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Correlation effects in carbon nanotubes
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Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030
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We consider the effects of Coulomb interactions on single-wall carbon nanotubes using an on-site Hubbard
interaction,u. For the(N,N) armchair tubes the low-energy theory is shown toidentical to a two-chain
Hubbard model abalf-filling, with an effective interactiomy=u/N. Umklapp scattering leads to gaps in the
spectrum of charge and spin excitations which are exponentially small forNargbove the gaps the intrinsic
nanotube resistivity due to these scattering processes is linear in temperature, as observed experimentally. The
presence of d-wave” superconductivity in the two-chain Hubbard model away from half-filling suggests that
doped armchair nanotubes might exhibit superconductivity with a purely electronic mechanism.
[S0163-182697)50518-3

Carbon nanotubes constitute a novel class of quasi-ondew temperatures, with a d-wave” symmetry. This sug-
dimensional1D) materials which offer the potential for both gests a possible electronic mechanism for superconductivity
new physics and technolody.Although built only with car-  in doped nanotubes.
bon atoms, they can be grown in a tremendous variety of Following various author$,we first consider a single
shapes and sizes. The simplest single-wall tube consists ofsheet of graphite, composed of carbon atoms arranged on the
Single graphite sheet which is curved into a |Ong Cy“nder,SiteS of a honeycomb lattice. The Underlying Bravais lattice
with a diameter which can be smaller than 1 nm. SeveralS triangular, with two sites per unit cell. The two primitive
groupg have succeeded in measuring the resistance of Bravais lattice vectors area.=(a/2)(=1,J3), where
single multiwall nanotube, composed of several concentrica= J/3d, with d the near-neighbor carbon separation. Of the
cylinders. Crystalline “ropes” consisting of a triangular four outer-shell electrons of each atom, three form sipg
packing of (nominally) identical single-wall tubes are also bonds of the lattice, while the fourth can tunnel between
very promising, exhibiting signatures of metallic transport. neighboringp, orbitals. A simple description, which cor-

Generally, single-wall tubes can be characterized by twdectly accounts for the semimetallic behavior of graphite,
integers (N,M) which specify the superlattice translation consists of a tight-binding model with ong, orbital per
vector which wraps around the waist of the cylinder. Curren@rbon, and a tunneling matrix elemertretween neighbor-
theorie4® consist of band-structure calculations and predict"d atoms. The Bloch states for this tight-binding model
a rich variety of behavior, ranging from metallic “armchair” form two bands, with energies.. (k) =+ |£(k)| where
tubes with (N,N) to insulating ‘“zig-zag” tubes with
(N,0). For very small nanotubes, however, electron correla- £(K) = 2tcog kya/2)eya/23 1t e ikyal B3 (1)
tion effects should become important, as in other 1D
systems. In this paper we study these effects using a tight-andK is the crystal momentum. Here we have allowed for a
binding description(which correctly reproduces the band- different hopping strength, , in they direction(see Fig. L
structure calculationssupplemented by an on-site Hubbard With one electron per carbon atom, the Fermi energy is at
interactionu. For the (N,N) armchair tubes we show that the E=0, with the lower band full and the upper empty. The
effective description at low energies identical to a two-  striking feature of this band structure is that there are two
chain Hubbard model atalf-filling with an effective inter- jsolated points in the first Brillouin zone, denotéd , where
action strengthuy=u/N. Since this effective interaction is the bands touclE=0, and there are gapless excitations. In
‘I’D"eff[_k f;)rIN_~10, its teffectsl C?” t_)eUtrelf(ilted pertttftrbgtively.the vicinity of these “Dirac” points, forq=k—K_. small,

articularly important are electronic Umklapp scattering pro-, . . . S , - -
cesses, pr):esegt at half-filling. These are p?gdicted to %Sentge dispersion is relativistic, withE(q)=v|q| and

small charge and spin gap, changing the behavior from melf:(\/§a/2)t (for t,=t). Whent=t,, the gapless points

tallic to insulating at low enough temperatures. Similar con-occur atk.. =(*+4m/3a,0), but are shifted along the, axis
clusions have been reached independently in very recef@r t#t, (see Fig. 2 _ _

work by Krotov, Lee, and Louié. At temperatures above  Single-wall nantotubes consist of rolling the honeycomb
the charge gap, a simple weak-coupling analysis of thesgh(_eet of carbo_n atoms into a cyll_nder. Ea_ch tube is charac-
interactions gives a resistivity which varies linearly with terized by two integefs(N,M), which specify the superlat-
temperature, which may explain the observed behdvior tice translation vectoiT (y vy=Na, +Ma_, which wraps
single carbon “ropes.” Furthermore, doping an armchairaround the waist of the cylinder. The crystal momentum
nanotube is equivalent to moving away from half-filling in transverse to the axis of the cylinder is then quantized. Band
the two-chain Hubbard model. This problem has been exterstructure predicfs metallic behavior whenever the gapless
sively studied and exhibits superconducting behavior atpoints in the Brillouin zone lie on the allowed transverse
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FIG. 3. One-dimensional spectrum near Dirac points.

An=2mv/(y/BNa) = 7t/N (for t, =t). BelowA,, the mode
structure is equivalent to a 1D two-band model, independent
of the nanotube sizhl.
\LJ, Coulomb interactions can be incorporated into the nano-
tube tight-binding model, and will introduce interactions into
= ¢ N the effective 1D model. To be concrete we focus on an on-
l l ‘ | | l | site Hubbard interaction, so that the full Hamiltonian be-
n 1 23 45 comes

FIG. 1. lllustration Qf. the graphite Iattige, with labeling and H=— 2 trr/CZ(r)ca(r’)—kuE ny(r)ny(r), 2

periodic boundary conditions for an armchair tube. (re'y r

where the first sum is over spin statag=<1,]) and near-
quantized wave vectors. For the armchair nanotubes witheighbor sites of the honeycomb lattice, and
(N,N) this is illustrated in Fig. @), where the allowed val- Na(r)=cl(r)c,(r). We now show that forj,N) armchair
ues ofk, are shown as dashed lines fdr=4. Since gapless tubes the effective interacting 1D model igentical to a
modes are present &j=0, band structure predicts metallic two-chain Hubbard model with an interaction strength,
behavior for armchair tubes, independent\ofDue to cur-  Uy=U/N. To do so, we choose a particular basis of states
vature effects, the hopping matrix elements along) (and ~ spanning the space of low-energy states Wifk0:
around €, ) the nanotube will differ slightly, by an amount

o . N N~26, na O 3

of order 1N?. This shifts the Dirac points & . alongk,, bra(Xy) = x.nag%y,6/ay/\3 neven, @
but leaves the armchair tube gaple@setallig. For the A% N"Y28, naydy.(6/+1)2,v3 N odd,
(N,—N) zig-zag tube[equivalent to the |,0) tubg with

nonintegerN/3, the gapless points do not coincide with N_l/25x,na05y,(6/—2)a /3 neven,
quantized transverse momenta, so that insulating behavioris ¢ _,(x,y)= 0 (4)

. . . . n2( X,y N_1/25 S
predicted with a gap varying asNJ For integerN/3 the x,na,0y,(6/+3)a,/y3 N odd,

Dirac points fort=t, are at quantized transverse momenta
but are shifted away slightly, of orderN?, due to curvature
effectS (t#t,). Thus band structure predicts semimetallic
behavior for integeN/3 zig-zag tube$Fig. 2(b)].

For the armchair tubes the low-energy modes occur ne
the two gapless points, &,=0. The 1D dispersion away
from these two points is shown in Fig. 3. In addition there
are gapped modes &,#0, with an energy of order

'where the second Kronecker delta function must be satisfied
for some integer/, and ag=a/2. As indicated in Fig. 1,
$n1 and ¢, are simply the two normalized basis states with
uniform support atx=nag on even or odd chains, respec-
Eﬁvely. In the low-energy theory, we may restrict the expan-
sion of the field operators to this basis:

cZ(r>=; bni(1)Chi - (5)

Inserting this into the Hubbard Hamiltonian and summing
overy for fixed x gives

H=§ {—t(chiuCniriat HC)—t, (€1 (Craa+ H.C)}

+ t
+UN% CitCnitCni| Cnil » (6)

(@) (b) which is precisely the Hamiltonian of the two-chain Hubbard
model, but with areffectiveweak interactioruy=u/N. The

FIG. 2. Dirac points in the Brillouin zone. Dark circles and factor of 1N arises because the electrons are delocalized
crosses indicate the locations of the gapless points,fert, while ~ around the circumference of the nanotube, and hence occupy
gray symbols schematically indicate the shifted positions forthe same site with a probability reduced byN1/
t, <t. Dashed lines cut the zone at a discrete set of allowed trans- A considerable amount is known about the two-chain
verse momenta iria) the armchair tube an¢b) the zig-zag tube Hubbard modef, particularly in the weak-coupling limit,
(here withN=3). where controlled renormalization group calculations may be
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FIG. 4. Effective spin models fofa) the armchair tube an(b)

the zig-zag tube. FIG. 5. Resistivity of an ideal armchair tuttechematiy

used. These methods proceed by diagonalizing the kinetic . .
energy, linearizing the 1D spectrum near the resulting Fermj uPPard model. Nevertheless, proceeding by focusing on the

points, and expanding the Hubbard interactions in the basi 0 gapless modes and e_xpressing th_e Hgbbard _interaction in
of states of the resulting two bands. In the undoped case % rms of these, one optalns an effective interacting 1D two-
half-filling, interactions drive an instability to a Mott- and model for the.2|g-zag tube. Just as for the two—cham
insulating spin liquid with a gap in both the charged spin Hubbard mode_l, th's_’ model has Umklapp scattering pro-
sectors. In the weak-coupling limityy<t, both gaps are cesses, but their particular strengths are d|1_‘ferent. It is natural
exponentially smallA ~texp(—ctiuy). At temperatures be- to expect that these Umklapp processes will gap out both the

low the charge gap ., activated behavior is expected in the charge and spi.n_efxcitations, just as f_or the Hub.bard model,
resistivity, p~exp(,/ksT), as illustrated schematically in although a definitive statement requires a detailed calcula-

Fig. 5. With increasingiy the charge gap evolves continu- Elr?r?e.e ?(Iargl:-es tgggl :h?;'nzég-;zg .:]ubg e;zen::(lalzﬁ' ZO?S:'S;% Ofm_
ously into the strong-coupling Mott gap associated with the P INS, & Spin gap may urprising.

energy cost of doubly occupying a site. The spin gap afieed, it is knowt that conventional Heisenberg spin lad-

strong coupling is more subtle, but indicates a quantum dis(-jers with anodd number of legs haveaplessspin excita-

oriered or Shorrang resoraing valerce b S, UG T S R, S o
ground staté. A spin gap is also present in a two-leg P g ' pology

Heisenberg ladder, in contrast to a single chain which hajshedstrglwtgdcpulg_lln%HtlmstT]nberg n:odgl Egr{heéhq-za.g tube,
gapless spin excitatiortS. For the armchair tubes the spin as ep'ﬁ e “;]n '.g'(b)' n” lett‘f’m'so.lrlo.p'g 'n(;' ];]i I7 sp;ns_
gap at strong coupling can be understood in terms of gn such a “herringbone” fattice witl indeed form focal sin-

Heisenberg spin model on the honeycomb network, which iglel';s ?cro_ss tthetr\]/ertlcal Eondts,bwnh a Spl?hga%% tive int
topologically equivalent to the “brick wall” lattice shown in eturning fo the armehair tubes, since the eflective inter-

Fig. 4@. In the anisotropic limitJ, >J, local spin singlets action Slfrfn?tm'gulllg’ oge expetctj cgrrelattlkc])n effec'gs Eﬁ
form along the vertical rungs, and there is a spin gap t edwead or arg - Indeed, as n?i a O\I/ff' <$ gagsﬂ']” e
triplet excitations. undoped case become exponentially smallfgi<t, and the

Upon doping fort, <2t, the two-chain Hubbard model is scale for superconductivity will likewise be small, indicating
i 1

known to undergo a phase transition into a state which ret_he desirability of reducing the nanot.ube.5|ze in experiments.
Even for largemN (the weak-coupling limjt however, an

tains the spin gap but develops power-law singlet supercon- . . : .
ducting (SS and charge-density-wavéCDW) correla- interesting observable consequence of interaction physics

tions® Furthermore, the pair wave function associated withShould remain in the high-temperature resistivity. Indeed,
the SS correlator h'as approximate: > symmetry(i.e., a Umklapp scattering leads to an intrinsic contribution to the
sign change from quadrant to quad;;nt in kyek, plan,e. scattering _rate which in wea_k (_:oupling varikimearly inT
Both theoretical and numerical studiéd suggest that the for T=A in 1D (Ref. 12. This is a éjram.an'c'enhancement
SS correlations are enhanced over the CDW ones if th@/€" the conventional Ferml-hqu@‘ resistivity, and can
Fermi level is pushed into the proximity of a band edge. Inalﬁ.O hbe m.u<r:]h IargTr than s;:attergg due(3m) phonocr;s,
weak coupling, the enhancement is mediated by scatterin bIC' vanishes at least as as?;. Wf? now proceed to
into the nearly empty/full band, for which the 1D van Hove OPtain @ quantitative estimate of this effect.

singularity provides an enormous density of states. This sug- | ne_effective low-energy Hamiltonian for theN(N)

gests that for armchair tubes, superconducting effects migtanotube@nd for the two-chain Hubbard modebnsists of

be maximized by tuning the doping so that the Fermi energ;?'ght and left moving electrons in the two bands:

coincides with the lowest-lying k(/=i27-r/Na\/§) bands
near the two Dirac pointésee Fig. 3.

For (N,—N) zig-zag tubes with integeK/3 the gapless
Dirac points coincide with the discrete quantized momenta
for t=t, , see Fig. ). However, due to curvature effects where we have suppressed the spin label. Since the equiva-
t#t, , so that the gapless points are slightly shifted, leadindent two-chain Hubbard model is at half-filling, the presence
to a small gap of order|t—t, |~ 1/N2. Since this is smaller of the Hubbard interactionyy, introduces Umklapp scatter-
than the effective interaction strength, which varies & it/ ing, as well as numerous momentum conserving four-
is probably legitimate to ignore this small shift when inter- fermion interactions. The three Umklapp interactions, which
actions are included. Even with this simplification, it is not scatter two right moving electrons into two left movers, take
possible to map the zig-zag tube directly into a two-chainthe form

Ho=a=212 AX[ e v thra— dlaivdhial, (7
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- and are believed to be predominantly composed of (10,10)
HU:uNaOJ dX{ ¢ | Yr YR T H.C], (8 armchair tubes. Transport data on a single rope reveals a

. resistivity increasing linearly with temperature between 50
where we have now suppressed the band index. The scattefy 300 K, consistent with metallic behavior. At lower tem-

ing rate from Umklapp scattering can be extracted from the,e a1res the resistivity appears to saturate, perhaps turning

imaginary part of the electron's self-energy,(»,T)  p glightly but showing no compelling sign of a sizeable
=ImX(w,T,kg). To lowest order there is a single diagram charge gap.

for each of the three Umklapp interactions, which give iden-

: U ' A comparison with these results can be made by convert-
tical contributions. One finds

ing Eq. (11) to the 3D resistivitypzy~pD?, whereD is
3 _ the nanotube diameter. This gives the rough estimate
I'(w,T)= s—(unap/v)?TI(w/2T), (9  ~2(u/t)%(T/t)uQ cm. Notice that the nanotube sikehas
87 dropped out. In the experimentdpe,,/dT~ 102 uQ cm/K.
where f(X) is a scaling function which approaches 1 as T0 account for_this ma}gnitude one would need a rather large
X—0, and varies a$X| for large X. If we ignore vertex bgre Hubbard interactiomy/t~ 10, perhaps not unreaso_nable
corrections, the Kubo formula for the 1D conductivity can be9iven the neglect of long-ranged Coulomb forces in our

expressed in terms df as simple Hubbard treatment. The finite residual resistivity as
T—0 is presumably due to disorder. For example, local

8ve? (= dw (—d,f) kinks or other defects in the rope packing would naturally

o= Tf_mg Tw,T)’ (10 lead to a temperature-independent additive contribution to

the resistivity(see Fig. 5. However, other effects such as 3D
where f=(ef®+ 1)1 is the Fermi function. The resulting crossover may also play a role at low temperatures. Such

1D resistivity is crossover is influenced by coherent intertube electronic hop-
h ping, Coulomb screening from neighboring tubes, and per-
c haps other effects. More microscopic estimates and/or ex-
- 2
p(M) 167 eZ(uNaO/ﬁU) (Tiho), (1) perimental measures of these couplings are clearly required,

. . . and we are pursuing these issues currently.
with ¢ a dimensionless constant of order one. P 9 y
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