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Scattering states with low-energy-electron diffraction asymptotics are calculated for a general non-muffin-tin
potential, as, e.g., for a pseudopotential with a suitable barrier and image potential part. The latter applies
especially to the case of low lying conduction bands. The wave function is described with a reciprocal lattice
representation parallel to the surface and a discretization of the real space perpendicular to the surface. The
Schrödinger equation leads to a system of linear one-dimensional equations. The asymptotic boundary value
problem is confined via the quantum transmitting boundary method to a finite interval. The solutions are
obtained based on a multigrid technique that yields a fast and reliable algorithm. The influence of the boundary
conditions, the accuracy, and the rate of convergence with several solvers are discussed. The resulting charge
densities are investigated.@S0163-1829~97!51120-9#

Electron spectroscopies at low energies below 100 eV are
sensitive to the shape of the surface near potential. Sophisti-
cated band-structure calculations involve such potentials, but
almost exclusively consider bound states. To obtain the same
accuracy for current carrying states is still a challenge. Here
we will consider final states of photoemission, which are
time-reversed states of low-energy-electron diffraction
~LEED!. Typical energies of interest are 10 eV and higher.
With the advent of space-filling full-potential LEED
calculations,1 the correct surface barrier can be included, but
this requires, especially at these energies, extended CPU
time. Another approach relies on smooth continuous
matching2 of the solutions inside the crystal to those in the
vacuum. The inclusion of the surface potential by the
propagation-matrix method3 has proven to be an ill-posed
problem.4 The reason is the formulation as an initial value
problem, which does not ensure the crucial continuous de-
pendence on the boundary values. This is guaranteed by the
two-side boundary conditions.4,5 Modern treatments of ellip-
tic problems often employ a discretization in direct space
instead of choosing physically motivated basis functions. A
recent work on LEED and low-energy-positron diffraction
presented a three-dimensional finite-difference method.6 For
the lower energies of ultraviolet photoemission spectroscopy,
the Coulomb singularities of the cores are less important.
They can be avoided by using pseudopotentials, for which a
mixed representation of the wave function seems to be suit-
able here.

In this contribution we address a direct, methodically
simple, and fast solution of the Schro¨dinger equation with
the scattering asymptotics treated as introduced by Lent and
Kirkner.7 The problem is formulated as a two-side boundary
problem. The calculations refer exemplary to the GaAs~110!
surface. The Schro¨dinger equation has to be solved for a
given energyE and a given direction of the electron incident
on the surface with a surface parallel wave vectorkW i . The
translation symmetry parallel to the surface allows a descrip-
tion of the wave functionC and the potentialV in the Laue

representation, consisting of a Fourier decomposition in the
xy plane parallel to the surface with the Fourier coefficients
wgW andVgW depending on the coordinatez of the direct space
perpendicular to the surface,

C~rW ,z!5(
gW

wgW~z!ei ~k
W

i1gW !•rW , ~1!

V~rW !5(
gW

VgW~z!eig
W
•rW1S~E,z!. ~2!

The two-dimensional vectorrW lies in thexy plane, the imagi-
nary optical potentialS accounts for the attenuation owing to
many-particle effects and other inelastic losses. The summa-
tion is over the reciprocal lattice vectorsgW . In the Laue rep-
resentation the Schro¨dinger equation appears as a system of
linear one-dimensional differential equations, which we dis-
cretize by a grid with step sizehz in the z direction. This
leads to the linear matrix equationAhz

wW hz
50 with the solu-

tion wW hz
and the coefficients
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The indices are the reciprocal lattice vectorsgW , gW 8 and the
grid points i ,i 8. The complex matrixAhz

is non-Hermitean
and indefinite. Since the potential relies on the Laue repre-
sentation without any restrictions, the method allows direct
application of potentials from modern band-structure compu-
tations. Nonlocal pseudopotentials can be applied in a way
similar to their use in three-dimensional

RAPID COMMUNICATIONS

PHYSICAL REVIEW B 15 MAY 1997-IIVOLUME 55, NUMBER 20

550163-1829/97/55~20!/13432~4!/$10.00 R13 432 © 1997 The American Physical Society



finite difference calculations of electronic structure.8 For the
calculation here we take as an example a potential, which
was repeatedly applied to photoemission calculations of
GaAs~110!.9 It is a local pseudopotential with the surface
barrier taking into account relaxation, corrugation, and a
smooth saturated image potential.

Equation~3! requires boundary conditions at the bulk and
at the vacuum side of the grid. The simplest model of a
surface potential is a single step towards the vacuum, as used
in matching calculations. A first guess for boundary condi-
tions far away from the surface inside the crystal and that
outside within the vacuum are Dirichlet values taken from
such preliminary calculations. In Fig. 1 the modulus of the
wave functions for different grid sizes is plotted. Plots~c!
and ~d! show irregularities around the bulk boundary. Even
with Neumann or mixed boundaries this feature cannot be
suppressed. Because the damping reduces the wave functions
to zero deep in the bulk, the required asymptotic behavior is
fulfilled by taking a zero value at a boundary sufficiently
remote from the surface. Since the damping depends on en-
ergy, the coordinate of the boundary in the bulk should be
chosen as energy dependent and automatically adjusted by
tracking the neighboring values of the wave function.

In the vacuum the wave functions still differ even for high
grid sizes as shown in Figs. 1~a! and 1~b!. Therefore, we
investigate this boundary more closely. In a LEED experi-
ment, a beam of electrons is scattered at the surface of the
crystal. The vacuum boundary condition has to guarantee
one single incoming plane wave. This can be tested by a
half-sided Fourier transformation of the wave function in the
vacuum, assuming that the Fourier grid is well separated
from the vicinity of the surface. The solution from a match-
ing calculation does fulfill the incoming beam asymptotics,
the subsequent grid calculation with the same step potential
does not. The Fourier spectrum of the grid wave function
shows additional incoming ghost waves that have contribu-
tions of up to 15% and thereby strongly deteriorate the

physical situation. Neumann and mixed boundaries from the
matching do not improve this unsatisfactory situation. Again
the matching does not provide a correct boundary condition
even far away from the crucial vicinity of the surface.

The correct boundary conditions in the vacuum are
achieved by use of the elegant and simple quantum transmit-
ting boundary method~QTBM!.7 The wave function in the
vacuum is expanded into a set of propagating waves

Cvac~rW ,z!5(
gW

~fgW
~1 !e1 ikgWz1fgW

~2 !e2 ikgWz!ei ~k
W

i1gW !•rW .

fgW
(1) andfgW

(2) are the amplitudes of the given incoming and
unknown outgoing waves, respectively. The grid wave func-
tion Cgrid is that of Eq.~1!. For a short description of the
quantum transmitting boundary method letLN„ … be a linear
function andFT( ) the two-dimensional Fourier transforma-
tion. Continuity at boundaryzr then yields at that plane

]

]z
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5LN„fgW
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From the continuity of the normal derivative follows

]

]z
Cgrid5LN„fgW

~1 ! ,wgW~zr !….

This mixed linear boundary value problem is the QTBM that
is inserted in Eq.~3! with the derivative being discretized.
The implementation of the QTBM is simple here due to the
Laue representation. With the QTBM the calculated wave
function fulfills the correct LEED asymptotics in the case of
the step barrier as it does for any corrugated barrier too.
Figure 2 shows the Fourier spectrum normal to the surface of
a grid calculation with the QTBM basing either on a step
potential or basing on the true barrier. The negative wave
numbers correspond to incoming waves. Both solutions
show the postulated LEED asymptotics of one incoming
wave. The barrier potential influences strongly the solution,
which is also illustrated by the plot of the wave functions in
Fig. 3.

FIG. 1. Sensitivity of the solution to the range of calculation:
wave functions at (x,y)5(0,0) for different grid sizes. The bound-
ary positions are marked ina, at which boundary conditions from a
previous matching calculation are used. The potential for the match-
ing was a step, here it is the smooth barrier.

FIG. 2. Comparison of grid calculations with a step potential
and a potential barrier: modulus of the Fourier amplitudes normal to
the surface in vacuum at (x,y)5(0,0). The squared amplitudes give
the LEED intensities.
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Equation~3! with the boundary conditions inserted gives
a quadratic, linear, and inhomogeneous system of equations,
which has a block tridiagonal coefficient matrix. As an ex-
ample we consider the GaAs~110! surface with a normal in-
cident electron beam at an energy ofEf518 eV, which in
vacuum corresponds to a kinetic energy ofEkin512.75 eV.
The lateral plane wave basis of 57 reciprocal lattice vectors
proved to be sufficient for the employed potential. With the
lattice constant ofa55.654 Å, the boundaries are chosen to
be at615a, enclosing 45 layers with 90 atoms. The large
distance from the surface to the vacuum boundary ensures a
sufficient decay of the image potential. The positions of the
boundaries deep inside the crystal and far outside in the
vacuum cause a large grid, whose step sizehz is bounded by
several conditions. First, the wave function has to be cor-
rectly represented on the grid. This bound can be estimated
by use of the sampling theorem. Furthermore, a small step
size is needed for a stable discretization and a safe conver-
gence of the iterative solvers. The Laplace operator has to
dominate the zero-order terms, which requirehz<0.06a
here. Further bounds are given by the demands of applica-
tions. Withhz50.012a a typical number of 2500 grid points
and 142 500 equations results.

Since the coefficient matrix results from an elliptic equa-
tion, is sparse, and is additionally a band matrix, a variety of
solvers are available. As for the photoemission spectra a
large series of final states has to be calculated, it is very
important to reduce the CPU time per final state. Several
direct and iterative solvers have been tested. Some of the
resulting CPU time and memory requirements are given in
Table I. Time and memory increase linear with the number
of grid points due to the simple structure of the coefficient
matrix. The fastest direct solver was a routine in band stor-
age mode performing an LU factorization that needs 98 s for
the test problem with a slope of 3.931022 s per grid point. It
needs less than half of the time than a LEED calculation with
space-filling potentials at this energy or also a conventional
matching at a potential step.

Iterative solvers in combination with multigrid methods
are highly successful in solving differential equations.10

They have recently been applied to the calculations of large-
scale electronic structure.11 We implemented a two- and a

three-grid method. For the smoothing, the squared Jacobi
iteration has been applied. With a damping factor of 0.5 the
best convergence rates have been obtained. The Laue repre-
sentation simplifies the implementation of the QTBM, but it
causes strong codiagonals due to the potential coefficients.
Therefore on the first level the equations must be treated by
a direct solver, and the Jacobi iteration is only used for
smoothing on the finer grids. For the step size of 0.018a on
the coarse grid the two-grid iteration needs 20 steps to
achieve the same mean defect of;10214 as the direct solver.

FIG. 4. Gray scale image and contour plot of the charge density
in theyz plane atx50 with az interval from23.55a to 3.95a. In
the y direction two unit cells are shown. The atoms lying in the
plane are drawn black, and in the right cell the projected positions
of the remaining atoms are gray. The different scales for they and
z directions are indicated by the Ångstro”m scale.

FIG. 3. Comparison of the wave functions from a step potential
and a potential barrier at (x,y)5(0,0). The position of the step is
indicated by the arrow.

TABLE I. CPU time and memory used by different direct and
iterative routines for a system of 142 500 equations on a CRAY-
J916. As direct solvers routines from the International Mathematics
and Scientific Library were used. For the routine with the LU fac-
torization of a sparse matrix the time is extrapolated from tests with
smaller grids. The given memory is required by the 64-bit architec-
ture of the Cray.

Method CPU time~s! Memory ~MB!

Sparse Gauss 1862 747
Sparse LU ~1862! .2000
Band LU with Refinement 257 654
Band LU without Refinement 98 392
Two Grid 208 458
Three Grid V Cycle 343 360
Three Grid W Cycle 270 360
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The three-grid methods do not improve the convergence
rates. The defect after 20 iterations was for a W cycle
6310210 and for a V cycle 531027. Theoretically the mul-
tigrid method needsO(N) operations to solve a system of
N linear equations. The direct method for band matrices
needsO(Nw2) operations. Because the number of codiago-
nals w is the constant number of reciprocal lateral lattice
vectors, both methods have the same asymptotic behavior.
However, if a lower accuracy of the solution is acceptable,
the multigrid method becomes more favorable. If, e.g., a de-
fect of 1026 is sufficient, the two-grid method needs five
iterations and 91 s and gives an error in the modulus of the
wave function of less than 0.2%. Additionally, the maximum
memory used can be reduced within the multigrid method. If
the system of equations is solved directly, a (3w11)3N
matrix containing the LU factorization on the fine grid is
needed. In the multigrid iteration with depthl the
(2w11)3N matrix on the fine grid and the
(3w11)3(N22( l21)) LU matrix on the coarse grid are
stored. From the three-grid iteration onward, the required
memory for the multigrid procedures becomes less than in
the other methods. The multigrid calculations may possibly
be accelerated by the use of iterative solvers better suited to
the indefinite problem than the squared Jacobi iteration.

As a first application the charge-density distribution of a
LEED state is shown in Fig. 4. The interface crystal vacuum
and the exponential decay of the wave function into the crys-
tal are clearly visible. In the vacuum a distance of several
lattice constants from the surface is necessary to evolve an
interference pattern typical of superimposed waves, cf. Fig.
3. The importance of the correct treatment of the potential

barrier, which is already obvious from the different LEED
intensities in Fig. 2, is illustrated by the strong charge fluc-
tuations in the surface region. In contrast to tracking multiple
scattering paths in conventional LEED calculations, the
properties of LEED states are much easier interpreted with a
single wave function. It is interesting to see that there are
well localized regions of high charge density even at this
nonbonding energy. In applications to photoemission these
regions will give strong contributions to the photocurrent.
Thus, this treatment supports a local interpretation of the
emission. First photoemission calculations with these final
states were promising.

Solutions of the Schro¨dinger equation with scattering
boundary conditions have been calculated with a realistic
potential of the GaAs~110! surface. The correct asymptotic
behavior was obtained by the quantum transmitting boundary
method. The Laue representation allows a simple implemen-
tation of the boundary conditions. Several multigrid methods
and direct solvers have been tested. The fastest were a rou-
tine in band storage mode with LU factorization and when
stopping at a slightly lower accuracy, a two-grid method.
The multigrid method is competitive with direct solvers due
to its higher flexibility. A general implementation of the po-
tential allows us to use potentials from modernab initio
techniques. In an application, the calculated charge density
of a LEED state showed distributions with localized accumu-
lation regions of the excited electron. It may yield a comfort-
able access to a local interpretation of photoemission spectra.
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