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Spatially inhomogeneous time-periodic propagating waves in anharmonic systems
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Strongly anharmonic and translationally invariant systems in arbitrary dimensions, exhibit a class of time
periodic and stable solutions carrying an energy flow as well as the standard plane waves which are special
cases. In general, the spatial distribution of these energy flows is very inhomogeneous and form arbitrarily
complex networks of channels and vortices. These solutions are constructed from arbitrary, finite, or infinite
clusters of breathergnultibreatherswith twisted phases. Examples of these solutions are numerically calcu-
lated in several one and two-dimensional nonlinear mo€8163-182807)50718-1]

It is well known that the energy flow carried by a plane ties are zero at the initial timeimplies that these multi-
wave in translationally invariant and harmonic systems, idreather solutions cannot carry any energy current in aver-
spatially uniform. The aim of this paper is to show that in age.
strongly anharmonic systems and despite that the transla- Actually, the time reversibility condition can be dropped
tional invariance of the system is preserved, the propagatiofnd it is proven that there exists multibreather solutions that
of a high density of energy at a fixed frequency can becoméolve a “phase torsion” between the breathers and thus
nonuniform with drastically inhomogeneous energy flows. Which carry an energy flow.An effective action®({«})

These results are obtained as an application of recent déan be defined as am2periodic function of the phase; of
velopments of the theory of breathers based on the concef@Ch breather at site (if any) invariant under any global
of anticontinuity® Breathers are spatially localized time pe- rotation of the phases. An exact solution is associated with

riodic modegbreatherswhich show up spontaneously in the each extremum _0@({5”})' In time reversible systems, _the
numerical simulations of a large number of nonlinearconfigurations witha; =0 or o7 are extrema and are the time

models'? Their existence as exact and stable solutions havEeverSIbIe multibreather solutions. This functidr({«j) is

been subsequently proven in Ref. 3 in finite or infinite timeanalogous to the Hamiltonian of afiY model which couples

. . . . .the phases of the breathers. Thus we will not be surprised to
reversible arrays of coupled anharmonic oscillators in arbi-

trary dimensions, provided the coupling between particles bf|nd extrema for which the breather phases are twisted by

£ 100 | that is in th ) f ot h it %oundary conditiong“phasons”) or vortexlike solutions in
NOL oo farge, that IS in the régime of strong anharmoniCity v,_gimensional models. In the simplest case with a breather

In addition to the existence of single breather solutions, the; o5ch site and a uniform twist. the standard plane waves
same theory yields the existence of proof of infinitely manypropagating energybut in an anharmonic systémwill be
other multibreather solutions among which an infinite andrgcovered.

large subset has been proven to be linearly stable. The Hamiltonians of the systems we choose as examples,
At the anticontinuous limit, the system is an array of de-for studying these solutions, have the form

coupled anharmonic oscillators and each oscillator is either

periodically oscillating or is at rest. The time periodic and U2 c

time reversible solutions with peridg correspond to an ar- HzE ?n+V(un)+ ) 2 (Up—Um)?, D

bitrary distribution of oscillators at rest and of moving oscil- n (n.m)

lators at the given period and with phase O7r Any of  \yhereV/(u) is an anharmonic potential which can be “hard”
these solutions can be continued at finite coupling up to afthe phonon frequency increases with the amplitude, e.g., the
upper bound which is proven to be nonzéaad independent quartic potentialV(u) = u?/2+u/4] or the reverse called

on the choice of the moving oscillators. The continued solu«seft” [e.g., the Morse potentiaf(u)=3(1—e %)?]. C is

tion which involves initially only one moving oscillator, is the coupling constant between the nearest-neighboring sites

just a single breather. The other solutions are multibreathefig and m of the lattice. The dynamical equation associated
and we say that the breathers are located at the site where thgth Eq. (1) is

oscillators were initially moving with a phase 0 et When

the number of breathers is one or is finite, the corresponding U;+V'(uj)—CAu;=0, 2)
solution decays exponentially at infinity. When the number

of breathers is infinite, they could be spatially ordered, therwhereAu;=%;.; ;y(u;—u;) is the discrete Laplacian and pe-
appearing as spatially periodic waves, but can also have anjodic boundary conditions are imposed.

spatial chaotic distribution or any other special kind of order. Systematic and highly accurate numerical methods for
The initial condition of time reversibilityi.e., all the veloci- calculating any time reversible breather or multibreather so-
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lution continuing the trivial solution existing &=0 have matrix[L,(X)—1]=PVQ whereP andQ are 2N X 2N or-
been developed in Ref. 4. We briefly describe how they aré¢hogonal matrices andl is a 2N X 2N diagonal matrix with
adapted for calculating the non-time-reversible solutions prediagonal elements,, which contains an almost zero element
sented here. vo- This matrixV is inverted in the space complementary to

Defining the nonlinear Poincare map  X(ty) the vector|0) associated with the diagonal element with the
= ({u;(ty),u;(t,) 1) =TL,[X(0)] by integration of Eq(2) with ~ Smallest value which yields the “pseudo” inverse matrix
the initial conditions X(O)=({ui(0),Ui(0)}), the fixed V! with diagonal elements a/, for v#0 and 0 forv=0.
points of this mapT, determine the initial conditions of the Then, the ~ Newton algorithm  becomes{X'=X
time periodic solutions of Eq2). We also define the linear —Q*V™'P*[Ty(X)—X]}.

tangent map,(X) of T,(X) from the linearized Eq(2), When C=0, the matrix[L,(X)—1] associated with a
) multibreather solution wittp breathers, have zero eigen-
€+V"(Uj)e—CAg=0, ©) values because of the breather phase degeneracy so that al-

which yields that {e(t)} depends linearly on its gorithm 11l does not converge in principle f& very small
- " . . (except for the single breather stgie=1). In practice, we
initial  conditions  and  determines {¢(tp)}.{€i(to)})  calculate first a linearly stable time reversible multibreather
=Ly ({€(0)}.{ei(0)}). solution with algorithm Il up to some finite value 6f for a
Starting from a trivial solution aC=0, parameteC is 1D or 2D system with periodic boundary conditions. Then
incremented by small steps. Each obtained solution at valuge make two identical boundary edges lines by cutting
C is taken as the trying solution &+ 5C of a modified  the system along a line of oscillators where the motion of the
Newton process for finding these fixed points based on thregscillators isu;(t) = g;(wpt). Subsequently, we force a phase
algorithms used sequentially in an appropriate fashion:  shift between the two edges of the system by forcing the
Algorithm 1: The standard Newton method consists in themotion to beut(t) =g;(wpt— a/2) on the left boundary and
recursive application of the operatofX'=X—[Lu(X)  yR(t)=g;(wpt+al2) on the right boundary where is a
— 1] [Ty(X) —X]} to an initial trying solution chosen close giyen phase. Then, algorithm I is used for relaxing the multi-
enough to the real solution. This method cannot be applieeather solution to an exact dynamical solution of the sys-
for the free system in that way becausg(t)=u;(t)} is @  tem under this boundary constraint. The phasés incre-
time periodic solution of Eq.(3) which implies that mented by small steps for having a continuous phase twist of
[Lp(X)—1] has the eigenvalue O for the eigenvectorthe initial multibreather solution. Whea=2na with n in-
({u;(0)},{4;(0)}) and thus is not invertibléthen use algo- teger, the two boundaries of the system can be identified
rithm 2) . However, when there is a periodic external forceagain. We use, subsequently, algorithm (dr variations
with periodt,, applied to the oscillators, for example, to the with technical refinementdor relaxing the multibreather so-
phase twist at the boundary of the system, the time transldution to an exact time periodic solution with periggof the
tion invariance of the solutions is broken so that breather angystem without constraint. The linear stability of the obtained
multibreather solutions can be found with this method. solution is checked with a standard Floguet analysis.
Algorithm 2:In the case without any external force, our ~ When the phase differences between the breathers are not
initial approach has been to restrict the working space tomultiples of 7, the obtained solutions are not time reversible.

time reversible loopX = ({u;(0),u;(0)=0}) and to look for ~ The average energy flux on one periggdthrough the bond
the fixed points of the truncated operatdix({u;(0)}) between nearest-neighboring sifeg) is generally nonzero.
={u;(ty)}. The restricted Newton method only involves the Itis the average work of the force of oscillatoonto oscil-
NxN submatrixA of [Ly(X)—1] concerning the position 1&tor
variables of the oscillators which is invertible whéh#0.
However, because the accuracy of this method can be shown

to be intrinsically limited to (108) with the standard com-

puter accuracywhich is often sufficient this method is im-

proved for approaching the computer accuracy (£ (see The first and simplest example we consider is a 1D chain
also Ref. 6. Considering the trying solution={u;(0)} with  \ith a breather at each site. The multibreather state with
uj(0)=0, our improved Newton algorithm is phase torsiomr=gN makes a propagating anharmonic plane
x' =x—(A*A+C*C) }(A*,C*)[Tp(x,0)— (x,0)] where the  wave with wave vectog=2=n/N. The energy flux through
NXN matricesA and C are defined as sublocks of the the bonds is conserved along the chain and depends on the
2NX 2N matrices[Lb(X)—1]=(éE) and where A*,C*) is  wave vectorg of this “anharmonic phonon'(its frequency
anNXx 2N matrix. does not lie in the phonon bandrigure 1 shows two ex-
Algorithm 3: For finding non-time-reversible solutions, amples of variation of this energy flux for such multibreather
this method has to be modified once again. Since we knowtates for the Morse potential and for the quartic potential.
that the perturbation of the trying solution in the direction of ~ This plane wave solution is not linearly stable in the
the eigenvector associated with the zero eigenvalues of thehole interval of a phase torsion but only in an interval
operator] L,(X) — 1] just changes the time origin of the so- centered onr in the Morse case or centered on O in the
lution, this perturbation is useless but it turns out to be harmeuartic case.
ful for the convergence of the Newton process because it One can also consider in the same way any other nonuni-
involves large variations of the solution. This perturbation isform distribution of breathers. Figure 2 shows two examples
removed by using the singular value decompositiohthe  of multibreather solutions for the Morse and for the quartic

C (it .
JiHj:_JH:EfO u(t)u;(Hdt. (4)
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FIG. 3. Local distribution of the energy fluxes for a stable inho-
mogeneous wave obtained around a single breather vacancy calcu-
lated as for Fig. 2 but in a 2D systefsize 15<4, Morse potential
at C=0.02 andw,=0.8). The length of each arrow is proportional
to the corresponding flux.

FIG. 1. Energy flux for the large amplitude anharmonic plane
wave Vs its wave vector in the 1D model for the quartic potential
C=0.1, w,=1.7, and for the Morse potenti&l=0.1, w,=0.8
(energy scale magnified by.4The full lines correspond to linearly
stable anharmonic waves and the dotted line to linearly unstable

ones The energy flux is just distorted close to the breather va-

cancy which generates two symmetric vortex loops. By forc-
potential which correspond to a uniform distribution of ing nonuniform constraints at the boundary of the system,
breathers (i.e., excited oscillatops except for a single ©Oneé can construct, in the same way, arbitrary connected
breather vacancy. For all the figures, the sites with a breathépultibreather states which also carry an energy flow. Figure
(motion with a large amplitudeare represented by full dots 4 shows the pattern of the energy flux of a linearly stable
and the vacandies) by open dofs). According to Ref. 5, the solution which looks like a flowing “river” with meanders
phaseq; of each oscillatoi is defined as the average angle @hd a dead end. It is obtained from a percolating cluster of
o= 1/tbftb[ 6;(t) — wpt]dt over one period;, of the motion breathers connecting the two boundaries chosen at whim and

i oLYi

in the standard action-angle representatigt), 6;(t). There subomltted to all phase ttorS|ton. 2D modeknite clust f
is a large phase jump when crossing the bonds adjacent to ,?r? can '?hslo ctons Tucl n " mo th Ite clus ﬁrs OW
the breather vacancy while the phase torsion between neig {]ea er? wi Jusl a smagtei gor exin he efnerg;l/ owW. f €
boring breathers is much weaker. The maximum energy flovi oose first a so ution - consisting of a cluster o
which can be carried by the structure is much smaller be- reathers; Wh'Ch _form el_ther a Conne_cte_d loop or more
cause the breather vacancy acts as a strangle neck Iimitirﬂf’\nerallly a disc W'th Or.W'thOUt vacancies in t_he middle.
the maximum energy flux. For C small, this cqntmue@ configuration is !mearly stable
For two-dimensional multibreather states, the globalWhen the nearest-nelghborlng_breathers are in phase for the
phase rigidity of multibreather structures can be stiffer pro-harq quartic potential or in ant|p_hase for_the soft Mo_rse po-
vided the breathers arrange as a percolating cluster. Figuret ntial. Next, we construct a trying solutpn by rotating the
shows a pattern of energy fluxes obtained with a singlé) ases of the oscillatotis= £ in an approximately uniform
breather vacancy in the case of the Morse potential. way in order to form a phase vortex. Then methoo! [l can be
used and generally converges ©mot too large. It yields an
9 [,

exact linearly stable multibreather solution which depends
: continuously onC with a vortex in the energy flow. In ad-
A A
AN
v [ 17775

dition, the obtained solutions are spatially exponentially lo-
calized. Figure 5 shows such examples of vortices. With the
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FIG. 2. Phasey; vsi for a stable inhomogeneous wave obtained ! ' ! )
in 1D by phase torsion at the boundary as in Fig. 1 butfora © ~ @ - ® - ® - @& =« @& - 0 + O - O
multibreather state with a single breather vacancy for the Morse
potential(a) at w,=0.8,C=0.04, and for the quartic potentidd) at o -0 -0-0-09+0 -0 -0 -0
wp=1.8,C=0.25. The orientation angle of the arrowds. The
phase gradienfwave vector gij=a;,.1—a; vsi (c) is almost con- FIG. 4. Same as Fig. 3 but the initial breather distributiolack

stant and equal ter or 0. It mostly varies in the vicinity of the dot9 has been chosen arbitrariliquartic potential atC=0.1,
breather vacancy. w,=1.8).
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structures are more fragile and only exist at rather small cou-
pling C. In all cases, when the coupling increases, they

. O become linearly unstable much before anharmonics of their
Sroresememt Y frequency wy, enters the phonon band. These instabilities,
0 e-0roe—oc-0o-0 0" which appear to be driven by phase fluctuations, have not
° e oLy ... been studied yet in detail. In addition, the multibreather
T l' . N :_i_m_l_z .. structures can exist only when the single breatfte
o eg—e - o AU SO “brlpks"’ ) is well pinned to the Iattlcé.When jrhe breather
C Tty depinning occurs, most corresponding multibreather struc-
°© 0 8-e=8=-8: 00" tures are expected to collap§@uning.
6 - o + o - o - 6. 0-0-0-0-0-0-0-" In summary, we have demonstrated that in strongly anhar-

) monic systems, there may exist exact and stable solutions
which can be viewed as highly distorted plane waves. Can
these solutions form spontaneously? We suggest that we
could get similar inhomogeneous patterns for the energy
flow when forcing the penetration of energy through such an

same basic method, it is easy to construct at will a wide2harmonic system by a strong time periodic force with fre-

variety of more complex multibreather structures combiningdU€NCy @y at one edge of the sampl&Note that within a

FIG. 5. A small and a big 2 vortex in the energy fluxes for the
quartic potential aC=0.1, w,=1.7.

vortices andior) antivortices, etc. Rar:ncanlci tf;l]mtarfommatlon, the incident wave should be re-
These multibreathergvith or without phase torsigncan ected at that frequendy.
survive as linearly stable structures for large coupl€gn One of us(T.C.) acknowledges Conseil geral de la re

the hard quartic model provided their frequensy is also  gion Rhae-Alpes for the grant Emergence and Laboratoire
chosen large. By contrast, for the soft Morse potential, theskéon Brillouin for its hospitality.
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