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Electron-scattering states at solid surfaces calculated with realistic potentials
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Scattering states with low-energy-electron diffraction asymptotics are calculated for a general non-muffin-tin
potential, as, e.g., for a pseudopotential with a suitable barrier and image potential part. The latter applies
especially to the case of low lying conduction bands. The wave function is described with a reciprocal lattice
representation parallel to the surface and a discretization of the real space perpendicular to the surface. The
Schralinger equation leads to a system of linear one-dimensional equations. The asymptotic boundary value
problem is confined via the quantum transmitting boundary method to a finite interval. The solutions are
obtained based on a multigrid technique that yields a fast and reliable algorithm. The influence of the boundary
conditions, the accuracy, and the rate of convergence with several solvers are discussed. The resulting charge
densities are investigated50163-182@7)51120-9

Electron spectroscopies at low energies below 100 eV areepresentation, consisting of a Fourier decomposition in the
sensitive to the shape of the surface near potential. Sophistiy plane parallel to the surface with the Fourier coefficients
cated band-structure calculations involve such potentials, but; andVy depending on the coordinateof the direct space
almost exclusively consider bound states. To obtain the samgerpendicular to the surface,
accuracy for current carrying states is still a challenge. Here
we will consider final states of photoemission, which are > . ((Ki+3)-p
time-reversed states of low-energy-electron diffraction \I’(p,Z)—% @g(z)e( e, @
(LEED). Typical energies of interest are 10 eV and higher.

With the advent of space-filling full-potential LEED - -

calculations, the correct surface barrier can be included, but V(=2 V5(2)e9*+X(E,2). @

this requires, especially at these energies, extended CPU g

time. Another approach relies on smooth continuousThe two-dimensional vectar lies in thexy plane, the imagi-
matching of the solutions inside the crystal to those in the nary optical potentia®, accounts for the attenuation owing to
vacuum. The inclusion of the surface potential by themany-particle effects and other inelastic losses. The summa-
propagation-matrix methdchas proven to be an ill-posed yion s over the reciprocal lattice vectogs In the Laue rep-
problem? The reason is the formulation as an initial value osentation the Schdinger equation appears as a system of

problem, which does not ensure the crucial continuous d&jnear gne-dimensional differential equations, which we dis-
pendence on the boundary values. This is guaranteed by theqii,o by a grid with step sizk, in the z direction. This

two-side boundary conditiorfs> Modern treatments of ellip- . . . - .
tic problems often employ a discretization in direct spacd©2dS 10 the linear matrix equatiof, ¢y, =0 with the solu-

instead of choosing physically motivated basis functions. Ation <Ehz and the coefficients
recent work on LEED and low-energy-positron diffraction

presented a three-dimensional finite-difference mefhiedr

the lower energies of ultraviolet photoemission spectroscopy, (Ahz)ig',i g’ =
the Coulomb singularities of the cores are less important.

9.0’

= 0iir+1T 26— 6 -1
h

They can be avoided by using pseudopotentials, for which a - =, 2m . -
mixed representation of the wave function seems to be suit- | (gHkp+ F[_ E+2(E,)]] 85
able here.

In this contribution we address a direct, methodically 2m
simple, and fast solution of the Scldinger equation with + 22 Vgr-gi|diir- 3

the scattering asymptotics treated as introduced by Lent and Lo

Kirkner.” The problem is formulated as a two-side boundaryThe indices are the reciprocal lattice vectgrsg’ and the
problem. The calculations refer exemplary to the G&¥)  grid pointsi,i’. The complex matrix4;, is non-Hermitean
surface. The Schdinger equation has to be solved for a and indefinite. Since the potential relies on the Laue repre-
given energyE and a given direction of the electron incident sentation without any restrictions, the method allows direct
on the surface with a surface parallel wave vedtpr The  application of potentials from modern band-structure compu-
translation symmetry parallel to the surface allows a descriptations. Nonlocal pseudopotentials can be applied in a way
tion of the wave functionV and the potentiaV/ in the Laue  similar to their use in three-dimensional
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FIG. 2. Comparison of grid calculations with a step potential

{-5,5} and a potential barrier: modulus of the Fourier amplitudes normal to

15 0 5 0 5 10 15 the surface_ in vacuum ak(y)=(0,0). The squared amplitudes give
the LEED intensities.

physical situation. Neumann and mixed boundaries from the

wave functions atX,y) =(0,0) for different grid sizes. The bound- mhatchlnghQO n(;)t Improve th'%unsa“SfaCtogy Sltgatlon' Acg]]_a_un
ary positions are marked &, at which boundary conditions from a the matching does not provide a correct bounaary condition

previous matching calculation are used. The potential for the matchEVEN far away from the crucial V,'(,:'n'ty Qf the surface.
ing was a step, here it is the smooth barrier. The correct boundary conditions in the vacuum are

achieved by use of the elegant and simple quantum transmit
finite difference calculations of electronic structdrgor the ting boundary methodQTBM).” The wave function in the
calculation here we take as an example a potential, whickacuum is expanded into a set of propagating waves
was repeatedly applied to photoemission calculations of
GaAg110.0 It is a local pseudopotential with the surface
barrier taking into account relaxation, corrugation, and a
smooth saturated image potential.

Equation(3) requires boundary conditions at the bulk and ¢g) and ¢g) are the amplitudes of the given incoming and
at the vacuum side of the grid. The simplest model of a nknown outgoing waves, respectively. The grid wave func-
surface potential is a single step towards the vacuum, as usggn Wi is that of Eq.(1). For a short description of the
In match|ng calculations. A first guess for boundary Cond|'quantum transmitting boundary method m( ) be a linear

tions far away from the surface inside the crystal and thagnction andFT( ) the two-dimensional Fourier transforma-

such preliminary calculations. In Fig. 1 the modulus of the

wave functions for different grid sizes is plotted. Plgts ) (=) (+)

and (d) show irregularities around the bulk boundary. Even E‘I’UachN(% by I=LN(d; " FT(¥ya0))
with Neumann or mixed boundaries this feature cannot be
suppressed. Because the damping reduces the wave functions -~ (+) -~ (+) .
to zero deep in the bulk, the requ?red asymptotic behavior is =LN(¢g " FT(Wgria))=LN(5 ", ¢4(2,))-
fulfilled by taking a zero value at a boundary sufficiently From the continuity of the normal derivative follows

remote from the surface. Since the damping depends on en-

ergy, the coordinate of the boundary in the bulk should be d (+)

chosen as energy dependent and automatically adjusted by o7 Varia=LN(d; ", ¢4(20).

tracking the neighboring values of the wave function.

In the vacuum the wave functions still differ even for high This mixed linear boundary value problem is the QTBM that
grid sizes as shown in Figs(a and Xb). Therefore, we is inserted in Eq(3) with the derivative being discretized.
investigate this boundary more closely. In a LEED experi-The implementation of the QTBM is simple here due to the
ment, a beam of electrons is scattered at the surface of tHeaue representation. With the QTBM the calculated wave
crystal. The vacuum boundary condition has to guarante&nction fulfills the correct LEED asymptotics in the case of
one single incoming plane wave. This can be tested by ¢he step barrier as it does for any corrugated barrier too.
half-sided Fourier transformation of the wave function in theFigure 2 shows the Fourier spectrum normal to the surface of
vacuum, assuming that the Fourier grid is well separateé grid calculation with the QTBM basing either on a step
from the vicinity of the surface. The solution from a match- potential or basing on the true barrier. The negative wave
ing calculation does fulfill the incoming beam asymptotics,numbers correspond to incoming waves. Both solutions
the subsequent grid calculation with the same step potentighow the postulated LEED asymptotics of one incoming
does not. The Fourier spectrum of the grid wave functiorwave. The barrier potential influences strongly the solution,
shows additional incoming ghost waves that have contribuwhich is also illustrated by the plot of the wave functions in
tions of up to 15% and thereby strongly deteriorate theFig. 3.

FIG. 1. Sensitivity of the solution to the range of calculation:
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T r TABLE I. CPU time and memory used by different direct and
iterative routines for a system of 142 500 equations on a CRAY-
J916. As direct solvers routines from the International Mathematics
and Scientific Library were used. For the routine with the LU fac-
torization of a sparse matrix the time is extrapolated from tests with
smaller grids. The given memory is required by the 64-bit architec-
ture of the Cray.

potential barrier

modulus of the wave function

. Method CPU time(s) Memory (MB)
potential step

Sparse Gauss 1862 747
Sparse LU (1862 >2000
Band LU with Refinement 257 654

L L L L L Band LU without Refinement 98 392

-15.0 -10.0 -5.0 ZO.((;) 5.0 10.0 15.0 Two Grid. 208 458
Three Grid V Cycle 343 360
| Three Grid W Cycle 270 360

FIG. 3. Comparison of the wave functions from a step potentia
and a potential barrier a(y)=(0,0). The position of the step is
indicated by the arrow.

Equation(3) with the boundary conditions inserted gives _three-grld method. For the smoothing, the squared Jacobi

a quadratic, linear, and inhomogeneous system of equation' eration has been applied. With a damp.mg factor of 0.5 the
which has a block tridiagonal coefficient matrix. As an ex- est convergence rates_have been (_)btalned. The Laue repre-
ample we consider the Gaf<0) surface with a normal in- sentation simplifies the implementation of the QTBM, but it
cident electron beam at an energy B¥=18 eV, which in causes strong codiagonals due to the potential coefficients.

vacuum corresponds to a kinetic energykgf,=12.75 eV. Therefore on the first level the equations must be treated by

The lateral plane wave basis of 57 reciprocal lattice vectord. direct solver, and the Jacobi iteration is only used for

proved to be sufficient for the employed potential. With thesmOOthIng on the finer grids. For the step size of 02008

lattice constant of=5.654 A, the boundaries are chosen tothe_coarse grid the two-grid 'ter?tl'f n need_s 20 steps to
. ) achieve the same mean defecto10™ ~* as the direct solver.
be at+15a, enclosing 45 layers with 90 atoms. The large

distance from the surface to the vacuum boundary ensures a
sufficient decay of the image potential. The positions of the
boundaries deep inside the crystal and far outside in the
vacuum cause a large grid, whose step hizis bounded by
several conditions. First, the wave function has to be cor-
rectly represented on the grid. This bound can be estimatec
by use of the sampling theorem. Furthermore, a small stef
size is needed for a stable discretization and a safe conver
gence of the iterative solvers. The Laplace operator has tc
dominate the zero-order terms, which requing<0.06a
here. Further bounds are given by the demands of applica
tions. Withh,=0.012a a typical number of 2500 grid points
and 142 500 equations results.

Since the coefficient matrix results from an elliptic equa-
tion, is sparse, and is additionally a band matrix, a variety of
solvers are available. As for the photoemission spectra &
large series of final states has to be calculated, it is very
important to reduce the CPU time per final state. Several
direct and iterative solvers have been tested. Some of the
resulting CPU time and memory requirements are given in
Table I. Time and memory increase linear with the number
of grid points due to the simple structure of the coefficient
matrix. The fastest direct solver was a routine in band stor-
age mode performing an LU factorization that needs 98 s for
the test problem with a slope of 9.0~ 2 s per grid point. It
needs less than half of the time than a LEED calculation with
space-filling potentials at this energy or also a conventional F|G. 4. Gray scale image and contour plot of the charge density
matching at a potential step. in theyz plane atx=0 with az interval from—3.55 to 3.9%. In

Iterative solvers in combination with multigrid methods the y direction two unit cells are shown. The atoms lying in the
are highly successful in solving differential equatidfs. plane are drawn black, and in the right cell the projected positions
They have recently been applied to the calculations of largesf the remaining atoms are gray. The different scales forytaad
scale electronic structuré.We implemented a two- and a z directions are indicated by the Anghmcscale.
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The three-grid methods do not improve the convergencéarrier, which is already obvious from the different LEED
rates. The defect after 20 iterations was 8 W cycle intensities in Fig. 2, is illustrated by the strong charge fluc-
6x10"1%and for a V cycle 510 . Theoretically the mul-  tuations in the surface region. In contrast to tracking multiple
tigrid method need©(N) operations to solve a system of scattering paths in conventional LEED calculations, the
N linear equations. The direct method for band matricesproperties of LEED states are much easier interpreted with a
needsO(Nw?) operations. Because the number of codiagosingle wave function. It is interesting to see that there are
nalsw is the constant number of reciprocal lateral latticewel| localized regions of high charge density even at this
vectors, both methods have the same asymptotic behavigfonbonding energy. In applications to photoemission these
However, if a lower accuracy of the solution is acceptableyegions will give strong contributions to the photocurrent.
the muIUgngj method becomes more favorable. If, e.9., & dethys, this treatment supports a local interpretation of the
fect of 10 is sufficient, the two-grid method needs five gmission. First photoemission calculations with these final
iterations and 91 s and gives an error in the modulus of th‘%tates were promising.

wave function of less than 0.2%. Additionally, the maximum

d be reduced within th tiarid method. If Solutions of the Schidinger equation with scattering
memory used can be reduced within the muitigrid metnod. boundary conditions have been calculated with a realistic
the system of equations is solved directly, av(81) XN

matrix containing the LU factorization on the fine grid is potentjal of the GgAillO) surface. The correcF gsymptotic
needed. In the multigrid iteration with depth the behavior was obtained by the quantum transmitting boundary
(2W+l).><N matrix on the fine grid and the me_thod. The Laue representation allows a S|m_ple_ implemen-
(3w+1)x(N2-0-1) LU matrix on the coarse grid are tation of the boundary conditions. Several multigrid methods

L . .~ and direct solvers have been tested. The fastest were a rou-
stored. From the three-grid iteration onward, the require

memorv for the multiarid procedures becomes less than | ine in band storage mode with LU factorization and when
y grid p r%topping at a slightly lower accuracy, a two-grid method.

the other methods. The multlgrld galculatlons may pos.s'bly'l'he multigrid method is competitive with direct solvers due
be accelerated by the use of iterative solvers better suited tt

the indefinite problem than the squared Jacobi iteration. B its higher flexibility. A general implementation of the po-

As a first application the charge-density distribution of atenua! allows us to use potenuals from modaath initio :

LEED state is shown in Fig. 4. The interface crystal vacuumteChmques' In an apphcayor?, th.e calcplated c;harge density
. e o of a LEED state showed distributions with localized accumu-

and the exponential decay of the wave function into the CMYSTation regions of the excited electron. It may yield a comfort-

tal are clearly visible. In the vacuum a distance of severa ble access to a local interpretation of photoemission spectra.
lattice constants from the surface is necessary to evolve an

interference pattern typical of superimposed waves, cf. Fig. This work was supported by the Bundesministerium fu
3. The importance of the correct treatment of the potentiaBildung, Wissenschaft, Forschung und Technologie.
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