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We report on the interplay between classical trajectories and quantum-mechanical effects in a square geom-
etry. At low magnetic fields the four-terminal resistance is dominated by phenomena that depend on ballistic
trajectories in a classical billiard. Superimposed on these classical effects are quantum interference effects
manifested by highly periodic conductance oscillations. Numerical analysis shows that these oscillations are
directly related to excitations of particular eigenstates in the square. In spite of open leads, transport through an
open cavity is effectively mediated by just a few~or even a single! resonant-energy states. The leads injecting
electrons into the cavity play a decisive role in a selection of the particular set of states excited in the dot. The
above selection rule sets a specific frequency of the oscillations seen in the experiment.
@S0163-1829~97!50316-X#

Ballistic semiconductor quantum dots are rewarding ob-
jects for studying relations between quantum mechanics and
corresponding semiclassical electron dynamics. A number of
semiclassical predictions have been recently made for trans-
port characteristics of ballistic quantum dots whose classical
counterparts are chaotic or regular, respectively.1 Many of
the above predictions have been tested in recent
experiments2 and the difference in transport properties of
chaotic and regular billiards has been found.3

Transport characteristics of open dots are often analyzed
on the basis of the known properties of the corresponding
closed structure.4,5 Recent theoretical studies of the effects of
leads on the electron dynamics in open dots are rather con-
tradictory. Reference 6 shows that the statistics of the spectra
for open dots are exactly the same as that of the correspond-
ing closed systems. At the same time, the results7–9 suggest
that the leads attached to the dot may change the level sta-
tistics, so that a transition to chaos can occur in a nominally
regular system. Besides, when dot openings become large
enough, the eigenenergy levels interact and acquire a finite
broadening due to the finite lifetime of electrons in the dot.
This energy broadening might be much bigger than the mean
energy level separation, resulting in overlapping of many
resonances. Under these conditions it is not clear whether a
discussion of transport through the dot based on the proper-
ties of the Hamiltonian of the closed structure is still mean-
ingful for the open system.

In this paper we investigate ballistic transport in an open,
nominally regular square geometry. We show that despite the
lifetime broadening induced by the leads, transport through
the structure is still effectively mediated by just a few~or
even a single! regular eigenstates of the isolated square. The

geometry of the leads injecting electrons into the cavity plays
a decisive role in the selection of the particular eigenstates
excited in the dot. The above selection rule sets a specific
frequency for the oscillations seen in the experiment.

Our device@schematically shown in the inset of Fig. 1~a!#
consists of a patterned high mobility GaAs/AlxGa12xAs het-
erostructure which contains a two-dimensional electron gas
65 nm below the surface. AtT54.2 K its electron density is
ns5331015 m22 and the elastic mean free path is
l e58 mm. The pattern was produced by electron beam li-
thography and transferred onto the sample by a carefully
tuned wet etching step. The square geometry with a system
dimensionL52.4 mm has quantum point contact~QPC!–
like openings at its corners serving as contacts to the system.
The openings are adjusted to support roughly three modes so
that charging effects are not important. The whole structure
is covered by a metal gate which allows one to tune the
Fermi energy in the system. The sample is cooled in a dilu-
tion refrigerator with bath temperatures between 1.4 K and
30 mK. At low temperatures (T,1 K! both the elastic mean
free path and the phase coherence length of the electrons
exceed the dimensions of the device. Typical four-terminal
measurements of the resistanceRi j ,kl5(Vk2Vl)/I are made
by passing a currentI through the contactsi and j and mea-
suring the voltage drop across the other two contacts (k and
l ). The longitudinal resistanceRL5R12,34 has a negative
value at zero magnetic field; see Fig. 1~a!. RL then rises
sharply and has a pronounced maximum atB'0.7Bc and a
further one atB'2Bc (Bc is the the magnetic field when the
cyclotron radius at the Fermi energy,Rc5\kF /eB, equals
side of the square, 2Rc5L). The Hall resistance
RH5R14,32 in this regime exceeds the linear value
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RH5B/ens and has plateaulike structures which are closely
related to the corresponding features inRL . For higher mag-
netic fields,B>0.2 T, Shubnikov–de Haas~SdH! oscilla-
tions and quantized Hall plateaus appear.

Figure 1~b! shows the results of numerical calculation for
a square dot of sizeL51 mm in the four-terminal geometry
depicted in the inset.RL andRH are computed in the frame-
work of the multiterminal Landauer-Bu¨ttiker formalism.11–13

To calculate the transmission probabilities we solve a full
quantum-mechanical scattering problem making use of the
hybrid recursive Greens function technique,10 generalized for
the presence of four leads. The effect of finite temperature is
accounted for in a standard way, as a convolution of the
transmission coefficients over energy, with the derivative of
the Fermi-Dirac distribution.12,13

The dimension of the simulated device is smaller by a
factor of 2.4 than the dimension of the real one~otherwise
the calculation would become forbiddingly large!. Therefore,
one cannot expect a direct one-to-one correspondence be-
tween the experiment and the numerical simulations. At a
given magnetic field the ratioRc /L ~and consequently, the
spatial extent of the wave functions relative to the size of the
square! is bigger for the simulated device. Therefore, inter-
ference effects are of a greater importance, giving rise to a
rich structure which is not seen in the experiment. However,
the relative peak positions ofRL ,RH are in good qualitative
agreement. The lower panel of Fig. 1~b! shows the calculated
total transmission coefficients,T21 and T41, from lead 1 to
leads 2 and 4, respectively~coefficientsT31 and R11 are
rather featureless and are not displayed here!. Pronounced
peaks seen in the the transmission coefficients can be directly
attributed to the classical ballistic orbits as depicted in the
insets. An interplay between these coefficients in the four-
terminal Landauer-Bu¨ttiker formula11 causes the particular
peak positions detected in both numerical simulations and
experiment. A negativeRL seen in experimental and calcu-
lated longitudinal resistances atB;0 is caused by the en-
hancement of the diagonal transmission (T41.T21,T31) due
to the classical horn collimation effect~see inset!. Similar
magnetoresistance anomalies related to the geometrical reso-
nances and collimation effect have been detected in narrow
junctions in Hall-bar geometry and are well explained within
the classical ballistic transport picture~see Ref. 12 for a de-
tailed review!.

At lower temperatures (Tbaths530 mK! reproducible bal-
listic fluctuations are superimposed on these classical effects
in the experiment. This strongly suggests that these fluctua-
tions are phase coherence effects arising from electron inter-
ference in the dot.

We tune the electron density, and thus the Fermi energy,
inside the square by varying the voltage on the surface gate.
At zero magnetic field we find a strong oscillatory behavior
in both the experimental and the calculated longitudinal re-
sistance as a function ofkF5(2pns)

1/2 ~Fig. 2!. In order to
understand the nature of these periodic oscillations we study
the probability density distributionuC(x,y)u2 in the dot. In
this analysis we limit ourselves to a two-terminal geometry,
where the dot is connected to reservoirs only by leads 1 and
2. ~The calculated two-terminal resistance has the same fre-

FIG. 1. ~a! Measured longitudinalRL and Hall resistanceRH for a bal-
listic square geometry~right inset!; size of the square,L52.4 mm,
Tbath530 mK, Bc corresponds to the magnetic field when the cyclotron
diameter equals to the size of the square,Bc575 mT. ~b! Upper panel:
calculatedRL and RH in the four-terminal geometry shown in the inset;
L51mm, T5250 mK,Bc5165 mT. Left inset shows collimated electron
beam in a single QPC. Lower panel: transmission coefficientsT21 and
T41 ; the insets show classical ballistic trajectories illustrating the enhance-
ment ofT21 atB;0.9Bc andT41 atB;1.3Bc ~peak positions differ from the
classical expected valuesB/Bc51 and 1.5 due to the strong collimation of
the electron beam over the diagonal of the square!.

FIG. 2. Measured~a! and calculated~b! resistance oscillations as a func-
tion of the Fermi wave vector and their Fourier transforms~FT! ~insets!;
Tbath530 mK ~a!, T5250 mK ~b!. Periodicity of the measured and calcu-
lated oscillations as extracted from the FT,DkF

expt51.753106 m21,
DkF

num52.173106 m21.
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quency of oscillations as the longitudinal four-terminal one
and, therefore, the above limitation does not affect our con-
clusion on the origin of the fluctuations.!

In Fig. 3 uC(x,y)u2 is displayed for two representative
values of kF . The origin of the wave function pattern
becomes clear when we numerically expand the calcu-
latedC(x,y) ~which is a solution of the scattering problem
in the open dot! onto the set of eigenstates of the
square, cmn5(2/L)sin(pmx/L)sin(pny/L) @with eigen-
energiesem,n5\2/2m* (km

2 1kn
2); km5pm/L, kn5pn/L#.

This is equivalent to finding the coefficientcmn of the com-
plex two-dimensional sine-Fourier transformC(x,y)
5(m(n cmnsin(pmx/L)sin(pny/L). The lower panel of
Fig. 3 shows the calculated expansion coefficientsucmnu2
representing the contributions of the eigenstatesm,n in the
corresponding wave-function patterns. We find that only the
coefficientscmn with quantum numbersm,n lying near the
circle of radiusR5Am21n25kFL/p give nonvanishing
contributions. Broadening of the resonant levels due to the
effect of the dot openings ink space is less than the distance
between neighboring eigenstates whose quantum numbers
differ by one, ukn2kn61u5ukm2km61u5p/L. This makes
us conclude thattransport in open structures is effectively
mediated by the eigenstates of the corresponding closed dot
with eigenenergies lying in close proximity to the Fermi en-
ergy, em,n'EF. By examining the wave function pattern as

kF is varied, we are in a position to identify a particular set
of eigenstates which contribute to the conductance at a given
EF . In the system under consideration where the aspect ratio
‘‘dot size/dot opening’’ is 10, the above set typically consists
of just a few or sometimes even a single energy level.

At a given Fermi energy the eigenstates of the dot seem to
be excited randomly at the circleAm21n25kFL/p, see Fig.
3, lower panel. However, averaging over the appropriate en-
ergy interval shows that it is primarily eigenstates with
m'n ~i.e., km'kn'kF /A2), which mediate transport in the
square dot, see Fig. 4~a!. It is the injection properties of the
leads which define these selection rules.Indeed, for a single
QPC, a state withk' inside the QPC is mostly coupled to an
outgoing state with the same transverse wave vector.14 Al-
though, strictly speaking, this is no longer correct for the
double QPC’s in series~i.e., the dot! when interference ef-
fects destroy this coupling, it is justified when an average
over a finite energy window is performed, so that the dot
nominally plays the role of a reservoir.15 In the present ge-
ometry with electrons injected from a corner, the beam is
strongly collimated due to a classical horn collimation effect
and is directed along the diagonal of the box, Fig. 4~a!. This
means thatk''0 andki'kF . Extending those results for
our geometry of the injecting leads, we get^km&'^kn&
'kF /A2 which explains the above selection rules displayed
in Fig. 4~a!; (^•••& stands for energy averaging!. Note, that

FIG. 3. Upper panel: probability density distribu-
tion uC(x,y)u2 in the dot calculated for
kF51.123108 m21 ~left! and kF51.1343108 m21

~right!. Lower panel: expansion coefficientsucmnu2~see
text! showing a contribution of the eigenstatesm,n me-
diating transport at the givenkF .

FIG. 4. ~a! Coefficientŝ cmn& averaged in the inter-
val 1.1,kF,1.15 @20 patterns ofC(x,y) have been
analyzed#. ~b! Eigenenergy states of the square dot
which are excited as the Fermi energy is varied; see
text.
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the selection rule would be different for a different geometry
of injecting leads.

Let us now discuss the observed periodicity of the con-
ductance fluctuations. As we have found that the fluctuations
are directly related to the excitation of resonant-energy levels
of the dot, one can expect that the observed periodicity in
kF is related to the transitions between different eigenstates.
Suppose, at a givenkF , that an eigenstate$m,n% is excited in
the dot; see Fig. 4~b!. In the case under consideration mostly
states withkm'kn'kF /A2 are excited in the dot. For these
states, changingkF by DkF

15Dk/A2 results in the excitation
of the states which one of the quantum number differs by
unity, $m11,n% or $m,n11%; Dk5p/L being the distance
between neighboring levels of the square. This, as one can
expect, would lead to an appearance of the next conduction
peak, withDkF

1L5p/A252.22 defining the period of the
oscillations. IncreasingkF byDkF

252DkF
1 corresponds to the

excitation of the state$m11,n11% where both quantum
numbers are changed by one. The calculated periodicity
DkF

numL52.22, as extracted from the Fourier transform in
Fig. 2, equalsDkF

1L exactly. The observed periodicity,
DkF

exptL54.42, however, rather well corresponds to
DkF

2L5A2p54.44.
Currently, we do not fully understand the origin of the

factor of two disagreement between the theory and the ex-
periment. We speculate, however, that this can be due to
inelastic scattering which may play an important role in our
relatively large dot, but has not been accounted for in the
numerical simulations. Indeed, in the framework of the semi-
classical theory,16 the contribution to the oscillating part of
the density of states of the dot comes from the electrons
bouncing in all stable primitive periodic orbits. In real sys-
tem, however, phase breaking events and temperature smear-
ing strongly suppress contributions from long orbits. In prac-
tice, neglecting periodic orbits or trajectories longer than the
inelastic scattering length,l i , seems to be a good approxi-
mation.4,17–19The selection rules found above correspond to
the excitation of the family of orbits with winding numbers
~1,1! ~Ref. 17! of length l52A2L, where the wave vectors
~velocities! parallel to the sides of the square are equal,
km5kn . Note that in the dot under investigation, the lengths

of the longer primitive periodic orbits exceedl i . WhenkF is
changed byDkF

1 , only km ~or kn) is changed and the final
wave vectors are not equal. Then the electron no longer stays
in the periodic orbit and eventually loses its phase memory
after multiple bounces inside the dot, and does not contribute
to phase-coherent interference. However, whenkF is
changed byDkF

2 , both quantum numbers are changed such
thatkm115kn11. As a result, the electron does not leave the
periodic orbit and retains its phase coherence. We conclude
this discussion with a question mark, in a hope that further
experiments on much smaller dots, where electrons can per-
form tens or even hundreds of bounces before losing their
phase coherence,20 would help to clarify this issue.

Despite the discrepancy~factor of 2! between the experi-
ment and the theory, it is still remarkable that they both
demonstrateperiodic conductance oscillations. This is in
contrast to theaperiodic fluctuations seen in chaotic dots.
The latter are well described by the random matrix theory,16

based on the assumption that the leads are coupled to a dot
which is described by the transfer matrix constructed from
the appropriate random statistical ensemble. In contrast, in
the square dot only a set of selected eigenstates excited ac-
cording to the specific selection rules effectively mediate
transport through the structure. The fact that conductance
oscillations in the dot are related to the excitation of the
corresponding regular eigenstates of the square suggests that
a soft potential due to remote donors would not affect the
regular character of the electron dynamics significantly.

To conclude, at low magnetic fields the magnetoresistance
is dominated by phenomena that depend on classical trajec-
tories traversing a ballistic square cavity. Conductance fluc-
tuations observed at millikelvin temperature are directly re-
lated to the excitation of a particular set of eigenstates of the
square selected according to injection properties of leads.
The above selection rule sets a specific frequency for the
oscillations seen in the experiment.
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