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We study the dynamics of fully frustrated, underdamped Josephson arrays. Experiments reveal remarkable
similarities among the dc current-voltage characteristics of several kinds of square and triangular arrays, where
two resonant voltages are observed. Simulations indicate that a dynamical checkerboard solution underlies
these similarities. By assuming such a solution, we reduce the governing equations to three coupled pendulum
equations, and thereby calculate the voltages of the intrinsic resonances analytically.@S0163-1829~97!50222-0#

Discrete arrays of nonlinear oscillators can exhibit diverse
spatiotemporal patterns. Examples include kinks in chains of
coupled pendula, neuromuscular waves in the intestine, and
modulated waves and chaos in networks of phase-locked
loops.1 Although such oscillator arrays are difficult to ana-
lyze completely, one can often use the symmetries of the
system to construct simple patterns composed of spatially
repeated ‘‘unit cells.’’ Then the governing equations reduce
to a much smaller set of equations for each unit cell. This
strategy has been used recently to construct rotating spiral
waves in a model of discrete excitable media.2

In this paper we present experiments, simulations, and
analysis on a broad class of discrete arrays of nonlinear
Josephson-junction oscillators. Networks ranging from
single square and triangular plaquettes to one- and two-
dimensional arrays are considered. In each case, the junc-
tions are identical and underdamped, and the arrays are
driven by a dc bias current. These arrays are known to have
complicated dynamics, and only a few analytical results have
been obtained.3–6 However, one class of arrays is relatively
tractable: fully frustrated arrays, i.e., arrays subjected to an
applied magnetic field off51/2 flux quanta per plaquette on
average. Then the ground state is highly symmetric—the
junction phases adopt a checkerboard pattern.7 This pattern
can be robust: even if the array is driven by an applied dc
current,4 or a combined ac1dc current, as in studies of giant
Shapiro steps,3,8 the checkerboard can persist, though now in
the form of a propagating state.

All of the fully frustrated arrays we have tested experi-
mentally exhibit strikingly similar dc current-voltage (IV)
characteristics, with two resonant voltagesV1

;F0(LsC)
21/2 andV2;F0(LJC)

21/2. ~HereF0 is the flux
quantum,Ls is the loop inductance,C is the junction capaci-
tance, andLJ5F0/2pI c is the Josephson inductance for a
junction with a critical currentI c). We show below that these
similarities in theIV curves can be explained by assuming

that the junction phases are organized into a dynamical
checkerboard solution. This ansatz reduces the governing
circuit equations to three coupled pendulum equations,
which in turn allows us to obtain analytical predictions for
the observed resonant voltages.

Previous authors have used the ansatz of a dynamical
checkerboard, or some other symmetric pattern, to obtain
reduced equations for frustrated Josephson arrays.3–6,9 Our
analysis extends this work in three respects:~1! Inductance
effects are essential to explain some of the experimental re-

FIG. 1. Arrays and their checkerboard states: Single square~SQ!
and single triangular~TR! plaquettes; 1D square~1HSQ and 1VSQ!
and 1D triangular~1HTR and 1VTR! arrays; 2D square~2DSQ! and
2D triangular~2DTR! arrays. The phases of the vertical junctions
f1 andf2 and the horizontal junctionf3 are defined in the SQ and
TR diagrams. The checkerboard solutions are constructed by com-
bining these single plaquettes with their symmetric counterparts.
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sults. Therefore, we include self-inductance in the analysis
and simulations as a first approximation.~2! The governing
equations for the dynamical checkerboard are shown to have
the same algebraic form for all eight arrays in Fig. 1, up to
topological factors that encode the array geometry. This
shared structure allows a unified analysis of the different
networks.~3! Intrinsic resonant voltages are predicted ana-
lytically from the reduced equations.

Figure 1 depicts the arrays and their dynamical checker-
board states. Junctions~not shown! exist along each branch,
and current is applied at each node along the top and bot-
tom edges. Throughout this paper, ‘‘vertical’’ refers to the
direction of current injection. We consider junctions with
identical critical currentsI c , resistancesRn and capaci-
tancesC. Experiments have been performed on arrays of
Nb-Al 2Ox-Nb junctions10 with small dampingG5bc

21/2,
where 5,bc,25 is the McCumber parameter. The magnetic
field is applied normal to the arrays by an external solenoid.
The two-dimensional penetration depthl5LJ /Ls , which
can be viewed as a measure of the discreteness of the arrays,
ranges from 0.5,l,2. By use of a diagnostic technique,11

we determine the parameters for each array: first, the mea-
surement ofRn andI c(T), with I c(0)Rn51.9 mV, yields the
temperature-dependent Josephson inductanceLJ(T); second,
from the Fiske modes of the diagnostic we obtainC, Ls , and
the mutual inductance for nearest neighbors, which we find
to be small.11,12 To facilitate comparisons between different
types of arrays, the triangular arrays were built by decimat-
ing every other horizontal junction from the corresponding
square array; thus their self-inductances are equal.

Figure 2 shows the measuredIV curves (I is the current
per vertical junction normalized byI c , andV is the voltage
per row! for three different geometries atf51/2. The signa-
ture of all theseIV ’s is the appearance of jumps at two
resonant voltages,V1 andV2 . The upper step, which ends
atV1 , is nearly vertical and independent of temperature. For
1HSQ and 2DSQ arrays~the arrays we have studied most

extensively!, V1 is also independent of the number of cells
in the x direction.13 These results suggest that local geo-
metrical properties, i.e.,Ls , determine the voltage. A
temperature-independent voltageV1'F0 /ALsC is expected
from dimensional arguments and is found to be approxi-
mately correct experimentally and in simulations. When
varying the magnetic frustration,V1 has the usual periodic-
ity in f and reflection symmetry aboutf51/2 but it is found
to be almost independent off for 0.2, f,0.5. Thus, al-
though the value ofV1 is similar to the Eck peak in 1D
parallel arrays,14 it does not have the sine-likef dependence
observed in that case.13 Moreover, this upper step does not
appear forf,0.2 or for l,0.5 as the system switches di-
rectly into row-switched states. The lower voltageV2 , on
the other hand, is temperature dependent, suggesting a de-
pendence on the Josephson inductance; namely,
V2'F0 /ALJ(T)C, up to a factor of order unity.

The dynamical origin of these two resonances is revealed
through numerical simulation of the complete arrays. The
governing equations result from current conservation at each
node and from fluxoid quantization around each loop. The
current I j through each junction, in the resistively and ca-
pacitively shunted junction model, isI j5sinfj1Gḟj1f̈j
where the currents are in units ofI c , and time is in units of
(LJC)

1/2, the inverse of the plasma frequency. Fluxoid quan-
tization demands that( jf j522p f2I cir /l, where the sum
is around a loop,I cir is the loop current, and only self-~loop!-
inductances are considered. SimulatedIV ’s for square arrays
are consistent with the experiments.15

Furthermore, the simulations atf51/2 suggest that solu-
tions with wavelength equal to two plaquettes, as shown in
Fig. 1, underlie the observed numerics. These dynamical
checkerboard solutions are constituted by single plaquettes
~SQ and TR as shown! paired with their symmetric counter-
parts. Under these symmetry constraints, the number of rel-
evant variables is greatly reduced and the dynamics of the
whole array is governed by a set of three coupled equations.
Moreover, the equations for each of the eight arrays in Fig. 1
can be recast in the same algebraic form, up to constant
factors that encode the array topology. In this unified formu-
lation, the fluxoid quantization condition atf51/2 is

f12f22hf352p1I 3 /~lmy! ~1!

and the two current conservation conditions are

I 11I 252I and I 22I 152mxI 3/my . ~2!

Hereh is the number of horizontal junctions per cell (h52
for square and h51 for triangular arrays!, and
my511ny/2 whereny is the number of neighboring cells in
the y direction; likewise,mx511nx/2. For example, the
1HSQ array hash52, my51, andmx52, and the 1VTR
array hash51,my52, andmx51.

It is convenient to introduce three new variables:
f5(f11f2)/2, the average of the vertical phases;
u5(f22f12p)/2, which measures how much the differ-
ence of the vertical phases differs fromp; andw5f3, the
top horizontal phase. When the arrays have horizontal junc-
tions, i.e.hÞ0, Eqs.~1! and~2! can be rewritten as a system
of three coupled nonlinear pendulum equations:

FIG. 2. ExperimentalIV curves for three arrays: 1HTR array
(139 plaquettes! with bc58 and l50.64; 1HSQ array (137)
with bc511 andl50.76; and 2DSQ array (737) with bc520
andl50.92. Dashed line,IV from harmonic balance for the 1HSQ
array with the samebc and an effectiveleff50.61 which accounts
for mutual inductance effects.V1 andV2 are indicated for 1HTR.
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f̈1Gḟ2sinu sinf5I , ~3!

ü1Gu̇1cosf cosu52lmx~2u1hw!, ~4!

ẅ1Gẇ1sinw52lmy~2u1hw!. ~5!

Numerical simulations indicate that, for the parameter re-
gimes considered,f is approximately a uniformly whirling
phase with frequencyv, whereas bothu andw librate sinu-
soidally at v. Thus, we approximate the solution as
f5vt1k, u5Bsin(vt1a), and w5Asinvt, where a, k,
A, B, andv are constants to be determined for each set of
driving conditions$I ,G,l%. A harmonic balance calculation
with this assumed solution yields anIV characteristic with
two resonant peaks, as shown by the dashed line in Fig. 2 for
the 1HSQ device. These peaks are typically associated with a
loss of stability of the underlying dynamical state, thus ex-
plaining the experimental steps. This semi-analyticIV ap-
proximates the voltages of the resonant steps reasonably
well, although it does not provide a quantitative fit to the
measured currents. The details of this calculation will be
given elsewhere.15

Approximate formulas for the resonant voltages can be
obtained via a further simplification. Since the libration am-
plitudesA andB are observed to be small for a wide range of
bias current, we regard bothw and u as small oscillations
driven by the whirling modef. Then Eqs.~4! and~5! can be
linearized and, in the limit of small damping (G!1), these
two equations have two resonance frequencies at

v6
2 51/21l mxs6@~1/21lmxs!222lmx#

1/2, ~6!

where s511hmy /(2mx). These frequencies agree with
the location of the peaks of theIV from the full har-
monic balance calculation. To clarify the physical mean-
ing of the two resonancesv6 , consider the limit of small
inductance,l@1. Then,v1'A2lmx s5b1 Al and v2

's21/25b2 . The corresponding voltages areV1'b1F0 /
(2pALsC) andV2'b2 F0 /@2pALJ(T)C#, as guessed ear-
lier from dimensional arguments. Thus,V1 is temperature
independent whileV2 depends onT; and b1 and b2 are
combinations of topological factors of order unity.@For the
single triangle~TR!, b15A3, as suggested by Yukon and
Lin.9#

Figure 3 shows good agreement between the temperature
dependence of the experimental~squares and triangles! and
predicted~lines! normalized voltagesV1 /b1 andV2 /b2 for
1HSQ, 2DSQ, and 1HTR arrays. The fact that Eq.~6!
~dashed line! consistently overestimates the value for
V1 /b1 can be attributed to an underestimation of the induc-
tance since simulations with self-inductance alone~pluses in
the figure! agree well with the theory. When simulations
with the full inductance matrix are performed~crosses!,
the resonant voltage moves down toward the experi-
mental data. The main effect of the mutual inductive cou-
pling can be approximated by an effective inductance
Ls,eff5Ls $11M (nx1ny)% whereM'0.12 is the ratio of
the magnitude of the nearest-neighbor inductance to the self-
inductance in square arrays.12 The solid line corresponds to
V1 /b1 calculated from Eq.~6! with this effective induc-
tance and predicts well both the full inductance simulations

and the experimental data. In addition, the values and tem-
perature dependence ofV2 /b2 agree well with the theory
and simulations and, as expected, no inductance effects are
visible.

Both the horizontal junctions and the inductance play es-
sential roles in the phenomena described above; without
them, one or both of the observed resonances would be lost.
To see this, consider three well-studied limiting cases. First,
if the horizontal junctions are absent, the SQ and TR arrays
are simply two-junction superconducting quantum interfer-
ence devices with inductances, and 1HSQ and 1HTR become
1D parallel arrays, which can be regarded as discrete ver-
sions of long Josephson junctions. The dynamics of these
systems are then governed by only two equations, Eqs.~3!
and ~4! with h50, sincew is no longer a valid dynamical
variable. This system has a single linear resonance, at a fre-
quencyv5A2lmx5v1uh50. Second, in the limitl→`
where inductances are neglected, there is no divergence in
the system~3!–~5! sinceu[2hw/2. Thus, Eqs.~4! and ~5!
are combined to eliminatel (2u1hw) and the dynamics of
the system is then governed by only two equations: Eq.~3!
and a reduced equation foru,

ü1Gu̇1
1

s

h

2H sinS 2h u D1
my

mx
cosu cosfJ 50. ~7!

~These equations include as a special case the 2DSQ system
previously studied in Refs. 3 and 4 Note also that when
l→`, the SQ and 2DSQ equations are identical but this is
no longer true when inductances are taken into account.! In
conclusion, in the absence of inductance there is a single
linear resonant frequencyv5s21/25v2ul→` . Third, if
there are neither horizontal junctions nor inductances, the
sole dynamical Eq.~3! has no resonances.

FIG. 3. Normalized resonant voltages vsT, measured for the
arrays presented in Fig. 2: 1HTR~solid triangles!, 1HSQ ~solid
squares!, and 2DSQ~open squares!. Dashed lines, Eq.~6!. Solid
lines, Eq.~6! with Ls,eff as defined in the text. Values ofV1 /b1

from numerical simulations of the 1HSQ array with only self-
inductance~pluses! and the full inductance matrix~crosses! are also
shown. The 1HTR array was built from a 1HSQ by decimation of
every other horizontal junction. Therefore, the geometrical unit
cells are identical andLs523 pH andC5300 fF for the three
arrays.
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These limiting cases also suggest a heuristic explanation
for the origin of the resonances. AtV2 , as the checkerboard
slides across the array, it strongly excites spin waves, or
equivalently, ‘‘ringing’’ oscillations of the junctions at an
eigenfrequency close to their characteristic plasma frequency
@(LJ(T)C#21/2. This resonance requires horizontal junctions
but not inductance, and is temperature dependent. In con-
trast, the resonance atV1 is due to excitation of electromag-
netic modes of the array. This resonance requires inductance
but not horizontal junctions, and depends only on local geo-
metrical properties of the array that are temperature indepen-
dent. The corresponding eigenmode is mainly related to os-
cillations in the induced flux per cell.

The role of the horizontal junctions can be further ex-
plored by considering an anisotropic network where horizon-
tal and vertical junctions are fabricated with the same pro-
cess and differ only in their area. Then the ratio of their
critical currents,h5I c1 /I c3, parametrizes the anisotropy of
the array. In this case, the results from Eqs.~3!–~6! are still
valid with a renormalizedmy85myh, which specifies the par-
ticipation of the horizontal junctions in the dynamics of the
array.

Finally, we emphasize that our analysis is based on the
assumption of a dynamical checkerboard state. Unfortu-
nately, very little is known about the conditions for its global

stability. If it is unstable, or if the array organizes itself in
some alternative stable state, the dynamics are not yet under-
stood. For instance, simulations of 2DTR arrays with low
bc seem to show a different solution~the ‘‘ribbon state’’!
where the horizontal junctions are essentially inactive and a
checkerboard is formed by double cells.9 This solution is
analogous to the striped columnar dynamical configuration
observed inf51/2 Shapiro steps in square arrays.16 In both
cases, the arrays effectively behave as a collection of in-
phase rows and, thus, have only one resonant voltage at
V1uh50. Experiments on triangular arrays will address these
issues separately.17 Also, if the junctions are highly under-
damped, the checkerboard state in 2DSQ arrays can slide
chaotically.4 The conditions for the stability and the temporal
periodicity of the checkerboard state, and the dynamics as-
sociated with other possible states, are challenging problems
for future investigation.
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