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An analysis of two-dimensional~2D! effects in the nonlinear Kronig-Penney model is presented. We estab-
lish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equa-
tions. The stationary states of the 2D system and their stability is studied in the framework of these equations.
In particular it is shown that localized stationary states exist only in a finite interval of the excitation power.
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There is a growing interest in the subject of wave propa-
gation in nonlinear photonic band-gap materials and in peri-
odic nonlinear dielectric superlattices.1 The basic dynamics
in these systems is described by the fundamental nonlinear
Schrödinger ~NLS! equation

i ] tc1¹2c1 f ~rW,ucu2!c50, ~1!

wherec(rW,t) is the complex amplitude of quasimonochro-
matic wave trains, the variablet is time, andrW is the spatial
coordinate. The functionf (rW,ucu2) characterizes the nonlin-
earity of the medium, e.g., the nonlinear corrections of the
refractive index of the photonic band-gap materials or the
self-interaction of the quasiparticles in the superlattices. In
the case of periodic nonlinear superlattices consisting of al-
ternating layers of two dielectrics, it is usually assumed that
the nonlinearity of one of the dielectrics is much larger than
the nonlinearity of the other, so that the latter can be consid-
ered linear. If the thickness of the nonlinear layer is small
compared to the de Broglie wavelength within the layer, the
problem can be described by the nonlinear Kronig-Penney
model2 with the nonlinearityf (rW,ucu2) in the form

f ~rW,ucu2!5(
n

d~x2xn!uc~rW,t !u2 ~2!

corresponding to a focusing medium with cubic nonlinearity.
Herexn5nl is the coordinate of thenth nonlinear layer and
l is the distance between adjacent nonlinear layers. Wave
propagation in the framework of the one-dimensional~1D!
nonlinear Kronig-Penney model was studied in detail in
Refs. 3–5, but in these works the coupling between the lon-
gitudinal and transversal degrees of freedom was ignored. It
was shown that the transmission properties depend critically
on the injected wave power. Additionally, it was shown that
these systems exhibit bistability and multistability.

In the present paper we consider 2D effects in the nonlin-
ear Kronig-Penney model given by Eqs.~1! and ~2!, where
the complex amplitude depends on the coordinatex transver-
sal to the nonlinear layers and the longitudinal coordinate
z. Denoting with an overbarc̄, the Fourier transform with
respect tot andz, one can represent Eqs.~1! and ~2! in the
form

2~v1k2!c̄1]x
2c̄1(

n
d~x2xn!ucu2c50. ~3!

Similarly to the approach used in Refs. 3 and 5, we can solve
these equations in the linear medium and thereby express the
field c(x,z;t) for nl<x<(n11)l in terms of the complex
amplitudescn(z,t)[c(xn ,z;t) at the nonlinear layers,

c~x,z;t !5
sinh$k̂@~n11!l2x#%

sinh~ k̂ l !
cn~z,t !

1
sinh@ k̂~x2nl !#

sinh~ k̂ l !
cn11~z,t !, ~4!

where the complex amplitudecn(z,t) satisfies the set of
pseudodifferential equations

k̂

sinhl k̂
~cn111cn21!2

2k̂

tanhl k̂
cn1ucnu2cn50, ~5!

with periodic boundary conditionscn1N5cn , whereN is
the number of layers. In Eqs.~4! and ~5! the operatork̂ is
defined ask̂c5A2 i ] t2]z

2c or expressed in the Fourier do-

main k̂c5Av1k2c̄.
In passing it is worth noting the following two limits

where the system~5! reduces to systems previously dis-
cussed in the literature. First, considering the ordering

] t;]z
2;e, cn;Ae, cn111cn2122cn;ecn

for e→0, Eq. ~5! reduces to

l 2~ i ] t1]z
2!cn1cn111cn2122cn1 l ucnu2cn50, ~6!

which is the so-called discrete-continuum NLS equation in-
troduced by Aceveset al.6 to describe soliton dynamics in
nonlinear optical fiber arrays. Second, increasing the distance
l between the nonlinear layers, the interlayer coupling@the
first term on the left-hand side of Eq.~5!# vanishes and the
equation takes the form

2A2 i ] t2]z
2cn2ucnu2cn50, ~7!

which for static distributions] tc50 reduces to the nonlinear
Hilbert NLS equation introduced recently by Gaidideiet al.7
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In what follows we will be interested in stationary states
of the system and therefore study solutions of the form

cn~z,t !5fn~z!eil
2t, ~8!

wherel2 is the nonlinear frequency andfn(z) the amplitude
in thenth nonlinear layer. Since Eq.~5! is Galilean invariant,
standing excitations can always be Galileo boosted to any
velocity in thez direction. Introducing the ansatz~8! into Eq.
~5!, we obtain

Al22]z
2

sinh~ lAl22]z
2!

~fn111fn21!

22
Al22]z

2

tanh~ lAl22]z
2!

fn1ufnu2fn50. ~9!

Note that forz-independent amplitudesfn andl252k2 the
set of equations~9! reduces to the algebraic equations con-
sidered in Refs. 3–5. We shall consider spatially localized
~in the z direction! solutions (l2.0).

Equation~1! has as an integral of the motion the power

P5E
2`

`

dx dzucu25
1

2(n
]

]l2E
2`

`

dzufnu4, ~10!

where the last equality in Eq.~10! is obtained using Eqs.~1!,
~2! and~8!. Considering a finite numberN of nonlinear lay-
ers, a physically reasonable excitation pattern is
fn(z)5f(z), where the complex amplitudescn are the
same in all nonlinear layers. For this excitation pattern the
real-valued profilef(z) should satisfy the equation

L~]z!f1f350, ~11!

where the dispersion operatorL has the form

L~]z!522Al22]z
2tanhS l2Al22]z

2D . ~12!

The natural longitudinal extension of the excitation in this
system will clearly be determined by the valuesqj where the
dispersion operatorL(q) vanishes. From Eq.~12! it follows
that

qj
25l21S 2 jpl D 2, j50,1,2, . . . . ~13!

In the limit where the nonlinear frequencyl2 is small we
therefore expect nonlinear excitations with an extension
much larger than 1/qj ( j>1) so that only the scaleq0

21 is
important. A Pade´ approximation of degree~2,2! ~Ref. 8! for
the operatorL with respect to the variablel22]z

2 is there-
fore appropriate and yields

2
12

l

l22]z
2

12

l 2
1l22]z

2

f1f350. ~14!

Gaididei et al.9 have previously investigated this type of
equation and shown that under the boundary conditions
f(z)→0 for z→6` the solution only exists for
l<lc[A3/2l 2. From the analysis of Ref. 9 the powerP can

be found analytically and it can be seen thatP(l) is a non-
monotonic function with a local maximum. The conclusion
that stationary states exist only in a finite interval
0<P<Pm5P(lm) is confirmed by direct numerical simu-
lation of Eq.~9!. Figure 1 shows that the agreement with the
numerically obtained result is good forl2< 1/2 ~in the
simulations the lattice spacing wasl51), but for intermedi-
ate values of the nonlinear frequencyl2 there is only quali-
tative agreement. The discrepancy for larger values of the
nonlinear frequency and, in particular, the existence of the
limiting valuelc is due to the approximate character of Eq.
~14! since it was obtained from Eqs.~11! and ~12! in the
limit of small l. The numerical solution of Eqs.~11! and
~12! shows that the stationary states exist for any values of
l, but forl.lm the powerP is a monotonically decreasing
function ofl. This asymptotic behavior can easily be under-
stood since the scaling transformationf5l1/2R(z), z5lz,
together with the assumptionl l@ 1, reduces Eqs.~11! and
~12! to

22A12]z
2R1R350, ~15!

which is independent ofl. The applied scaling therefore
yieldsP; 1/l asl→`, which agrees with the results of the
numerical simulations~see Fig. 1!. A numerically obtained
example of the excitations described by Eqs.~11! and ~4! is
shown forl255.0 in Fig. 2.

Discussing the stability of the stationary states satisfying
Eq. ~11!, there are two sources of instability to be consid-
ered: longitudinal and transversal perturbations. The pertur-
bations of the first type are of the same symmetry with re-
spect to the transversal degrees of freedom as the stationary
state Eq.~11!, while the second type of perturbations breaks
this symmetry. The role of transversal perturbations is con-
sidered in the small amplitude limit@Eq. ~6!# of Eq. ~5!.
Linearizing Eq.~6! around the solutioncn(z,t)5eil

2tf(z),
the spectral problem

FIG. 1. PowerP of the stationary statecn(z,t)5f(z,t)eil
2t

versus the nonlinear frequencyl2. Numerical result from Eq.~11!
~dashed line!, Pade´ approximation ~14! ~full line!, and the
asymptotic relationP;1/l asl→` ~dotted line!. The spacing be-
tween the nonlinear layers isl51.
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F2 l 2]z
21l21 lf214sin2S ql2 D Gun1m l 2vn50,

F2 l 2]z
21l213lf214sin2S ql2 D Gvn2m l 2un50 ~16!

governs the evolution of perturbationscn(z,t)
5@f(z)1un(z,t)1 ivn(z,t)#exp(il

2t), un,vn;exp(iqn
1mt). These equations are similar to those determining the
soliton stability in 2D NLS models.10 Using the results of
Ref. 10 we get

m25
12

~p226!l 2F3l2l 22 4sin2S ql2 D G . ~17!

Thus the growth rate of the perturbations is real and an in-
stability occurs for perturbations with wave numbersq sat-
isfying 4sin2(ql/2), 3l2l 2.

Studying the role of longitudinal perturbations, we use the
fact that Eq.~1! is the Euler-Lagrange equation for the action

S5E
2`

`

dtE drWS i2 ~] tc*c2] tcc* !

1c*¹2c1
1

2(n d~x2xn!ucu4D . ~18!

Assuming thatF(rW,L)eiLt is the stationary solution of Eq.
~1!, we shall investigate the longitudinal stability of the sta-
tionary state using a variational approach with a trial func-
tion in the form

c~rW,t !5AP
P

F„rW,L~ t !…eia~ t !urWu, ~19!

whereL(t) anda(t) are real time-dependent variational pa-
rameters,urWu5Ax21z2, and P(t)5*drWF2

„rW,L(t)… is the
power that corresponds to the real-valued stateF(rW,L) with
L being an arbitrary function oft. Note that the function~19!
automatically satisfies the normalization condition~10! with
a powerP. Inserting Eq.~19! into Eq. ~18!, we obtain the
effective action

S5PFJ~L!
da

dt
2a21L2

W

P G1
1

2

P2

P2W, ~20!

where

W5(
n
E drWd~x2xn!F

4, J5E drWurWuF2. ~21!

W is the effective nonlinear interaction, while the parameter
J characterizes the spatial distribution of the excitation. The
Euler-Lagrange equations for the action~20! can be reduced
to

M ~L!
d2L

dt2
1
1

2

dM~L!

dL S dL

dt D
2

5k~L!SPP21D , ~22!

where

M ~L!5
1

2S dJdL D 2, k~L!511W
d

dL

1

P
. ~23!

The stationary pointsLs of Eq. ~22! are then determined by
the equalityP5P. For small deviationsd5L2Ls from the
stationary state we obtain from Eq.~22!

M ~Ls!
d2d

dt2
2Pk~Ls!S d

dL

1

PD
Ls

d50, ~24!

and for a positive-definite nonlinear termW the condition for
instability reads

S dPdL D
Ls

, 0. ~25!

An equation of the same structure as Eq.~22! was recently
obtained for a 1D NLS equation by Pelinovskyet al.11 in the
framework of perturbation theory, which is valid near the
threshold of the soliton instability. Here and in our approach
the equations describe in an approximate way the dynamics
of the excitations.

At this point it is appropriate to note that Eq.~22! can be
considered as an equation of motion for an effective particle
with the kinetic energyT and potential energyU given by

T5
1

2
M ~L!S dL

dt D
2

, U5
1

PH$F%, ~26!

where

H$F%52LP1
WP
P

2
1

2

WP2

P2 ~27!

is the Hamiltonian of the system in the stationary state
F(rW,L). In accordance with Eqs.~26! and~27!, the minima
of the effective potentialU correspond to the stable station-
ary states and the dynamics governed by Eq.~22! has an
oscillatory character, while the maxima of the functionU
correspond to unstable stationary states.

Returning to the system described by Eq.~1! with a non-
linear term given by Eq.~2!, we see~Fig. 1! that stationary
states defined by Eqs.~8! and ~11! are unstable with respect
to longitudinal perturbations for

FIG. 2. Stationary state localized in the longitudinal direction
with l255.0 The spacing between the nonlinear layers isl5p, so
the nonlinear layers are positioned atx5 . . . ,2p,0,p, . . . .
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l2l 2.lm
2 , ~28!

where the right-hand side of this inequality represents the
value of the nonlinear frequency for which the powerP in
the system with the interlayer spacingl51 reaches its maxi-
mum valuelm

2 .1.25. Combining the inequality given in
connection with Eq.~17! and the inequality~28!, we expect
stable stationary solutions of the form given in Eqs.~8! and
~11! for nonlinear frequencies satisfying the condition

l2,
1

l 2
minH 43sin2S p

ND ,lm
2 J . ~29!

In particular, this means that the stationary state
cn(z,t)5eil

2tf(z) is stable neither in the case of only one
nonlinear layer (l→`) nor in the quasicontinuum limit
(N→`).

Assuming a large number of nonlinear layers, we now
consider the general properties of the stationary states local-
ized in the transversal as well as the longitudinal direction.
Considering in Eq.~9! the nonlinear term as an inhomoge-
neity, we obtain

f̄n~k!5
1

2(m Gn2m~k,l!ufmu2fm~k!, ~30!

where the lattice Green’s function is

Gn2m~k,l!5
sinh~ lAl21k2!

Al21k2
1

N

3(
q

eiql ~n2m!

cosh~ lAl21k2!2cos~ql !

→
1

Al21k2
e2un2mu lAl21k2 ~31!

asN→`. In terms of the spatial variablesz andn we there-
fore obtain

fn~z!5
1

2(m E
2`

`

dyK0„lA~n2m!2l 21~z2y!2…

3ufm~y!u2fm~y!, ~32!

whereK0(z) is the modified Bessel function of the second
kind. The properties of the soliton in the 2D NLS model are
recovered for smalll since the sum in Eq.~32! in this limit
can be approximated by an integral, where the kernel
K0(lAx21z2) is the Green’s function for the 2D Helmholtz
equation (¹22l2)g(x,z)50.12 In particular, this means that
the powerP has a finite value asl→0.

For finite nonlinear frequenciesl2 the asymptotic far field
(lAl 2n21z2 @ 1) behavior of the stationary solution
fn(z) is given by

fn~z!;K0~lAl 2n21z2!

;S p

2lAl 2n21z2
D 1/2exp~2lAl 2n21z2!, ~33!

so the excitation is exponentially localized in both spatial
directions. Using a scaling argument similar to that used in
Eq. ~15!, we again obtain that the powerP is monotonically
decreasing,P;l21 asl→`. This result points to longitu-
dinal instability of the localized stationary state.

In summary, we have studied 2D effects in the nonlinear
Kronig-Penney model and shown that the problem can be
reduced to a set of 1D pseudodifferential equations that are
generalizations of the equations obtained in the equivalent
1D problem. We have shown that the system has stationary
states that are uniform in all nonlinear layers, and the con-
straints under which these stationary states are stable have
been determined. In particular we have found that the local-
ized stationary states only exists in a finite interval of the
excitation powerP. Finally, we have shown that the system
also permits states that are localized in both spatial direction.
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