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Two-dimensional effects in nonlinear Kronig-Penney models
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An analysis of two-dimension&PD) effects in the nonlinear Kronig-Penney model is presented. We estab-
lish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equa-
tions. The stationary states of the 2D system and their stability is studied in the framework of these equations.
In particular it is shown that localized stationary states exist only in a finite interval of the excitation power.
[S0163-18207)52220-X

There is a growing interest in the subject of wave propa- - -
gation in nonlinear photonic band-gap materials and in peri- —(0+K) Yt g+ D S(x—x)|Y2p=0. (3
odic nonlinear dielectric superlattictsThe basic dynamics "
in these systems is described by the fundamental nonline&imilarly to the approach used in Refs. 3 and 5, we can solve

Schralinger (NLS) equation these equations in the linear medium and thereby express the
field ¢(x,z;t) for nl=sx<(n+1)l in terms of the complex

0.+ V2+ f(F'| |2 =0, (1) amplitudesi,(z,t) = ¢¥(x,,z;t) at the nonlinear layers,

where w(F,t) is the complex amplitude of quasimonochro- P(X,z;t) = smh{K[.(nJrAl)l Rl n(z,t)

matic wave trains, the variabteis time, andr is the spatial sinh(«l)

coqrdinate. The fL_Jnctiom(F,|¢|2) Cha_racterizes th_e nonlin- sin k(x—nl)]

earity of the medium, e.g., the nonlinear corrections of the — Una1(z,1), 4

refractive index of the photonic band-gap materials or the sinh(«l)

self-interaction of the quasiparticles in the superlattices. INvhere the complex amplitude, (z,t) satisfies the set of
the case of periodic nonlllnear.sup_erllattlces consisting of alPseudodifferential equations
ternating layers of two dielectrics, it is usually assumed tha

the nonlinearity of one of the dielectrics is much larger than pt p
the nonlinearity of the other, so that the latter can be consid- —— (Yne1t ¥n_1)— ——= Un+|Un?¥,=0, (5
ered linear. If the thickness of the nonlinear layer is small sinh « tanH

compared to the de Broglie wavelength within the layer, the . . " _ .
problem can be described by the nonlinear Kronig-Penne%'/:]'th perlt())dlc :)(ljundary cond|t|on$g+,\,—;]pn, whereI\AI !S
modef with the nonlinearityf (r,|#|?) in the form e number of layers. In Eq¢4) and (5) the operatorx is

defineiashp: Nl (9221,0 or expressed in the Fourier do-

. . main k= o+ K2¢.

F(r ]2 =2 S(x—x)| (1 ,1)]2 2 In passing it is worth noting the following two limits
. where the systen{5) reduces to systems previously dis-

: . . . . . . cussed in the literature. First, considering the ordering
corresponding to a focusing medium with cubic nonlinearity.

Herex,=nl is the coordinate of thath nonlinear layer and G~ ~€,  Pa€ ni1t b1 20~ €

| is the distance between adjacent nonlinear layers. Wave

propagation in the framework of the one-dimensiofid)  for e—0, Eq.(5) reduces to

nonlinear Kronig-Penney model was studied in detail in ) ,

Refs. 3—5, but in these works the coupling between the lon-  12(19i+35) ¥+ ¥ 1+ 1= 240+ 14| >4, =0, (6)
gitudinal and transversal degrees of freedom was ignored.
was shown that the transmission properties depend criticall
on the injected wave power. Additionally, it was shown that
these systems exhibit bistability and multistability.

In the present paper we consider 2D effects in the nonlin
ear Kronig-Penney model given by Ed&) and (2), where
the complex amplitude depends on the coordixaiansver-
sal to thg norﬂmear layers and the Iorllgltudlnal coorq|nate 2\/T‘¢9flﬂn—|lﬂn|zlﬂn:0, @)

z. Denoting with an overbay, the Fourier transform with
respect ta andz, one can represent Eqd) and(2) in the  which for static distributiong,=0 reduces to the nonlinear
form Hilbert NLS equation introduced recently by Gaididxial.”

%hich is the so-called discrete-continuum NLS equation in-
troduced by Aceveet al® to describe soliton dynamics in
nonlinear optical fiber arrays. Second, increasing the distance
| between the nonlinear layers, the interlayer couplithg

first term on the left-hand side of E¢p)] vanishes and the
equation takes the form
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In what follows we will be interested in stationary states
of the system and therefore study solutions of the form
i\ 2
In(z,t) = pn(2)€™, tS)

where? is the nonlinear frequency angl,(z) the amplitude
in thenth nonlinear layer. Since E€p) is Galilean invariant,

standing excitations can always be Galileo boosted to any P

velocity in thez direction. Introducing the ansat®) into Eq.
(5), we obtain

L S P
_— +
sini(Iy\2—=g2) "t Tt

Al SR PR S
— L .+ =0.
tank(l \2—2) " T T
Note that forz-independent amplitudes, and\?= —k? the

-2

set of equationg9) reduces to the algebraic equations con-
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FIG. 1. PowerP of the stationary states,(z,t)= ¢(z,t)e*™

sidered in Refs. 3-5. We shall consider spatially localizeg/ersus the nonlinear frequenay. Numerical result from Eq(11)

(in the z direction solutions §2>0).
Equation(1) has as an integral of the motion the power

p= [ axadu=33 [ adelt o
—o 24 )«

where the last equality in E@L0) is obtained using Eqsl),
(2) and(8). Considering a finite numbed of nonlinear lay-
ers, a physically reasonable excitation pattern
én(2)= ¢(z), where the complex amplitudeg,, are the

(dashed ling Pade approximation (14) (full line), and the
asymptotic relatioP~ 1/A as\—oo (dotted ling. The spacing be-
tween the nonlinear layers is=1.

be found analytically and it can be seen tR4h) is a non-

monotonic function with a local maximum. The conclusion
that stationary states exist only in a finite interval
0<P=<P,=P(\,) is confirmed by direct numerical simu-

iSation of Eq.(9). Figure 1 shows that the agreement with the

numerically obtained result is good for’< 1/2 (in the

same in all nonlinear layers. For this excitation pattern theimulations the lattice spacing whs 1), but for intermedi-

real-valued profilep(z) should satisfy the equation

L(3)p+¢*=0, (11)
where the dispersion operatgdrhas the form
I
L(d,)=—2\?~ aﬁtanr(EW— a§> : (12

The natural longitudinal extension of the excitation in this
system will clearly be determined by the valugswhere the
dispersion operata£(q) vanishes. From Eq12) it follows
that

2j77)2
-

In the limit where the nonlinear frequenay’ is small we

ate values of the nonlinear frequenxy there is only quali-
tative agreement. The discrepancy for larger values of the
nonlinear frequency and, in particular, the existence of the
limiting value \. is due to the approximate character of Eq.
(14) since it was obtained from Eqg¢l1) and (12) in the
limit of small N\. The numerical solution of Eq411) and
(12 shows that the stationary states exist for any values of
\, but forA >\, the powerP is a monotonically decreasing
function of A. This asymptotic behavior can easily be under-
stood since the scaling transformatign= \*?R(¢), {=\z,
together with the assumptiaa > 1, reduces Eqgq.11) and
(12) to

— _ 52 3_
2\1-#ZR+R3=0,

which is independent ok. The applied scaling therefore

(15

therefore expect nonlinear excitations with an extensioryieldsP~ 1/\ asA —oo, which agrees with the results of the

much larger than & (j=1) so that only the :scalqgl is
important. A Pad@pproximation of degre€,2) (Ref. 8 for
the operatorZ with respect to the variablk?— 4?2 is there-
fore appropriate and yields

)\2_02
| 12—2‘75Jr $°=0.
RSt

12

(14

numerical simulationgsee Fig. 1. A numerically obtained
example of the excitations described by E(sl) and(4) is
shown forn2=5.0 in Fig. 2.

Discussing the stability of the stationary states satisfying
Eq. (112), there are two sources of instability to be consid-
ered: longitudinal and transversal perturbations. The pertur-
bations of the first type are of the same symmetry with re-
spect to the transversal degrees of freedom as the stationary
state Eq(11), while the second type of perturbations breaks

Gaididei et al® have previously investigated this type of this symmetry. The role of transversal perturbations is con-
equation and shown that under the boundary conditionsidered in the small amplitude limtEq. (6)] of Eq. (5).
#(2)—0 for z—=x the solution only exists for Linearizing Eq.(6) around the solutiony,(z,t)=e*"¢(2),
A<\.=/3/22. From the analysis of Ref. 9 the powercan  the spectral problem
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Tyl s—pJAda 24 A W+1P2W 20
"M g et AT W (20

where

w=>, fdfé(x—xn)d>4, J=de|F|<D2. (21)
n

W is the effective nonlinear interaction, while the parameter
w2 J characterizes the spatial distribution of the excitation. The

Euler-Lagrange equations for the acti@®) can be reduced

to

MA d’A 1 dM(A)(dA 2_k A P ) 22
FIG. 2. Stationary state localized in the longitudinal direction ( )dtz 2 dA \dt] (4) P (22
with A?=5.0 The spacing between the nonlinear layers=isr, so h
the nonlinear layers are positionedxat . ..,— 70,7, .... where

1/dJ\2 d 1
M(A)ZE(J) , k(A)=1+WHE. (23

|
[—I2a§+ N2+ %+ 4sz(%) up+ ul?v,=0,

The stationary pointd ¢ of Eq. (22) are then determined by

ql the equalityP="P. For small deviation$= A — A4 from the
— 12924+ N2+ 31 $p?+ 4sir? ?) vo—pml?u,=0 (16)  stationary state we obtain from E@2)
2
governs the evolution of perturbations ,(z,t) M (A )= — PK(A (__) 5=0 24
=[$(2) +un(z.t) +iva(z)]eXp(AH),  upv,~explan (Age ~PHAIgx b A, 2

+ut). These equations are similar to those determining the
soliton stability in 2D NLS model$’ Using the results of and for a positive-definite nonlinear teiv the condition for
Ref. 10 we get instability reads

2 12 3\21%— 4sir? q—') (17) d—P) < 0. (25
K @2=6)I12 2] dA [,

Thus the growth rate of the perturbations is real and an inAn equation of the same structure as E2R) was recently
stability occurs for perturbations with wave numbersat-  obtained for a 1D NLS equation by Pelinovsiyal ! in the
isfying 4sirf(ql/2)< 3\212. framework of perturbation theory, which is valid near the
Studying the role of longitudinal perturbations, we use thethreshold of the soliton instability. Here and in our approach
fact that Eq(1) is the Euler-Lagrange equation for the action the equations describe in an approximate way the dynamics
of the excitations.
* S At this point it is appropriate to note that E@2) can be
S= ﬁwdtJ dr(i(‘?t‘/’* Y= ogy*) considered as an equation of motion for an effective particle
with the kinetic energyl and potential energy given by

* 72 1 4
TPV S dxxlylt]. (9 1 dA |2 1
) | T—EM(A) rrlk U—7—;H{¢}, (26)
Assuming thatP(r,A)e'*! is the stationary solution of Eq. wher
(1), we shall investigate the longitudinal stability of the sta- ere
tionary state using a variational approach with a trial func- WP 1 WP
tion in the form =_ -
H{®}=-AP+ —5-—5 52 (27)
- P . s ; e . .
W7 )= \/:CD(r,A(t))e'“““|, (19 is Ehe Hamiltonian of thg system in the stauongry state
P ®(r,A). In accordance with Eq$26) and(27), the minima

. - of the effective potentiall correspond to the stable station-
WhereA(t)*anda(t) are real tlme-depfzndeant variational pa- ary states and the dynamics governed by &) has an
rameters,|r|=yx*+2z, and P(t)=fdrd>2(r,A(t)) is the  oscillatory character, while the maxima of the function
power that corresponds to the real-valued stafe, A) with correspond to unstable stationary states.

A being an arbitrary function df Note that the functio19) Returning to the system described by E. with a non-
automatically satisfies the normalization conditid®) with linear term given by Eq(2), we seg(Fig. 1) that stationary
a powerP. Inserting Eq.(19) into Eq. (18), we obtain the states defined by Eq&3) and(11) are unstable with respect
effective action to longitudinal perturbations for
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NAZ>NE, 28 1o (*

" 29 $n(2)=52 J dyKoy(n—m)21%+(z—y)?)
where the right-hand side of this inequality represents the moJo
value of the nonlinear frequency for which the poweiin X | (V)2 Pm(Y), (32)
the system with the interlayer spacihg 1 reaches its maxi-
mum value)\fnzl.ZS. Combining the inequality given in
connection with Eq(17) and the inequality28), we expect
stable stationary solutions of the form given in E(®.and
(112) for nonlinear frequencies satisfying the condition

whereKy(z) is the modified Bessel function of the second
kind. The properties of the soliton in the 2D NLS model are
recovered for smalk since the sum in Eq32) in this limit
can be approximated by an integral, where the kernel
Ko(A X%+ Z?) is the Green’s function for the 2D Helmholtz
equation ¥2—\?)g(x,z)=0.2In particular, this means that
,)\2]_ (29)  the powerP has a finite value as—0.

m For finite nonlinear frequencies’ the asymptotic far field

. . . (M17n?+Z2 > 1) behavior of the stationary solution
In particular, this means that the stationary state¢n(z) is given by

wn(z,t)=e‘”2‘¢(z) is stable neither in the case of only one S—
nonlinear layer (—) nor in the quasicontinuum limit #n(2)~Ko(AVI“n“+2%)
(N—x), - 1/2
Assuming a large number of nonlinear layers, we now
. . . ’ — | exp(—M12n%+23), (33
consider the general properties of the stationary states local- 231202+ 22 X ) (339
ized in the transversal as well as the longitudinal direction.

Considering in Eq(9) the nonlinear term as an inhomoge- S0 th_e excitation s exponennally Ioca!|z_ed in both spat|e_1l
neity, we obtain directions. Using a scaling argument similar to that used in

Eq. (15), we again obtain that the powE€ris monotonically
L 1 decreasingP~\ "1 asA—o. This result points to longitu-
dn(K)==> G m(KN)| bl 2dm(K), (30  dinal instability of the localized stationary state.

2°m In summary, we have studied 2D effects in the nonlinear
Kronig-Penney model and shown that the problem can be
reduced to a set of 1D pseudodifferential equations that are

1 4 T
2 - __min{ =sird| —
A <|2m|n[ 33|r12(N

where the lattice Green’s function is

, generalizations of the equations obtained in the equivalent

G (k)= sinh(lyA“+k%) 1 1D problem. We have shown that the system has stationary
nmm NN N states that are uniform in all nonlinear layers, and the con-
_ straints under which these stationary states are stable have

o glal(n=m been determined. In particular we have found that the local-

| N2+ kD) — | |zeq st_atlonary statgs only exists in a finite interval of the

@ cosHIVA )~ cosal) excitation powerP. Finally, we have shown that the system
also permits states that are localized in both spatial direction.
H;e—ln—m\l\)\2+k2 (31) P P
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