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Pulsed sound-transmission experiments at different pressures~0–16 bars!, frequencies~10–50 MHz!, and
sound-pulse energies~0.01–110 nJ! demonstrated that Landau damping exists in a Fermi liquid even for
low-frequency phonons at temperatures as high as 1 mK due to multiple-phonon absorption. This nonlinear
damping of zero sound increases with the square of the frequency. A pronounced sound power dependence of
the quasiparticle collision time was found as well as an additional damping of first sound at the third harmonic
frequency.@S0163-1829~97!51818-2#

In the past few years, nonlinear effects of sound attenua-
tion in 3He have gained growing interest, especially the cou-
pling of zero sound1 to the order-parameter modes in super-
fluid 3He-B.2,3 In addition, pair breaking due to two-phonon
absorption has been studied experimentally.4 The extension
of these more recent experiments towards lower tempera-
tures and higher sound intensities led to several unexpected
observations which were briefly described in Ref. 5. One of
these observations was that the sound attenuation coefficient
a increased with increasing sound intensities and decreasing
temperatures. It was speculated6 that this behavior was due
to Landau damping.7 An indication of quantum damping was
seen in experiments at very high sound frequencies (< 590
MHz!.8,9 In this paper we describe experiments at much
lower frequencies which clearly demonstrate that quantum-
damping of sound can take place in a Fermi liquid at much
higher temperatures, as predicted by Landau,7 and that this
new nonlinear damping effect of sound is caused by quasi-
particle excitations due to the coherent absorption of many
phonons.

According to Landau, the attenuation coefficient of
vibrational excitations with frequencyv can be written as
a5a0@11(\v/2pkBT)

2#.7 Here a0 is the zero-sound
attenuation coefficient which depends on the quasiparticle
collision time t. Depending onvt, a crossover from the
collisionless regime~zero sound,vt.1) to the hydro-
dynamic regime~first sound,vt,1) occurs, anda0 can
be written in the viscoelastic theory in the form
a05@(c02c1)/c1

2#v2th /@11(vth)
2# ~Ref. 10! with c0 and

c1 the zero sound and first sound velocities, which depend on
pressurep but only very slightly on temperature.th depends
on the quasiparticle collision timet ~Ref. 11! and hence on
pressure and the square of the inverse of temperature accord-
ing to th(p)T

25const(p)5t0(p). We will show in this pa-
per that this relation has to be modified and thatt0 also
depends on sound intensities.

For T→ 0 the damping of sound becomes temperature
independent and varies with frequency as
a5@(c02c1)/c1

2#(\/2pkB)
2t0

21v2. This kind of sound at-
tenuation is called Landau damping or quantum damping.
The crossover between zero sound and quantum damping
occurs at a frequencyv>(2pkB /\)T. For ultrasonic exci-
tations in thelinear regime of sound and a frequency as high

as 100 MHz, quantum damping gains importance only at
temperaturesT, 1 mK. Since3He becomes superfluid be-
low this temperature, and since most of the experimental
investigations had been done at frequencies below 100 MHz,
Landau damping was hidden in the experiments. However,
in nonlinear sound of high intensity many phonons of the
same frequency can be absorbed coherently causing quantum
damping even at low frequencies and relatively high tem-
peratures.

Here we report on sound transmission experiments in the
frequency regime 10 to 50 MHz which were performed as
described elsewhere.4,5,12The sound pulses were excited by a
quartz transducer with an energy deposition for single sound
pulses~typical durations of 5ms! varying from 1 pJ to 100
nJ. This amount of heat was deposited into a free3He vol-
ume of 43436 mm3. At T; 1 mK, this heat was con-
ducted to the cooling stage within a thermal relaxation time
of ;30 s. Pulse power calibration was done by a calorimetric
method in the temperature range 3 to 5 mK as described
elsewhere.4,12We checked for overheating effects by various
techniques4,12 and ensured that our results were not influ-
enced by heating even with sound pulses of highest power.
In order to improve the signal-to-noise ratio of the received
signal we used a cold preamplifier as well as digital filtering
techniques and digital lock-in techniques which we will de-
scribe in detail elsewhere.13

The sound attenuation coefficient was determined from
the first signal detected by the receiving quartz after the
sound pulse was transmitted~distancex54 mm! through the
liquid according toa(T)5(1/x)$ ln(S0)2 ln@S(T)#% which
compares to the theoretical expression

a~T!5
c02c1
c1
2

v2th

11~vth!2 F11S \v

2pkBT
D 2G .

HereS(T) denotes the detected sound amplitude at tempera-
ture T, andS0 is a constant which depends on the experi-
mental setup, and on how effectively at each frequency elec-
trical energy is converted into sound energy~or vice versa!
by the quartz transducers. Therefore,S0 must be determined
independently for each frequency and power used in the ex-
periments. Because of high sound attenuation in the transi-
tion regime between zero sound and first sound, echo tech-
niques cannot be used for a calibration ofS0. Therefore, we
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had to follow a different approach to obtain absolute values
for a: In the linear regime of sound, all Fermi-liquid param-
eters entering the attenuation coefficient are known and
hencea is known. Thus,S05S(T)•exp@a(T,p)x# is in
principle fixed by the data. In the nonlinear regime of sound,
S0 has to be treated as a free parameter and must be obtained
from a fit to the dataS(T).

For the determination ofS(T) from our data, we used
three different methods12 which were sensitive in different
time windows after the pulse. All three methods yield iden-
tical results for the attenuation coefficienta in the covered
temperature range (Tc,T,200 mK! and at all investigated
pressures (p50216 bars!, frequencies~10–50 MHz! and
time windows~0–25ms, 0–35ms, and 0–70ms!. This in-
dicates that time-dependent heat currents as well as interfer-
ence effects due to reflections at the cell walls do not play a
significant role. In this paper, we present the data taken in
zero magnetic field at 10 MHz and at 10.5 bars. However,
the reported effects were also seen at all other pressures and
frequencies.

In Fig. 1, the attenuation coefficients determined below 30
mK are shown for sound power levels which vary over more
than three orders of magnitude. For the lowest sound ener-
gies (E50.017 nJ! it is obvious that the resolution limit of
our spectrometer was reached at temperatures 6,T,13 mK.

At sound energies up to about 1 nJ, we found fora the
expected temperature dependencies ofT22 andT2 for first
sound and zero sound, respectively. At higher sound intensi-
ties, however, only first-sound attenuation still varied with
T22 whereas zero-sound attenuation deviated more and more
from theT2 law with decreasing temperature and increasing
power ~compare dashed lines in Fig. 1!. We attribute this
behavior to quantum damping due to the excitation of qua-
siparticles by multiple-phonon absorption. In such an excita-
tion,N phonons of frequencyv are coherently absorbed in a
time shorter than the quasiparticle lifetime yielding an ob-
servable damping which becomes temperature independent
for T→ 0, and varies with the square of the phonon
frequency. It can be shown that Landau’s original equa-
tions7 can be reformulated without restriction of validity
in terms of N phonons of energy \v yielding
a5a0@11(N\v/2pkBT)

2#.
In our experiments, the sound intensity was chosen high

enough that multiple-phonon excitation of quasiparticles
should not be negligible. The total numbern0 of 10 MHz
phonons generated by the strongest sound pulse of energy
E; 100 nJ can be estimated to be on the order of
n05E/\v ; 1020. These phonons are generated in about 4
ms, the ringing time of the transducer. Thus, within the qua-
siparticle collision time of about 0.5ms around 1 mK,
roughlyn; 1019 phonons can excite or be scattered by qua-
siparticles. This number of phonons (n) is about 1000 times
the number of thermally excited quasiparticles (nqp). Thus,
this nonlinear damping effect can become very effective.

How well the modified Landau model fits our data is dem-
onstrated in Fig. 1. The solid lines in Fig. 1 are fits to the
data usingc15297.22 m/s~Ref. 14! as a fixed value. In
linearized theory,c0 would also be fixed, butc0 might de-
pend on sound intensity. Thus, free fitting parameters were
c0, S0, t0, andN, the average number of coherently absorbed
phonons. The results for the dependence of zero-sound ve-
locity, viscous collision time and numberN of multiple pho-
non absorption on sound intensity are compiled in Fig. 2.

For low sound energies (E, 1 nJ! the 10 MHz phonon
density is low and the ration/nqp is less than one. In this
regime,a is insensitive toN(N51) andc0 5 300.93 m/s is
close to what is expected@300.95 m/s~Ref. 14!#. The viscous
collision-time t05thT

2 5 1.16ms~mK! 2 agrees well with
the value 1.02ms~mK! 2 of Abel et al.,14 if one takes into
account that in Ref. 14 the absolute temperature scale has to
be shifted by26% in order to agree with the Greywall
scale15 used in our experiments.

This agreement at small sound powers gives us confi-
dence in the new results at high sound power~see Fig. 2!,
where the ration/nqp reaches values up to 1000 whilec0
drops to 300.56 m/s,t0 increases to 1.24ms~mK! 2, andN
rises to 27, respectively. The tiny change in zero-sound ve-
locity at high sound intensities can be explained by the si-
multaneous increase in the attenuation coefficient. The 8%
increase inthT

2 is not understood yet. A more systematic
investigation for the power dependence ofth is required.
The lines in Fig. 2 are guides to the eyes and display a fit to
the data assuming a power-law dependence on the pulse en-
ergyE @J#. We could parametrize our results withc0 @m/s# 5

FIG. 1. Dependence of the sound attenuation coefficienta on
temperature and sound-pulse energy at frequency 10 MHz and pres-
sure 10.5 bars. The lines are fits to the visco-elastic theory including
quasiparticle excitation by multiple-phonon absorption. The dis-
crepancy between fit and data atE50.017 nJ is caused by the
spectrometer resolution. The dashed lines display theT2 law of
linear zero sound.
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300.93–15000E2/3, thT
2 @ms~mK! 2# 5 1.16 1 3000E2/3,

andN5115400E1/3. An understanding of these dependen-
cies is lacking at present.

If N phonons of a single frequencyv coherently produce
a particle-hole excitation, this excitation may decay under
emission of several phonons of different frequenciesv i . The
observation of a frequency distribution with 0,v i<Nv
would be expected, because the density of quasiparticle
states is quasicontinuous. Thus, a time-dependent investiga-
tion of the frequency distribution in the received nonlinear
sound signal would in principle yield information about the
quasiparticle dynamics. For such investigations, a broad-
band detector in connection with a 100 MHz bandwidth de-
tecting electronics is needed. The latter was especially
developed,13 but with our quartzes only odd harmonics of the
sound-pulse fundamental frequency could be detected in a
frequency band of roughly 200 kHz. Therefore, if any con-
version from phonons of the fundamental to higher harmonic
frequencies takes place due to nonlinear effects in the Fermi
liquid, the amplitude of the higher harmonic Fourier coeffi-
cients would be expected to be small.

Unfortunately, nonlinear elements in the electronics also
produce harmonic frequencies~even and odd harmonics!
against which one has to discriminate in order to determine
the contribution generated in the liquid. Figure 3 displays the

magnitude of the signalsS(T, jv)( j51,2,3) as obtained by
Fourier transformation of the signal received after a 10 MHz
pulse excitation with a pulse energy of 110 nJ. The second
harmonic (j52) 20 MHz signal is purely due to nonlineari-
ties in the receiving electronics, because the quartzes are
almost insensitive to even harmonics. Beside contributions
due to distortions of the receiver, the 30 MHz signal
( j53) contains also contributions from sound in the liquid.
In order to determine the amount of sound generated by a 30
MHz excitation with the third harmonic of the transmitter,
and how much is really caused by nonlinear effects in the
liquid ~initiated by the strong 10 MHz excitation!, the elec-
tronically generated effects must be eliminated. If the har-
monic distortionsSel( jv) are generated by the electronics,
they must depend on the amplitude of the driving signal
S(v). These electronically generated contributions can be
modelled bySel( jv)5ASB(v) whereA andB are adjusted
to the data~see for instance the 20 MHz data in Fig. 3!.
Using this simplified model for the electronic contributions
and the visco-elastic model~including Landau damping! for
the sound signals, we could fit our data as shown in Fig. 3.

The directly excited 10 MHz sound signal~squares in Fig.
3! can be explained very well when Landau damping is
added to the visco-elastic theory. The electronically pro-
duced second and third harmonics at 20 and 30 MHz have 5
and 1% of the amplitude of the received 10 MHz sound
signal, respectively. However, in the third harmonic signal,
contributions of 30 MHz sound are also present which has
about 4% of the 10 MHz sound amplitude~note, the 30 MHz
data are shifted by a factor 0.01 in Fig. 3 for clarity!. Obvi-
ously, in the zero-sound regime, the third harmonic signal
can fully be explained within this model. However, this does
not hold in the superfluid16 as well as in the first-sound re-
gime. The measured third harmonic signal deviates around
30 mK from the visco-elastic model even when phase differ-
encesDf between the receiver- and transmitter-caused dis-

FIG. 2. Plotted versus sound-pulse energies are the~a! zero-
sound velocity,~b! viscous collision time, and~c! number of coher-
ently absorbed phonons. The lines are guides to the eyes with sound
energyE dependences ofE2/3, E2/3 andE1/3 for ~a!, ~b!, and ~c!,
respectively.

FIG. 3. The Fourier-transform amplitudes of the detected signals
at 10 ~squares!, 20 ~diamonds!, and 30 MHz ~crosses! after a
‘‘pure’’ 10 MHz sound-pulse excitation of 110 nJ energy. For clar-
ity, the 30 MHz data are shifted by a factor of 0.01. The larger
scatter of the 20 and 30 MHz data around 10 mK is due to the
limited resolution of the spectrometer. The curves are fits according
to the visco-elastic model when harmonic distortions in the trans-
mitter and receiver electronics are also taken into account~see text!.
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tortions are taken into account~for instanceDf50° and
60° for the two dotted lines in Fig. 3, respectively!. The
origin of this additional attenuation is unknown, but it is only
present at the highest sound powers. BelowT5Tc51.85 mK
~atp510.5 bars! 3He becomes superfluid which can be iden-
tified in Fig. 3 by the sharp signature in attenuation. In su-
perfluid 3He-B, the situation becomes more complex.12 But
around 1 mK the signals shown in Fig. 3 are also influenced
by quantum damping.16

Our experiments with 30 and 50 MHz sound-pulse fre-
quencies confirm these observations at 10 MHz. In addition,
they also confirm that quantum damping of zero sound in the
Fermi liquid 3He varies withv2. This is an additional proof

that multiple-phonon absorption takes place in the lifetime of
quasiparticle excitations. It also demonstrates that Landau’s
description of vibrations in a Fermi liquid holds down to
lowest temperatures.
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11P. Wölfle, in Prog. Low Temp. Phys., edited by D.F. Brewer
~Elsevier, New York, 1978!, Vol. VIIa, p. 191.
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