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Resonances of dynamical checkerboard states in Josephson arrays with self-inductance
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We study the dynamics of fully frustrated, underdamped Josephson arrays. Experiments reveal remarkable
similarities among the dc current-voltage characteristics of several kinds of square and triangular arrays, where
two resonant voltages are observed. Simulations indicate that a dynamical checkerboard solution underlies
these similarities. By assuming such a solution, we reduce the governing equations to three coupled pendulum
equations, and thereby calculate the voltages of the intrinsic resonances analy&l§3-182807)50222-0

Discrete arrays of nonlinear oscillators can exhibit diversethat the junction phases are organized into a dynamical
spatiotemporal patterns. Examples include kinks in chains ofheckerboard solution. This ansatz reduces the governing
coupled pendula, neuromuscular waves in the intestine, angrcuit equations to three coupled pendulum equations,
modulated waves and chaos in networks of phase-lockewhich in turn allows us to obtain analytical predictions for
loops! Although such oscillator arrays are difficult to ana- the observed resonant voltages.
|yze comp|ete|y’ one can often use the Symmetries of the Previous authors have used the ansatz of a dynamical
system to construct simple patterns composed of spatiallgheckerboard, or some other symmetric pattern, to obtain
repeated “unit cells.” Then the governing equations reduceeduced equations for frustrated Josephson afraysOur
to a much smaller set of equations for each unit cell. Thiganalysis extends this work in three respe¢ts:Inductance
strategy has been used recently to construct rotating spirgffects are essential to explain some of the experimental re-
waves in a model of discrete excitable metlia.

In this paper we present experiments, simulations, and .
analysis on a broad class of discrete arrays of nonlinear yr’
Josephson-junction oscillators. Networks ranging from B
single square and triangular plaquettes to one- and two-
dimensional arrays are considered. In each case, the junc-

tions are identical and underdamped, and the arrays are 1VSQ
driven by a dc bias current. These arrays are known to have Il
complicated dynamics, and only a few analytical results have ¢1 ¢2
been obtained-® However, one class of arrays is relatively -0}

} . ; I AR
tractable: fully frustrated arrays, i.e., arrays subjected to an SQ

applied magnetic field of = 1/2 flux quanta per plaquette on
average. Then the ground state is highly symmetric—the .
junction phases adopt a checkerboard pattéFhis pattern LA
can be robust: even if the array is driven by an applied dc

current* or a combined a¢dc current, as in studies of giant T B \
Shapiro stepa? the checkerboard can persist, though now in W : boh bor d

URRE:

ol

the form of a propagating state. 2DSQ 2DTR
All of the fully frustrated arrays we have tested experi-
mentally exhibit strikingly similar dc current-voltagd \() FIG. 1. Arrays and their checkerboard states: Single sq&®e

characterls_tllsg, with  two E(i?zonant voltagesV,.  anq single triangulafTR) plaquettes; 1D squa@HSQ and 1VSQ
~®@(LsC) " andV_~do(L,C)" " (Here® is the flux  ang 1p triangulaflHTR and 1VTR arrays; 2D squar@DSQ and
quantuml s is the loop inductanceC is the junction capaci-  2p triangular(2DTR) arrays. The phases of the vertical junctions
tance, and. ;=®/2ml is the Josephson inductance for a ¢, and ¢, and the horizontal junctiog; are defined in the SQ and
junction with a critical current;). We show below that these TR diagrams. The checkerboard solutions are constructed by com-
similarities in thelV curves can be explained by assumingbining these single plaquettes with their symmetric counterparts.
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sults. Therefore, we include self-inductance in the analysigxtensively, V. is also independent of the number of cells
and simulations as a first approximatid@) The governing in the x direction!® These results suggest that local geo-
equations for the dynamical checkerboard are shown to havwaetrical properties, i.e.Ls, determine the voltage. A
the same algebraic form for all eight arrays in Fig. 1, up totemperature-independent voltage ~®,//LC is expected
topological factors that encode the array geometry. Thifrom dimensional arguments and is found to be approxi-
shared structure allows a unified analysis of the differenimately correct experimentally and in simulations. When
networks.(3) Intrinsic resonant voltages are predicted ana-varying the magnetic frustratiow,, has the usual periodic-
lytically from the reduced equations. ity in f and reflection symmetry abofit= 1/2 but it is found
Figure 1 depicts the arrays and their dynamical checkerto be almost independent df for 0.2<f<0.5. Thus, al-
board states. Junctiorisot shown exist along each branch, though the value oW, is similar to the Eck peak in 1D
and current is applied at each node along the top and boparallel arrays? it does not have the sine-likedependence
tom edges. Throughout this paper, “vertical” refers to the observed in that casé.Moreover, this upper step does not
direction of current injection. We consider junctions with appear forf <0.2 or for A<0.5 as the system switches di-
identical critical currentsl, resistancesR, and capaci- rectly into row-switched states. The lower voltage , on
tancesC. Experiments have been performed on arrays othe other hand, is temperature dependent, suggesting a de-
Nb-Al,O,-Nb junction® with small dampingF=ﬂ;1’2, pendence on the Josephson inductance; namely,
where 5< 8.<25 is the McCumber parameter. The magneticV_~®,/+/L,;(T)C, up to a factor of order unity.
field is applied normal to the arrays by an external solenoid. The dynamical origin of these two resonances is revealed
The two-dimensional penetration depih=L;/Lg, which  through numerical simulation of the complete arrays. The
can be viewed as a measure of the discreteness of the arraggverning equations result from current conservation at each
ranges from 0.5\ <2. By use of a diagnostic techniglle, node and from fluxoid quantization around each loop. The
we determine the parameters for each array: first, the meaurrentl; through each junction, in the resistively and ca-
surement oR, andl¢(T), with I(0)R,=1.9 mV, yields the  pacitively shunted junction model, i;=sing;+I'¢;+ ¢,
temperature-dependent Josephson inductagE); second,  where the currents are in units bf, and time is in units of

from the Fiske modes of the diagnostic we obt@irLs, and (L ;C)*? the inverse of the plasma frequency. Fluxoid quan-
the mutual inductance for nearest neighbors, which we fingization demands thak; ¢p;= — 2arf — I /\, where the sum

to be Sma"]:l’lz To facilitate Comparisons between different is around a |00p|,cir is the |00p current, and 0n|y Sd“bop)_
types of arrays, the triangular arrays were built by decimatinductances are considered. Simulaltets for square arrays
ing every other horizontal junction from the correspondingare consistent with the experiments.
square array; thus their self-inductances are equal. Furthermore, the simulations &t 1/2 suggest that solu-
Figure 2 shows the measuréd curves ( is the current  tjons with wavelength equal to two plaquettes, as shown in
per vertical junction normalized bl., andV is the voltage  Fig. 1, underlie the observed numerics. These dynamical
per row for three different geometries &t=1/2. The signa-  checkerboard solutions are constituted by single plaquettes
ture of all theselV’s is the appearance of jumps at two (SQ and TR as showpaired with their symmetric counter-
resonant voltages/, andV_. The upper step, which ends parts. Under these symmetry constraints, the number of rel-
atV, , is nearly vertical and independent of temperature. Foevant variables is greatly reduced and the dynamics of the
1HSQ and 2DSQ array@the arrays we have studied most whole array is governed by a set of three coupled equations.
Moreover, the equations for each of the eight arrays in Fig. 1
can be recast in the same algebraic form, up to constant

Lo factors that encode the array topology. In this unified formu-
lation, the fluxoid quantization condition &t 1/2 is
0.8 / \‘_A_,// Y-
f $1— g2~ hpg=—m+I3/(Amy) ey
0.64 FTHSQ _ o
: == g4 and the two current conservation conditions are
I a j
044 2DSQ I;+1,=21  and I,—1;=2m,4/m,. 2)
Hereh is the number of horizontal junctions per celi=2
0.2 for square and h=1 for triangular arrays and
m,=1+»,/2 wherev, is the number of neighboring cells in
8 the y direction; likewise,m,=1+v,/2. For example, the
0.0 0.1 0.2 0.3 0.4 0.5 1HSQ array hah=2, my=1, andm,=2, and the 1VTR
Voltage (mV) array hash=1, my=2, andm,=1.

It is convenient to introduce three new variables:

FIG. 2. ExperimentalV curves for three arrays: 1HTR array ?=(¢11 #2)/2, the average of the vertical phases;
(1x9 plaquetteswith 8.=8 and\=0.64; 1HSQ array (x7)  0=(é2—¢1—m)/2, which measures how much the differ-
with 8.=11 andA=0.76; and 2DSQ array (77) with 3,=20  €nce of the vertical phases differs from and ¢ = ¢3, the
and\ =0.92. Dashed lindV from harmonic balance for the 1HSQ top horizontal phase. When the arrays have horizontal junc-
array with the samg3, and an effective\ .= 0.61 which accounts tions, i.e.h#0, Egs.(1) and(2) can be rewritten as a system
for mutual inductance effecty/, andV_ are indicated for 1HTR. of three coupled nonlinear pendulum equations:
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é+T ¢—sing sing=1, (3) 0.14
. ) _Q+ —"“""’_':-:::113_;~_E::i::I ......
0+T 6+ cosp cos=—Am,(260+he), 4) S oo
-1 T,
L > . s 43
@+Te+sing=—Amy(20+he). (5) 1 s -8 ¢
0.10 T . . T -
Numerical simulations indicate that, for the parameter re- 7.0 75 8.0 8.5 9.0
gimes consideredy is approximately a uniformly whirling 0.20

phase with frequency, whereas botlp and ¢ librate sinu-
soidally at w. Thus, we approximate the solution as
¢=wt+Kk, 6=Bsin(wt+a), and ¢=Asinwt, where «, Kk,
A, B, andw are constants to be determined for each set of 0.104
driving conditions{I,I",\}. A harmonic balance calculation . ' _
with this assumed solution yields a characteristic with 7.0 75 8.0 8.5 9.0
two resonant peaks, as shown by the dashed line in Fig. 2 for Temperature (K)
the 1HSQ device. These peaks are typically associated with a
loss of stability of the underlying dynamical state, thus ex- FIG. 3. Normalized resonant voltages Vs measured for the
plaining the experimental steps. This semi-analyticap-  arrays presented in Fig. 2: 1HTRolid triangleg, 1HSQ (solid
proximates the voltages of the resonant steps reasonabdguares and 2DSQ(open squargs Dashed lines, Eq(6). Solid
well, although it does not provide a quantitative fit to thelines, Eq.(6) with L ¢ as defined in the text. Values &, /b,
measured currents. The details of this calculation will beffom numerical simulations of the 1HSQ array with only self-
given elsewher&> inductancepluses and the full inductance matri(crossesare also
Approximate formulas for the resonant voltages can b&hown. The 1HTR array was built from a 1HSQ by decimation of
obtained via a further simplification. Since the libration am-EVery other horizontal junction. Therefore, the geometrical unit
plitudesA andB are observed to be small for a wide range ofCells are identical and.;=23 pH andC=300 fF for the three
bias current, we regard both and # as small oscillations arrays.
driven by the whirling modeb. Then Eqs(4) and(5) can be
linearized and, in the limit of small dampind’&1), these
two equations have two resonance frequencies at

0.154

V-/b-

and the experimental data. In addition, the values and tem-

perature dependence ®f_ /b_ agree well with the theory

and simulations and, as expected, no inductance effects are
w2 =1/24\ mo=[(1/2+\xma)2—2am,]¥2 (g  Visible. _ o _

- Both the horizontal junctions and the inductance play es-
where o=1+hm,/(2m,). These frequencies agree with sential roles in the phenomena described above; without
the location of the peaks of thév from the full har- them, one or both of the observed resonances would be lost.
monic balance calculation. To clarify the physical mean-To see this, consider three well-studied limiting cases. First,
ing of the two resonances. , consider the limit of small if the horizontal junctions are absent, the SQ and TR arrays
inductance, A>1. Then, w,~\2\m, o=b, VA and w_ are simply two-junction superconducting quantum interfer-
~¢ Y2=p_. The corresponding voltages ave. ~b,®,/  ence devices with inductances, and 1HSQ and 1HTR become
(2myLC) andV_~b_ ®y/[27/L;(T)C], as guessed ear- 1D parallel arrays, which can be regarded as discrete ver-
lier from dimensional arguments. Thug,. is temperature sions of long Josephson junctions. The dynamics of these
independent while/_ depends orl; andb, andb_ are systems are then governed by only two equations, Ejs.
combinations of topological factors of order unifffor the  and(4) with h=0, since¢ is no longer a valid dynamical
single triangle(TR), b, =/3, as suggested by Yukon and variable. This system has a single linear resonance, at a fre-
Lin.®] quency o= +y2\Xmy=w ,|p—o. Second, in the limitA —o

Figure 3 shows good agreement between the temperaturghere inductances are neglected, there is no divergence in
dependence of the experimentatjuares and trianglesnd  the system3)—(5) since 6= —h¢/2. Thus, Eqs(4) and(5)
predicted(lines) normalized voltage¥ , /b, andV_/b_ for ~ are combined to eliminate (26+he¢) and the dynamics of
1HSQ, 2DSQ, and 1HTR arrays. The fact that Ef)  the system is then governed by only two equations: (Bp.
(dashed ling consistently overestimates the value forand a reduced equation foy
V. /b, can be attributed to an underestimation of the induc-
tance since simulations with self-inductance al¢pleses in
the figure¢ agree well with the theory. When simulations
with the full inductance matrix are performe@rossey
the resonant voltage moves down toward the experi{These equations include as a special case the 2DSQ system
mental data. The main effect of the mutual inductive cou-previously studied in Refs. 3 and 4 Note also that when
pling can be approximated by an effective inductancex—«, the SQ and 2DSQ equations are identical but this is
Lser=Ls{1+M(v+ry)} where M~0.12 is the ratio of no longer true when inductances are taken into accptmt.
the magnitude of the nearest-neighbor inductance to the seléonclusion, in the absence of inductance there is a single
inductance in square arralsThe solid line corresponds to linear resonant frequencw=o0 ?=w_|, ... Third, if
V, /b, calculated from Eq(6) with this effective induc- there are neither horizontal junctions nor inductances, the
tance and predicts well both the full inductance simulationssole dynamical Eq(3) has no resonances.

2 h

. . 1h{ [2 m,
0+T 6+— =i sin = 6|+ —cos cosp; =0. )
o m,
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These limiting cases also suggest a heuristic explanatiostability. If it is unstable, or if the array organizes itself in
for the origin of the resonances. Xt_, as the checkerboard some alternative stable state, the dynamics are not yet under-
slides across the array, it strongly excites spin waves, ostood. For instance, simulations of 2DTR arrays with low
equivalently, “ringing” oscillations of the junctions at an B. seem to show a different solutidithe “ribbon state”)
eigenfrequency close to their characteristic plasma frequenayhere the horizontal junctions are essentially inactive and a
[(L,(T)C] Y2 This resonance requires horizontal junctionscheckerboard is formed by double c&ighis solution is
but not inductance, and is temperature dependent. In coRmalogous to the striped columnar dynamical configuration
trast, the resonance ¥t is due to excitation of electromag- gpserved inf = 1/2 Shapiro steps in square arrd§sn both

netic mode§ of thg array. This resonance requires inductanc&ses, the arrays effectively behave as a collection of in-
but not horizontal junctions, and depends only on local geo- hase rows and, thus, have only one resonant voltage at

metrical properties of the array that are temperature indepe 7. |n_o. Experiments on triangular arrays will address these

d.ent.. The_ corre;pondlng eigenmode is mainly related to OSssues separately. Also, if the junctions are highly under-
cillations in the induced flux per cell.

The role of the horizontal junctions can be further ex_damp_ed, the checkerpoard state in Z.PSQ arrays can slide
plored by considering an anisotropic network where horizon_chaoucally‘.1 The conditions for the stability and the temporal

tal and vertical junctions are fabricated with the same proper'.OdICIty .Of the checkgrboard state, and the d'ynam|cs as-
cess and differ only in their area. Then the ratio of theirsomated with other possible states, are challenging problems

critical currents,n=1.,/l.3, parametrizes the anisotropy of for future investigation.
the array. In this case, the results from E(®—(6) are still We thank P. Caputo, S. Yukon, N. Lin, and A. Ustinov
valid with a renormalizedn;=my77, which specifies the par- for useful discussions and for sharing their unpublished re-
ticipation of the horizontal junctions in the dynamics of the sults on triangular arrays. This research was supported in part
array. by NSF Grant No. DMR-9402020 and Grant No. DMS-
Finally, we emphasize that our analysis is based on th8500948 and by Rome LaboratofAFMC) Grant No. F
assumption of a dynamical checkerboard state. Unfortu30602-96-2-0059. A.E.D. and E.T. acknowledge partial sup-
nately, very little is known about the conditions for its global port from the NSF.
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