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Strongly anharmonic and translationally invariant systems in arbitrary dimensions, exhibit a class of time
periodic and stable solutions carrying an energy flow as well as the standard plane waves which are special
cases. In general, the spatial distribution of these energy flows is very inhomogeneous and form arbitrarily
complex networks of channels and vortices. These solutions are constructed from arbitrary, finite, or infinite
clusters of breathers~multibreathers! with twisted phases. Examples of these solutions are numerically calcu-
lated in several one and two-dimensional nonlinear models.@S0163-1829~97!50718-1#

It is well known that the energy flow carried by a plane
wave in translationally invariant and harmonic systems, is
spatially uniform. The aim of this paper is to show that in
strongly anharmonic systems and despite that the transla-
tional invariance of the system is preserved, the propagation
of a high density of energy at a fixed frequency can become
nonuniform with drastically inhomogeneous energy flows.

These results are obtained as an application of recent de-
velopments of the theory of breathers based on the concept
of anticontinuity.5 Breathers are spatially localized time pe-
riodic modes~breathers! which show up spontaneously in the
numerical simulations of a large number of nonlinear
models.1,2 Their existence as exact and stable solutions have
been subsequently proven in Ref. 3 in finite or infinite time
reversible arrays of coupled anharmonic oscillators in arbi-
trary dimensions, provided the coupling between particles be
not too large, that is in the regime of strong anharmonicity.
In addition to the existence of single breather solutions, the
same theory yields the existence of proof of infinitely many
other multibreather solutions among which an infinite and
large subset has been proven to be linearly stable.5

At the anticontinuous limit, the system is an array of de-
coupled anharmonic oscillators and each oscillator is either
periodically oscillating or is at rest. The time periodic and
time reversible solutions with periodtb correspond to an ar-
bitrary distribution of oscillators at rest and of moving oscil-
lators at the given period and with phase 0 orp. Any of
these solutions can be continued at finite coupling up to an
upper bound which is proven to be nonzero3 and independent
on the choice of the moving oscillators. The continued solu-
tion which involves initially only one moving oscillator, is
just a single breather. The other solutions are multibreathers
and we say that the breathers are located at the site where the
oscillators were initially moving with a phase 0 orp. When
the number of breathers is one or is finite, the corresponding
solution decays exponentially at infinity. When the number
of breathers is infinite, they could be spatially ordered, then
appearing as spatially periodic waves, but can also have any
spatial chaotic distribution or any other special kind of order.
The initial condition of time reversibility~i.e., all the veloci-

ties are zero at the initial time! implies that these multi-
breather solutions cannot carry any energy current in aver-
age.

Actually, the time reversibility condition can be dropped
and it is proven that there exists multibreather solutions that
involve a ‘‘phase torsion’’ between the breathers and thus
which carry an energy flow.5 An effective actionF($a i%)
can be defined as a 2p periodic function of the phasea i of
each breather at sitei ~if any! invariant under any global
rotation of the phases. An exact solution is associated with
each extremum ofF($a i%). In time reversible systems, the
configurations witha i50 orp are extrema and are the time
reversible multibreather solutions. This functionF($a i%) is
analogous to the Hamiltonian of anXYmodel which couples
the phases of the breathers. Thus we will not be surprised to
find extrema for which the breather phases are twisted by
boundary conditions~‘‘phasons’’! or vortexlike solutions in
two-dimensional models. In the simplest case with a breather
at each site and a uniform twist, the standard plane waves
propagating energy~but in an anharmonic system!, will be
recovered.

The Hamiltonians of the systems we choose as examples,
for studying these solutions, have the form
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whereV(u) is an anharmonic potential which can be ‘‘hard’’
@the phonon frequency increases with the amplitude, e.g., the
quartic potentialV(u)5 u2/21u4/4] or the reverse called
‘‘soft’’ @e.g., the Morse potentialV(u)5 1

2(12e2u)2]. C is
the coupling constant between the nearest-neighboring sites
n andm of the lattice. The dynamical equation associated
with Eq. ~1! is

üi1V8~ui !2CDui50, ~2!

whereDui5( j :^ i , j &(uj2ui) is the discrete Laplacian and pe-
riodic boundary conditions are imposed.

Systematic and highly accurate numerical methods for
calculating any time reversible breather or multibreather so-
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lution continuing the trivial solution existing atC50 have
been developed in Ref. 4. We briefly describe how they are
adapted for calculating the non-time-reversible solutions pre-
sented here.

Defining the nonlinear Poincare´ map X(tb)
5($ui(tb),u̇i(tb)%)5Tb@X(0)# by integration of Eq.~2! with
the initial conditions X(0)5($ui(0),u̇i(0)%), the fixed
points of this mapTb determine the initial conditions of the
time periodic solutions of Eq.~2!. We also define the linear
tangent mapLb(X) of Tb(X) from the linearized Eq.~2!,

ë i1V9~ui !e i2CDe i50, ~3!

which yields that $e i(t)% depends linearly on its
initial conditions and determines ($e i(tb)%,$ė i(tb)%)
5Lb ($e i(0)%,$ė i(0)%).

Starting from a trivial solution atC50, parameterC is
incremented by small steps. Each obtained solution at value
C is taken as the trying solution atC1dC of a modified
Newton process for finding these fixed points based on three
algorithms used sequentially in an appropriate fashion:

Algorithm 1:The standard Newton method consists in the
recursive application of the operator$X85X2@Lb(X)
21]21@Tb(X)2X#% to an initial trying solution chosen close
enough to the real solution. This method cannot be applied
for the free system in that way because$e i(t)5u̇i(t)% is a
time periodic solution of Eq.~3! which implies that
@Lb(X)21# has the eigenvalue 0 for the eigenvector
($u̇i(0)%,$üi(0)%) and thus is not invertible~then use algo-
rithm 2! . However, when there is a periodic external force
with periodtb , applied to the oscillators, for example, to the
phase twist at the boundary of the system, the time transla-
tion invariance of the solutions is broken so that breather and
multibreather solutions can be found with this method.

Algorithm 2: In the case without any external force, our
initial approach3 has been to restrict the working space to
time reversible loopsX5($ui(0),u̇i(0)50%) and to look for
the fixed points of the truncated operatorTR($ui(0)%)
5$ui(tb)%. The restricted Newton method only involves the
N3N submatrixA of @Lb(X)21# concerning the position
variables of the oscillators which is invertible whenCÞ0.
However, because the accuracy of this method can be shown
to be intrinsically limited to (1026) with the standard com-
puter accuracy~which is often sufficient!, this method is im-
proved for approaching the computer accuracy (10213) ~see
also Ref. 6!. Considering the trying solutionx5$ui(0)% with
u̇i(0)50, our improved Newton algorithm is
x85x2(A!A1C!C)21(A!,C!)@Tb(x,0)2(x,0)# where the
N3N matricesA and C are defined as sublocks of the
2N32N matrices@Lb(X)21#5(CD

AB) and where (A!,C!) is
anN32N matrix.

Algorithm 3: For finding non-time-reversible solutions,
this method has to be modified once again. Since we know
that the perturbation of the trying solution in the direction of
the eigenvector associated with the zero eigenvalues of the
operator@Lb(X)21# just changes the time origin of the so-
lution, this perturbation is useless but it turns out to be harm-
ful for the convergence of the Newton process because it
involves large variations of the solution. This perturbation is
removed by using the singular value decomposition7 of the

matrix @Lb(X)21#5PVQ whereP andQ are 2N32N or-
thogonal matrices andV is a 2N32N diagonal matrix with
diagonal elementsvn which contains an almost zero element
v0. This matrixV is inverted in the space complementary to
the vectoru0& associated with the diagonal element with the
smallest value which yields the ‘‘pseudo’’ inverse matrix
Ṽ21 with diagonal elements 1/vn for nÞ0 and 0 forn50.
Then, the Newton algorithm becomes$X85X
2Q!Ṽ21P!@Tb(X)2X#%.

When C50, the matrix @Lb(X)21# associated with a
multibreather solution withp breathers, havep zero eigen-
values because of the breather phase degeneracy so that al-
gorithm III does not converge in principle forC very small
~except for the single breather statep51). In practice, we
calculate first a linearly stable time reversible multibreather
solution with algorithm II up to some finite value ofC for a
1D or 2D system with periodic boundary conditions. Then
we make two identical boundary edges~or lines! by cutting
the system along a line of oscillators where the motion of the
oscillators isui(t)5gi(vbt). Subsequently, we force a phase
shift between the two edges of the system by forcing the
motion to beui

L(t)5gi(vbt2a/2) on the left boundary and
ui
R(t)5gi(vbt1a/2) on the right boundary wherea is a
given phase. Then, algorithm I is used for relaxing the multi-
breather solution to an exact dynamical solution of the sys-
tem under this boundary constraint. The phasea is incre-
mented by small steps for having a continuous phase twist of
the initial multibreather solution. Whena52np with n in-
teger, the two boundaries of the system can be identified
again. We use, subsequently, algorithm III~or variations
with technical refinements! for relaxing the multibreather so-
lution to an exact time periodic solution with periodtb of the
system without constraint. The linear stability of the obtained
solution is checked with a standard Floquet analysis.5

When the phase differences between the breathers are not
multiples ofp, the obtained solutions are not time reversible.
The average energy flux on one periodtb through the bond
between nearest-neighboring sites^ i , j & is generally nonzero.
It is the average work of the force of oscillatori onto oscil-
lator j

Ji→ j52Jj→ i5
C

tb
E
0

tb
ui~ t !u̇ j~ t !dt. ~4!

The first and simplest example we consider is a 1D chain
with a breather at each site. The multibreather state with
phase torsiona5qNmakes a propagating anharmonic plane
wave with wave vectorq52pn/N. The energy flux through
the bonds is conserved along the chain and depends on the
wave vectorq of this ‘‘anharmonic phonon’’~its frequency
does not lie in the phonon band!. Figure 1 shows two ex-
amples of variation of this energy flux for such multibreather
states for the Morse potential and for the quartic potential.

This plane wave solution is not linearly stable in the
whole interval of a phase torsion but only in an interval
centered onp in the Morse case or centered on 0 in the
quartic case.

One can also consider in the same way any other nonuni-
form distribution of breathers. Figure 2 shows two examples
of multibreather solutions for the Morse and for the quartic
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potential which correspond to a uniform distribution of
breathers ~i.e., excited oscillators! except for a single
breather vacancy. For all the figures, the sites with a breather
~motion with a large amplitude! are represented by full dots
and the vacancy~ies! by open dot~s!. According to Ref. 5, the
phasea i of each oscillatori is defined as the average angle
a i51/tb*0

tb@u i(t)2vbt#dt over one periodtb of the motion
in the standard action-angle representationI i(t),u i(t). There
is a large phase jump when crossing the bonds adjacent to
the breather vacancy while the phase torsion between neigh-
boring breathers is much weaker. The maximum energy flow
which can be carried by the structure is much smaller be-
cause the breather vacancy acts as a strangle neck limiting
the maximum energy flux.

For two-dimensional multibreather states, the global
phase rigidity of multibreather structures can be stiffer pro-
vided the breathers arrange as a percolating cluster. Figure 3
shows a pattern of energy fluxes obtained with a single
breather vacancy in the case of the Morse potential.

The energy flux is just distorted close to the breather va-
cancy which generates two symmetric vortex loops. By forc-
ing nonuniform constraints at the boundary of the system,
one can construct, in the same way, arbitrary connected
multibreather states which also carry an energy flow. Figure
4 shows the pattern of the energy flux of a linearly stable
solution which looks like a flowing ‘‘river’’ with meanders
and a dead end. It is obtained from a percolating cluster of
breathers connecting the two boundaries chosen at whim and
submitted to a phase torsion.

One can also construct in 2D models5 finite clusters of
breathers with just a single vortex in the energy flow. We
choose first a solution atC50 consisting of a cluster of
breathersL which form either a connected loop or more
generally a disc with or without vacancies in the middle.

ForC small, this continued configuration is linearly stable
when the nearest-neighboring breathers are in phase for the
hard quartic potential or in antiphase for the soft Morse po-
tential. Next, we construct a trying solution by rotating the
phases of the oscillatorsiPL in an approximately uniform
way in order to form a phase vortex. Then method III can be
used and generally converges forC not too large. It yields an
exact linearly stable multibreather solution which depends
continuously onC with a vortex in the energy flow. In ad-
dition, the obtained solutions are spatially exponentially lo-
calized. Figure 5 shows such examples of vortices. With the

FIG. 1. Energy flux for the large amplitude anharmonic plane
wave vs its wave vector in the 1D model for the quartic potential
C50.1, vb51.7, and for the Morse potentialC50.1, vb50.8
~energy scale magnified by 4!. The full lines correspond to linearly
stable anharmonic waves and the dotted line to linearly unstable
ones.

FIG. 2. Phasea i vs i for a stable inhomogeneous wave obtained
in 1D by phase torsion at the boundary as in Fig. 1 but for a
multibreather state with a single breather vacancy for the Morse
potential~a! atvb50.8,C50.04, and for the quartic potential~b! at
vb51.8, C50.25. The orientation angle of the arrow isa i . The
phase gradient~wave vector! qi5a i112a i vs i ~c! is almost con-
stant and equal top or 0. It mostly varies in the vicinity of the
breather vacancy.

FIG. 3. Local distribution of the energy fluxes for a stable inho-
mogeneous wave obtained around a single breather vacancy calcu-
lated as for Fig. 2 but in a 2D system~size 1534, Morse potential
atC50.02 andvb50.8). The length of each arrow is proportional
to the corresponding flux.

FIG. 4. Same as Fig. 3 but the initial breather distribution~black
dots! has been chosen arbitrarily~quartic potential atC50.1,
vb51.8).
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same basic method, it is easy to construct at will a wide
variety of more complex multibreather structures combining
vortices and~or! antivortices, etc.

These multibreathers~with or without phase torsion! can
survive as linearly stable structures for large couplingC in
the hard quartic model provided their frequencyvb is also
chosen large. By contrast, for the soft Morse potential, these

structures are more fragile and only exist at rather small cou-
pling C. In all cases, when the couplingC increases, they
become linearly unstable much before anharmonics of their
frequencyvb enters the phonon band. These instabilities,
which appear to be driven by phase fluctuations, have not
been studied yet in detail. In addition, the multibreather
structures can exist only when the single breather~the
‘‘bricks’’ ! is well pinned to the lattice.6 When the breather
depinning occurs, most corresponding multibreather struc-
tures are expected to collapse~pruning!.

In summary, we have demonstrated that in strongly anhar-
monic systems, there may exist exact and stable solutions
which can be viewed as highly distorted plane waves. Can
these solutions form spontaneously? We suggest that we
could get similar inhomogeneous patterns for the energy
flow when forcing the penetration of energy through such an
anharmonic system by a strong time periodic force with fre-
quencyvb at one edge of the sample.~Note that within a
harmonic approximation, the incident wave should be re-
flected at that frequency.!

One of us~T.C.! acknowledges Conseil ge´néral de la ré-
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FIG. 5. A small and a big 2p vortex in the energy fluxes for the
quartic potential atC50.1,vb51.7.
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