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We find that a stationary intrinsic localized spin-wave resonance can exist and is long lived within the linear
spin-wave spectrum for a perfect one-dimensional antiferromagnetic chain of classical spins with single-ion
easy-plane anisotropy. Numerical simulation studies demonstrate that the excitation is stable with regard to a
noise perturbation. The resonance is infrared active and its frequency decreases with increasing maximum spin
deviation.@S0163-1829~97!52418-0#

It has been realized for decades that spatially localized
modes can occur in purely harmonic lattices only when dis-
order is introduced so that the translational invariance of the
underlying lattice is broken.1 In recent years it has been
noted that some vibrations in perfectly periodic lattices con-
taining both nonlinearity and discreteness2–5 appear to local-
ize and the study of thisintrinsic localizationin various non-
linear periodic lattices is proving quite fruitful.6–15 These
intrinsic localized modes have somewhat the character of
previously studied force constant defects, but they may ap-
pear anywhere in the homogeneous lattice and are mobile.
Recently, it has been shown that intrinsic localized spin-
wave modes~ILSMs! can occur in both classical ferromag-
netic chains with on-site easy-plane anisotropy16,17 and anti-
ferromagnetic chains with on-site easy-axis anisotropy.18

Like their vibrational counterpart, the ILSMs extend over
only a few lattice sites and have amplitude-dependent fre-
quencies outside the linear spin-wave bands. A large number
of antiferromagnets actually are characterized by easy-plane
anisotropy and an unanswered question is whether such
ILSMs can exist in easy-plane antiferromagnetic chains.

In this paper we have investigated stationary ILSMs in
chains of classical spins coupled antiferromagnetically
through nearest-neighbor exchange interactions with on-site
uniaxial easy-plane anisotropy. Although no ILSMs are
found above the top of the linear spin-wave spectrum which,
in this case, is gapless, a symmetric single-peaked intrinsic
localized spin-wave resonance~ILSR! can exist with fre-
quency lower than theq50 frequency of the upper branch of
the linear spin-wave spectrum. This numerical study demon-
strates that intrinsic in-band resonant modes can be stable.

We consider a one-dimensional antiferromagnetic chain
of N spins (N even! which is described by the Hamiltonian
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where both the nearest-neighbor exchange constantJ and the
single-ion anisotropy constantD are positive. Thez axis is
therefore a hard axis. The anisotropy that is used in Eq.~1! is
an effective anisotropy which may arise from either the in-
teraction of the magnetic moments with their neighboring
ions via spin-orbit coupling or the long-range dipolar inter-
action between the magnetic moments. It has been pointed

out17 that some magnetic superlattices can also be described
by an energy functional similar to Eq.~1!.19 In this case the
spins are truly classical since each spin is the total spin mo-
ment of a magnetic layer.

We assume that the chain is magnetically ordered along
the x axis at low temperatures with spins pointing alterna-
tively parallel or antiparallel to thex axis. The equations of
motion for thex, y, andz components become
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Here we have introduced dimensionless variablesA5D/J
andsn5Sn /S whereS is the magnitude of spin. Thereafter
we shall treatsn as a classical vector of unit length.

To obtain the two linear spin-wave dispersion relations
sn
x is approximated assn

x5(21)n in Eqs.~2b! and~2c!. With
cyclic boundary conditions applied the eigenfrequencies are

V6
2 ~q!54 sin2qa12A~16cosqa!, ~3!

wherea is the lattice spacing between two adjacent spins and
the dimensionless frequencyV6(q)5\v6(q)/2JS. These
standard dispersion curves are plotted in Fig. 1 for the case
of A51.0. Since the ground state possesses rotational sym-
metry about the hard axis, i.e., thez-axis, the lower branch of
linear spin-wave excitations,V2(q), is gapless as shown in
Fig. 1, while the upper branch,V1(q), exhibits a ‘‘gap’’
below V1(0)52AA. The two branches are degenerate at
the Brillouin zone boundary.

Can an intrinsic localized spin-wave mode exist at the
zone boundary of the plane-wave spectrum? A necessary
condition is that the substitution ofq5p/2a1 ik into Eq.~3!
gives a real localized mode frequency; however, since a
complex frequency is found this possibility is excluded. In a
strict sense there is no gap for the spin-wave excitations
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shown in Fig. 1, even though the upper and lower branches
do have different polarizations, so we now investigate the
possibility that a nonlinear localized resonance may oscillate
at a frequency belowV1(0). Since the linear spin waves are
elliptically polarized we anticipate that the nonlinear reso-
nant spin-wave excitation would also be elliptically polar-
ized. To find the eigenvector of a stationary ILSR we use the
ansatz

sn
y~ t !5sn

ycosv r t, sn
z~ t !5sn

zsinv r t

and ~4!

sn
x~ t !5~21!n$12~sn

y!2cos2v r t2~sn
z!2sin2v r t%

1/2.

Here the squared terms insn
y and sn

z cannot be neglected.
Substituting Eq.~4! into Eqs.~2b! and~2c! we obtain, in the
rotating wave approximation~RWA! where higher harmon-
ics are ignored, the following coupled time-independent non-
linear equations:
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and F is the hypergeometric function.20 Since a stationary
localized resonance, if it exists, should bifurcate from the
spatially uniformq50 mode of the upper branch in Fig. 1
which has the eigenvector

$s2n
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z ,s2n11
y ,s2n11

z %}$AA/2,21,AA/2,1%,

we seek the symmetric single-peaked localized solution with
the same pattern of sign alternation near the center of the
resonance. Far away from the mode center the localized so-
lution would be mixed with the spatially uniform plane-wave
solution from the lower branch. To explore this possibility in
detail we numerically solve the set of coupled nonlinear
equations given by Eq.~5! for a chain of 64 spins with pe-
riodic boundary conditions using the globally convergent
Newton method. We find that the intrinsic localized reso-
nance does exist for a range of anisotropy parameters.

As an illustration the spin deviation versus site index of
an ILSR is plotted in Fig. 2 as filled circles for the param-
eterss0

z520.65 andA51.0. The frequency of this ILSR is
found to beV r50.9301V1(0) within the RWA. As ex-
pected, near the center of the resonance the sign of thez
component of the spin deviation alternates from one spin to
the next while the sign of they component does not change.
Hence the time-periodic and spatially localized ILSR has an
oscillating net magnetic moment in they direction. Unlike
the intrinsic localized gap modes found before in antiferro-
magnetic chains18 with easy-axis anisotropy, the spin devia-
tions do not disappear with increasing distance from the cen-
ter. Instead the localized excitation evolves into a weak
plane-wave pattern, as expected for a resonance, which has
the eigenvector character of the lower branch. The seemingly
irregular off-center region ofsn

y far from the center exhibits a
smooth plane-wave pattern under the transformationsn

y

→(21)nsn
y . This sign alternation ofsn

y is a characteristic
feature of the lower branch. The wave numberq associated
with the small amplitude off-center plane wave can be ob-
tained from the Fourier transform ofsn

z in q space. For the

FIG. 1. Linear spin-wave spectrum for an antiferromagnetic
chain with easy-plane anisotropy. The anisotropy parameter isA
51.0. The ILSR arrow identifies the frequency of the intrinsic lo-
calized spin-wave resonance described in the text.

FIG. 2. Shape of a stationary intrinsic localized spin-wave reso-
nance with the maximum spin deviations0

z520.65 and the anisot-
ropy parameterA51.0. ~a! The spin deviationsn

z versus lattice site
indexn. The left side shows a factor 5 expansion of the ordinate to
display the plane-wave character in the wings.~b! The spin devia-
tion sn

y versus site indexn. The left side shows the same factor 5
expansion and a sign alternation to illustrate the resonant mode
plane-wave character.
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ILSR shown in Fig. 2,q50.6(p/2a), corresponding to a
frequency of 0.9277V1(0) in the lower branch, which is in
good agreement with the ILSR frequency given the fact that
the small size of the lattice limits the wave-number accuracy.

The dot-dashed curve in Fig. 3 shows the ILSR frequency
found in the RWA as a function of the maximum spin de-
viation s0

z . The frequency drops further into the lower spin-
wave band ass0

z increases. Later these RWA frequencies will
be compared to molecular-dynamics~MD! simulation fre-
quencies.

Since the RWA has been used to obtain the ILSR eigen-
vector the mode stability needs to be checked by means of
MD simulations. In MD simulations the numerically deter-
mined eigenvector is used as the initial condition, i.e.,sn
5„(21)nA12(sn

z)2,0,sn
z
…, and the discrete equations of mo-

tion for the x-y-z spin components are integrated numeri-
cally by using the fourth-order Runge-Kutta method with a

time step ofT1(0)/200 whereT1(0)5p\/JSV1(0). At
each step conservation of energy and spin length~to 1 part in
105) serve as checks on the numerical accuracy.

These molecular-dynamics simulations show that the
ILSR with modest spin deviations can last many hundreds of
periods without apparent decay. For example, the time evo-
lution of the ILSR energy densitye(n)5JSn•(Sn21

1Sn11)1D(Sn
z)2 averaged over one period is plotted in Fig.

4. The parameters are the same as those in Fig. 2. No decay
can be seen after 800T1(0). When a noise perturbation
~,0.1%! is added, the ILSR in Fig. 4 remains fixed for about
800T1(0) and then moves while still localized. It is found
that as the maximum spin deviation is increased, the ampli-
tude of the plane-wave component in both wings of this ex-
citation increases. As a consequence the ILSR can become
unstable and delocalize after sufficient time as might be ex-
pected for a localized excitation which is ‘‘on speaking
terms’’ with the plane-wave spectrum.

Since the ILSR is a collective excitation, the calculation
of power spectrum of the total magnetic moment,M (t)
5(nsn(t), is a useful method with which to identify the
relative strength of the different frequency components of
the excitation as well as to check the accuracy of the RWA.
In the uniaxial caseMz commutes with the Hamiltonian, and
is therefore a constant of motion. Figure 5 shows the log
power spectrum ofMy(t) for the ILSR plotted in Fig. 2. This
power spectrum is calculated from the first 820T1(0) MD
data values. A strong peak appears atV r50.9265V1(0),
which should be compared to 0.9301V1(0) found in the
RWA. Since the eigenvector is not an exact eigenvector due
to the RWA, linear spin waves are also excited. However,
the strength of the power spectrum peak atV1(0) is more
than three orders of magnitude weaker than the resonance
peak. Peaks at the third and fifth harmonics are also present
in the power spectrum~not shown!, but their strengths are at
least four orders of magnitude weaker than the peak corre-
sponding to the fundamental ILSR frequency indicating that
the RWA is a good approximation for this Hamiltonian.

The MD simulation frequency versus spin deviation is
plotted in Fig. 3 as open circles and these values compare
well with the RWA frequencies represented by the dashed

FIG. 4. Time evolution of the energy density
of the ILSR shown in Fig. 2. The energy density
shown here is measured from the ground-state
energy and averaged over one period. The time is
measured in units ofT1(0).

FIG. 3. Comparison between the rotating wave approximation
~RWA! frequency and the MD simulation frequency for a stationary
ILSR versus spin deviation. The anisotropy parameterA51.0. The
dot-dashed curve is obtained using the RWA, and the open circles
are results calculated from the first 820T1(0) MD simulation points
of the net magnetic momentMy(t).
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line. The MD simulation frequency is slightly lower than the
corresponding RWA frequency and the difference between
the two becomes larger as the maximum spin deviation in-
creases. The difference grows because more and more en-
ergy goes into higher harmonics, but even so the overall
agreement is quite good over the entire range.

In summary we have shown that an intrinsic localized
spin-wave resonance can exist in one-dimensional antiferro-
magnetic chains with on-site uniaxial easy-plane anisotropy.
Since the ILSR has a nonzero total magnetic moment oscil-
lating along they axis, it can couple to infrared radiation.
Although from analytical work lattice dynamics resonance
modes already have been proposed to be a natural conse-
quence of intrinsic localization,21 our MD study successfully
demonstrates that in-band nonlinear localized excitations in a
discrete lattice can be stable. The key feature in this nonlin-
ear dynamics problem is the polarization difference between
the two plane-wave branches. In our numerical simulations
the smaller the frequency of theq50 mode in the upper
branch, the less strongly coupled the resulting ILSR is to the
other branch of the plane-wave spectrum. The analogy be-
tween the spin-wave and vibrational problems is clear. Be-
cause of the polarization difference between the optic and
acoustic phonon branches in a one-dimensional anharmonic
diatomic chain, a similar uncoupling of an opticlike intrinsic
resonance mode from the acoustic plane-wave spectrum
would be expected to occur.

Discussions with S. A. Kiselev are appreciated. This work
is supported in part by NSF-DMR-931238, ARO-DAAH04-
96-1-0029, and the MRL central facilities. Some of this re-
search was conducted using the resources of the Cornell
Theory Center, which receives major funding from the Na-
tional Science Foundation and New York State, with addi-
tional support from other members of the center’s Corporate
Partnership Program.

1A. A. Maradudin,Theoretical and Experimental Aspects of the
Effect of Point Defects and Disorder on the Vibrations of Crys-
tal ~Academic, New York, 1966!.

2A. S. Dolgov, Sov. Phys. Solid State28, 907 ~1986!.
3A. J. Sievers and S. Takeno, Phys. Rev. Lett.61, 970 ~1988!.
4V. M. Burlakov, S. A. Kiselev, and V. N. Pyrkov, Phys. Rev. B
42, 4921~1990!.

5J. B. Page, Phys. Rev. B41, 7835~1990!.
6K. W. Sandusky, J. B. Page, and K. E. Schmidt, Phys. Rev. B46,
6161 ~1992!.

7T. Dauxois and M. Peyrard, Phys. Rev. Lett.70, 3935~1993!.
8D. Cai, A. R. Bishop, and N. Gronbech-Jensen, Phys. Rev. Lett.
72, 591 ~1994!.

9S. A. Kiselev, S. R. Bickham, and A. J. Sievers, Phys. Rev. B50,
9135 ~1994!.

10S. A. Kiselev, S. R. Bickham, and A. J. Sievers, Comments Con-
dens. Matter Phys.17, 135 ~1995!.

11S. Takeno and K. Kawasaki, Phys. Rev. B45, 5083~1992!.
12G. Huang, Z. Xu, and W. Xu, J. Phys. Soc. Jpn.62, 3231~1993!.
13O. A. Chubykalo, Phys. Lett. A189, 403 ~1994!.
14S. Aubry, Physica D~to be published!.
15S. Flach and C. R. Willis, Phys. Rep.~to be published!.
16R. F. Wallis, D. L. Mills, and A. D. Boardman, Phys. Rev. B52,

R3828~1995!.
17S. Rakhmanova and D. L. Mills, Phys. Rev. B54, 9225~1996!.
18R. Lai, S. A. Kiselev, and A. J. Sievers, Phys. Rev. B54, R12 665

~1996!.
19S. S. P. Parkin, N. More, and K. P. Roche, Phys. Rev. Lett.64,

2304 ~1990!.
20I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series, and

Products~Academic, New York, 1980!.
21S. Takeno and A. J. Sievers, Solid State Commun.67, 1023

~1988!.

FIG. 5. Power spectrum of the net magnetic momentMy(t) of
the stationary ILSR shown in Fig. 2. Besides the strong peak at
0.9265v1(0) corresponding to the ILSR a much weaker peak ap-
pears in the power spectrum atv1(0), indicating that linear spin
waves are also excited due to the inaccuracy in the eigenvector
resulting from the rotating wave approximation.
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