaged phonon Green’s function depends on the
coordinates differencer2r 8. For its Fourier transform, col-
lecting the important diagrams, we obtain the Dyson’s equa-
tion

Di j
21~k,v!5Di j

~o!21~k,v!2E d3k8

~2p!3

3Wiml j~k82k!Dml~k8,v!, ~1!

where the matrix

D ~o!21~k,v!5H~k!2 ivG~ int !1^V~r !&2v2 ~2!

includes the long-wave expansion of the dynamic matrix
Hi j5x i j2m i j lmklkm , the intrinsic phonon dampingG ( int)

~Ref. 9! and the averaged strain effect̂Vi j (r )&
5l i j lm^« lm(r )&. For cubic crystals, the tensorx i j5vo

2d i j ,
both l i j lm and m i j lm have three independent components.
The symmetry of the averaged̂« i j & is determined by the
experimental conditions.

The transition probabilityWiml j (k82k) is the Fourier
transform of the correlation functionWiml j (r2r 8)
5^dVim(r )dVl j (r 8)&. The poles ofD (o)21(k,v) give the
phonons dispersion law in the absence of disorder
v j
2(k)5v j

2(k50)2sj
2k22 ivG j

( int) . The parameterssj have
the order of sound velocity and depend on thek direction
~we will neglect this dependence!. The uniform shift is in-
cluded inv j

2(k50).
Being transformed to the diagonal form, Eq.~1! gives the

inhomogeneous broadening and shift. Its solution can be
found in the form

Dj j
21~k,v!5v j

22sj
2k22 ivG j2v2, ~3!

where v j5v j (k50)1Dv j
( inh)(k,v) and G j5G j

( int)

1G j
( inh)(k,v). Substituting Eq.~3! in Eq. ~1! and taking the

imaginary and real parts, we arrive at a system of coupled
integral equations forG j

( inh)(k,v) andDv j
( inh)(k,v).

To make estimates, we approximate the strain correlator
by a Gaussian function with the Fourier transform

Wiml j~k!5~2p!3/2«2vo
4r o

3wiml je
2k2r o

2/2, ~4!

where parameterwiml j is the mean-squared fluctuation at
point r , divided by the squared mean strain and the fre-
quency parametervo to the fourth power. The correlation
radiusr o defines the average domain size with a more or less
constant strain value.

The Raman cross section is proportional to ImD(k,v),
where the momentumk and frequencyv have the sense of a
momentum and frequency transfer from the light. In the op-
tical rangek;105 cm21, the frequencies and damping of
optical phononsvo.103 cm21, G.123 cm21, the disper-
sion parameters.5.105 cm/s. Therefore, the condition
sk!AvoG is valid in all experiments discussed below. Then
G j
( inh)(k,v) andDv j

( inh)(k,v), given by the integral~1!, can
be regarded ask independent. Concerningq5k82k, the val-
uesq2<2/r o

2 determine the final states for phonons scattered
by the strain fluctuations. The domainq2<2voG/s

2 is es-
sential in the integrand Green’s functionD, given in Eq.~3!.
This is because we are interested inuv j2vu.G. We see that
two limiting cases are possible, depending on whether the
parameterAG/vopr o /a is small or large (a.ps/vo being
of the order of the lattice parameter!. In both cases, all inte-
grals can be done analytically, and we obtain the system of
coupled algebraic equations forG j

( inh)(v) andDv j
( inh)(v).

FIG. 2. Raman spectra of the LO phonon of a 3mm thick
commercial sample~Ref. 11! for various laser spot positions~left
panel!. Starting from interface~a!, at 1.5mm ~b!, and at 3mm from
the interface~c!, the Raman line becomes more narrow but stays
asymmetric. This is clear evidence of inhomogeneous short-range
disorder. The total width including the inhomogeneous broadening
~cm21, top! and shift~bottom! as a function of the frequency trans-
fer ~cm21) are shown in the right panel. Theoretical model assumes
anisotropic strain fluctuations with small correlation radius
r o /a56. The fits for line position, intrinsic and total width~at the
center of lines! give, respectively,~a! 972.7, 3.0, 5.2,~b! 972.9, 3.0,
4.3, ~c! 973.1, 3.0, 3.6 cm21.
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~i! The correlation radius is small:AG/vopr o /a!1. In
this caser o /a,10 for the above-listed set of parameters and
a phonon can considerably change its momentum when scat-
tered by the strain fluctuations. In the integral for the width
@imaginary part of Eq.~1!# we can take the correlator at
q50 and integrate overk8. The leading contribution in the
integral for the shift@real part of Eq.~1!# comes from the
largeq values, where the exponent factor is only essential.
The next term should also be held, since it depends onv. For
the nondegenerate case~e.g., the LO phonon in SiC!, sub-
scripts insj , G j , andwiml j take one value and will be omit-
ted. Then only one intraband constantw describes the inho-
mogeneous width. Typical computer solutions of the coupled
system together with the Raman cross section which is pro-
portional to ImD(k,v) are shown in Fig. 3. The Raman line
is asymmetric and, for large scattering, resembles the Fano
resonance. One can see that the inhomogeneous width essen-
tially increases below the branch maximum. The explanation
of this behavior is to be found in the LO-phonon density of
state, which is equal to zero forv2.vLO

2 ~if G ( int)→0) and
proportional toAvLO

2 2v2 below the top of branch. The
square-root singularity exists also in the frequency depen-
dence of the shift.

At the center of the line, i.e., atv5vLO , the width and
shift can be found analytically. We obtain the total width

G5G~ int !1A/21@~A/2!21G~ int !A#1/2, ~5!

whereA is associated with the phonon scattering by strain
fluctuations:

A5
p

4
vo«

4S vor o
s D 6w2.

p

4
vo«

4S pr o
a D 6w2.

If the intrinsic width G ( int)!A/4, the total width
G5A12G ( int). In the opposite case,G5AG ( int)A1G ( int).

We see that the disorder width and the intrinsic dampingare
not additive. The inhomogeneous shift of the LO phonon in
the leading approximation is

Dv~ inh!5~A/pvo!
1/2s/r o .

The extension of the theory to the degenerate case~which
corresponds with the TO phonons in SiC! gives a more com-
plicated picture. There are two intraband and one interband
constantsw, which describe the phonon interaction with the
strain fluctuations. We shall not discuss this case any longer.

~ii ! The correlation radius is large:AG/vopr o /a@1.
Now we consider the long-scale disorder and, consequently,
the small-angle scattering of phonons by the strain fluctua-
tions. Then the correlator is a sharp function, and the phonon
Green’s function in the integrand should be expanded in
powers ofq. The zeroth-order term gives the final result for
the width but terms up to the second order are needed for the
shift ~the zero-order term vanishes at the top of branch and
the first-order term vanishes since the correlator is an even
function!. We obtain again the system of two coupled alge-
braic equations. Computer solutions of the system~the total
width and the inhomogeneous shift as a function of fre-
quency transfer! together with ImD(v) are shown in Fig. 4.
Raman spectra collected on a second SiC sample are shown
for comparison. The line shape is non-lorentzian, but appears
more symmetric than in the previous case of short-range dis-
order. At the center of line (v5vLO):

G5G~ int !/21@~G~ int !/2!21B2#1/2,

Dv~ inh!51.5~sB/r oG!2/vo.1.5vo~aB/pr oG!2,

whereB25«2vo
2w.

FIG. 3. Theoretical Raman intensity~left panel!, phonon width
~top of the right panel! and shift~inhomogeneous component only,
bottom! plotted as a function of the frequency transfer in the case of
small correlation radiusr o /a53 for three values of the interaction
constantA, cm21: ~a! A51.5, ~b! A5.3, ~c! A50, no strain fluc-
tuation.

FIG. 4. Same as Fig. 2 for a 6mm thick noncommercial sample
~Ref. 12!. Spectra correspond with the four spot positions: at inter-
face~a!, at distances 2mm ~b!, 3 mm ~c!, and 6mm ~d! away from
interface. This is an example of long-range disorder with correlation
radiusr o /a.25 ~parameterr ovo /s580). The fit gives for the line
position, intrinsic and total width~at center of line! and the inter-
action constantB, respectively,~a! 972.4, 3.0, 4.38, 20,~b! 972.8,
3.0, 4.11, 15,~c! 973.0, 3.0, 3.66, 8,~d! 973.0, 3.0, 3.29, 3.2
cm21.
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We wish to emphasize that all foregoing formulas give
observed values of width and shift, when using the above-
listed set of phonon parameters, the value«.1023 known
from various experiments10 andwiml j.1.

So far it was assumed that the disorder is isotropic. How-
ever, in the presence of a heterointerface, the strain correla-
tion function may have an anisotropic behavior. The lattice
mismatch at the interface creates dislocations which appear
as line imperfections. This disorder can be described using a
two-dimensional correlation function. If it has the short-
range behavior, we obtain the asymmetric Raman line shape
with a smoother high frequency side in comparison with the
three-dimensional short-range disorder. Such an effect was
indeed observed on the first sample and corresponds with the
series of theoretical lines displayed in Fig. 2.

In closing, the conditions of validity for the basic Eq.~1!
should be outlined. The line shape on wings can be obtained
using the perturbation theory~the Born approximation!. At

the center of the lines, the diagrams with intersections of the
correlator lines make the contribution of order of the leading
diagram~1! and a more sophisticated theory is needed. Then
one can consider Eq.~1! as a sensible interpolation between
the extreme limits. Finally, we should compare the effect of
strain inhomogeneity with the Fano resonance effect. The
Fano resonance in conducting systems is due to the phonon-
electron interactions or, in another way, arises from an ap-
pearance of the imaginary part in the electron loop, which
does not depend on the phonon density of states. The results
of our paper show that a similar asymmetric line shape origi-
nates from the phonon density of final states, when we con-
sider the phonon scattering by imperfections.
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