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Persistent current in an artificial quantum-dot molecule
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Using an exact diagonalization technique within a generalized Mott-Hubbard Hamiltonian, we predict the
existence of a ground-state persistent current in coherent two-dimensional semiconductor quantum-dot arrays
pierced by an external magnetic flux. The calculated persistent current, which arises from the nontrivial
dependence of the ground-state energy on the external flux, exists in isolated arrays without any periodic
boundary condition. The sensitivity of the calculated persistent current to interaction and disorder is shown to
reflect the intricacies of various Anderson-Mott-Hubbard quantum phase transitions in two-dimensional sys-
tems.[S0163-18207)50816-3

Significant recent advances in semiconductor materialthe electron states tend to be strongly localized on individual
growth and nanolithography techniques now afidar the  quantum dots except for weak interdot quantum tunngiimg
fabrication of multiple quantum-dot systems in modulation-contrast to metallic systems that are nearly free-electron-like.
doped two-dimensional electron structures that are quantutf addition, we consider a finite 2D array without any peri-
mechanically coherent, and may therefore be considere@dic boundary condition in contrast to the 1D ring geometry,
two-dimensional “artificial molecules” (with individual ~ Which, by definition, is periodic. Another significant aspect
quantum dots being the “atomic” constituents of this artifi- Of our prediction is the inclusion of quantum tunneling, dis-
cial molecul@. Theoretical work on multidot systems has order, and Coulomb interaction effects on equal footings be-
mostly concentrated on the two limiting situatiéfigcoher- ~ cause in real semiconductor quantum-dot arrays all of these
ent dots with no Coulomb interactidmnd Coulomb block- effects are expected to be important.
ade of individual dofy. In this paper, we consider coherent ~We model the finite square 2D quantum-dot array of size
two-dimensional2D) arrays of quantum dot.e., 2D arti- LxXLy=L dots through the following physically motivated
ficial molecule taking into accourft® both quantum fluctua- generalized 2D Mott-Hubbard type strongly correlated
tions arising from interdot hopping and electron-electron in-Hamiltoniarf (c,c’ are electron field operators amdis the
teraction effects through a generalized Mott-Hubbarddensity operator
Hamiltonian? Our main result is the prediction of aqui-
librium persistent .currenin finite 2D arrays qf semicond'uc—. Ueo . Vi~
tor quantum dots in the presence of an applied magnetic field H=2, s.clciot 52 ni2+ > =i,
transverse to the 2D plane. A measurement of this persistent he : T 2
current in small 2D arrays will be definitive evidence for the .
formation of an artificial quantum-dot molecule. The pre- - 2 (ta'ije'd’ijcfacjawL H.c.), D
dicted persistent current is a periodic function of the external (L)
flux and exhibits clear signature of the competition between I _
coherence and interaction in artificial 2D molecules. We in-Whered;;=e/%i[;;A-1;; is the usual Peierls gauge phase fac-
clude disorder effects in our calculation and show that ouf©r arising from electron hopping on a lattice in a transverse
predicted equilibrium persistent current should be experiexternal magnetic flugwith A the vector potential anig; the
mentally observable in currentlfor soon-to-bg accessible spatial vector along a plaqueXteThe indicesi,j are the
2D quantum-dot arrays. quantum-dot spatial positions in the array andlenotes an

It is well knowrf~8 that gauge invariance and single val- electron state on the quantum dot. The generalized Mott-
uedness of electron wave functions allow for the existence oflubbard parametefd, V, andt have the usual significance
a ground-state persistent current in normal metal rings surmef the on-site Coulomb interaction, the long range part of the
rounding an external magnetic flux. The intrinsic magneticCoulomb interaction, and the hopping kinetic energy term,
moment associated with this persistent current, which is prorespectively, within the tight binding description of the 2D
portional to the current in one-dimensiondD) rings, is an  array. We consider two spin-split energy levels per dot
oscillatory function of the external flux with a period equal due to quantum confinement in a dot. We assume the mag-
to the elementary flux quantumh,=h/e. The existence of netic field to be weak enough for single-particle level cross-
such an oscillatory persistent current in normal metal ringsng effects not to be important. We concentrate here on the
has been experimentally verifid! Our predicted ground- collective physics in the array in the strongly interacting and
state persistent current in 2D quantum-dot arrays has somninteracting system limiting cases leaving out the cross-
significant differences with the existing persistent currentover between these two regimes due to single-dot Zeeman
theoretical analyses in the 1D ring geometry. The system wphysics. The Coulomb interaction in the array is expressed in
consider is a finite coherent 2D quantum-dot array, where theerms of the capacitance matrix representatiofhe
one electron states are in the atomic tight-binding liftné.,  quantum-dot array is in the tight-binding atomic limit, and
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we therefore keep only the nearest-neighbor tunneling term
in tj;=t. Within the model defined by Eq1), U,V,t are
parameters to be given as inputs using a physical description
of the quantum-dot array.

We are interested in calculating the equilibrium persistent
current flowing in the array at=0 in the presence of an
external flux threading the 2D lattice. It is easy to show by
using commutation properties of with the polarization op-
erator that the transverse component of the magnetic moment
density operatom, is given by the gauge invariant result

1(nA)

T
1(nd)

m,=— Ev (2)

where® is the total uniform magnetic flux piercing the finite
2D system(We note that the external magnetic field is in the
z direction and with the 2D array in they plane, and there-
fore m, is the only nonzero component of the magnetization
density) A nonzero value of the static magnetization density,
as measured by a finita,, is equivalent to the existence of
a ground-state persistent currdmthose strength is exactly
the same as the measured valuergfbecause of the two-
dimensional nature of the problenOur goal is to calculate
the equilibrium magnetic moment density for 2D quantum-
dot arrays using Eq$1l) and(2). An experimental measure-
ment of a finitem, (as a function of external flgxwill be a
direct verification of the quantum-dot molecule formation.
To obtain the equilibrium persistent currei=m,, we
calculate the ground-state energy by doingexact diago-
nalizationof H, defined by Eq(1), in the basis of the total
number of electronhl in the array and the total sp# in the We show our typical calculated persistent current as a
direction of the field, and then perform minimization over function of the external flux in Fig. 1 for three different
S, to find the stable ground state. The magnetic momenvalues of band filling (= 1/6,5/18,1/2) in the X3 system.
density in a finite 2D quantum-dot array is calculated usingResults for six different situation@s described in the figure
Eq. (2). Existing semiconductor nanofabrication techniquescaptions for various valuedJ, V, andW are shown for each
are at bestcapable of producing coherent arrays that ardfilling with t; A is fixed throughout the calculation. The flux
2% 2 to 3x3 quantum dots in size. The Lanczos diagonal-¢ is through each elementary cglbr plaguettg of the
ization technique that we use is capable of giving the exacB X 3 system, and the calculated equilibrium persistent cur-
interacting ground state for up to &3 array of our interest. rent is in absolute units. The most significant feature of Fig.
We calculate the persistent currentiimieracting 2D arrays 1 is the existence of a persistent current, which is periodic in
up to L=3X3 sizes for all band fillingsn (=N/2L) by  ¢/¢q (notethat the total flux through the systemds=4¢
varying the number of electrors in each system between by virtue of the four equivalent plaguettes in thex3
N=1 andN=L. We use realistic Mott-Hubbard parameters quantum-dot arrgy whose magnitude is reasonably large
that approximately correspond to 2D GaAs quantum-dot syst= nA). The magnitude of the current depends, in a rather
tems(at T=0). We chooséthe intradot single-particle level complicated way, on the Mott-Hubbard parametersV,
spacingA =0.3 meV to be comparable in magnitude to theandW, and also on the band fillingn particular, on whether
interdot hopping parametar=0.1 meV, with the intradot n=1/2 or no}. We can, however, make the following quali-
Coulomb charging energy ~1 meV. With this choice of tative observations:
parameters the 2D quantum-dot array is in the interesting (1) Away from half filling, finite disorder is the most
coherent “molecular” state referred to as the “collective prominent destructive effect on the current amplitude, with
Coulomb blockade” regimé where both coherence and in- finite interaction J,V+0) producing some enhancement of
teraction play comparable nonperturbative roles, and th¢éhe disordered current but never to the free electron
Coulomb blockade of individual dots is destroyed. Disorder(U,V,W=0) value. Without any disordeM{=0), finite U
is included in our calculation through a spin-independent paand V have reasonably small effects on the current magni-
rameterW~ A that denotes the half-width of a uniform dis- tude away from half filling.
tribution of random on-site quantum-dot energies centered (2) At half filling, however, finite on-site Coulomb repul-
aroundA. The spin splitting(set to be 0.0& that allows us sion (U#0) by itself dramatically suppresses the persistent
to study the total spin transitions due to the collective motioncurrent with the long-range Coulomb interactiovi# 0) op-
in the array of the single-particle energy levels is assumed toposing this dramatic suppression due to firtite
be independent o#V. (3) Disorder, by itself W+0, U, V=0), seems to produce

I (n)

FIG. 1. Typical calculated persistent current for three different
values of band filling n=1/6(a),5/18(b),1/2(c) ] in the 3X 3 array
is plotted versus the magnetic flux through the elementary cell in
units of ¢, for six different sets olJ,V,W (see the legend in the
Fig. 2 for the key to each line in the p)an the 3X3 system.
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similar quantitative suppression of the persistent current at - .
all fillings except at half filling, where disorder enhances

(slightly) the interacting clean system current. | Uooveo Weo.3 -

(4) Long-range Coulomb repulsionVé0) always en- 6r ----- 3: x:g w:gs 7
hances the current magnitude from its filiteandW values. = | .o u=1v=05w=0

(5) The various structure§umps and discontinuitigsn = ——— U=1V=05Ww=03
the current arise from many-body energy level crossings that,, 4 o
occur in the system at specific fillings and values of the mag-é\ . TN s
netic flux. The discontinuities of the persistent current seen =~ r  / mmen .o : "\\ 1
in Fig. 1 correspond to the change of the total orbital mo- : . —=1
mentum in the 2D array, which can be accompanied by spin- 2L ~— N \"‘/ B
flip transitions in the system. Finite disordeMW§D0) e T TN TN
smoothens the discontinuities in the noninteracting i . . LT 3
(U,V=0) current, and removes some of the discontinuities 5
in the interacting (J,V#0) current. There are no disconti- N 6 8

nuities or spin flips at half filling in the interacting system
[Fig. 1)) | "
(6) The sign of the persistent current at zero magnetic flux FIG- 2. A plot of the RMS persistent curre(it’) ' versus the
is generally dependent on the electron filling and the geOmr_1umber of electron.!sl in the 3x3 array for the six different set§ of
etry of the array. We find the interacting) ¢ 0, V, W=0) U,V,W (as_ shown in the_legenblm the 3x3 system. All energies
persistent current in22, 3xX2, 4x2, and 33 arrays to be are given in the meV units.
diamagnetic fom=1/2L and paramagnetic fan=1/2. The
random disorder of strengiVv (=A, as used in our calcula-
tions) does not change the sign of the persistent current.
(7) The current distribution in the clean 2D array is deter-
mined by the spatial symmetries of the system and ban
filling in the array. In the clean 8 3 lattice the current flows
along the boundary for all electron fillings in the system.
However, the persistent current distribution is disorder real

|za$<r)]n dependent. ‘ ‘ s th the localization effect is even weakéand may be hard to
€ most important feature of our results, the strong SUpgiscern jn 4 finite sampleThis explains the rather benign
pression of the persistent current at half filling by the on-site

Coulomb lsiorU is a directfinite si i ) ¢ effect of having a finiteW in Figs. 1 and 2 of our results,
oulomb repulsiort, Is a directfinite sizemanifestation of ey should be contrasted with 1D ring calculations where
the Mott-Hubbard metal-insulator transition, which is a true

R Lo the persistent current is strongly suppressed by finite values
phase transition in the thermodynamic limit. The long-range b gy Supp y

Coulomb Isi 0 hi ition in a fini of W. To better quantify our finite disorder results we show
oulomp repu sionY{(#0) opposes this tranS|.t|on In a |r_1|t_e in Fig. 3 a log-log plot at half filling of the rms current
system (leading to an enhancement in the finite

: - (12)Y2 without any interaction effectsU,V=0), averaged
U-suppressed current amplitude ¢ 0 at half filling). Ef- over 100 disorder realizations for each val fas a func-
fects of finiteV andW on the Mott-Hubbard transition in a v ! zed valua'y .

. A . tion of the disorder strengthWW for various system sizes
2D Hubbard modefin the thermodynaml_c Ilm)tar_e not rig- (3%3,4x4,5%x5,6X6). In plotting these results, we have fac-
?rSUSI¥hk?OWn’ but Oll” fr.e\f,tults allre C?g;;SISf\r/]\t/ W;;[h t::je EXPECiored out a scale factor,= (LY2— 1)L so that the results
ation that, in general, finité vaiues ot an Should Op- ¢4 various system sizes fall on top of each other, showing
pose the me.tal-msulator Mott transition at half filling. Tq approximate current scaling with system size and disorder.
further quantify the relative magnitudes of the effects of fi-

: ; _ > The scale factom,=(LY?—1)%/L is the number of unit
nite U,V,W on the persistent current at various band f|II|ngs,[ o= ) ! " un

how in Fid. 2 \culated ¢ rﬁells or plaquettes in each square array of &izeAll four
we show in Fg. < our caiculated root-mean-square curre oninteracting disordered results scale very well, whereas the
amplitude as a function of the number of electrons in the

; one disordered resultith interaction deviates from the uni-
3% 3 quantum-dot array for various values of Mott-Hubbard

Th . 12ig optained b versal scaling at low disorder strength, where the Mott
parameters. The rms current f.“agn"““é IS obtained bY  atalinsulator transition effect dominates. The two dashed
averaging the typical currerfFig. 1) over one flux period.

2 ) . straight lines in Fig. 3 give the best fits to weak and stron
The six different parameter sets with different values of g 929 g

- . disorder scaled currents, leading to the following empirical
U,V,Wiin Fig. 2 clearly show the dominant effect of the \oq 15 for the effect of disorder on the persistent current:

Mott-Hubbard transition (for finite U) at half filling 12y12= (|_/n W) with the scaling functio bein
(N=9) and the generic destructive effect of finite disorderéi\)en by( J9W), g (W) g

at all fillings, as well as the generic tendency of the long-

range Coulomb interaction to homogenize the electron den- W7, y=(6.4+2.8)X10 2, W<1.55xt

sity in the systertf and consequently to enhance the persis- g(W)~ W F, B=184+0.49, W>1.55nt.

tent current.
In the well-studied single 1D ring geometry, the effect of The very small value of the scaling exponentn the weak

disorder(in the absence of any Coulomb interacti@m the  disorder limit is consistent with the expected logarithmic

persistent current is an exponentially strong suppre$sifn  weak localizatiok® in a 2D array, which eventually crosses

the current arising from the Anderson localization phenom-

enon associated with all electronic states being exponentially

localized in one dimension in the presence of any finite dis-
rder. For our 2D quantum-dot array the effect of finite dis-
rder W+ 0) is subtle(and much softer than in one dimen-

sion) because localization effects are logarithmically wéak

in two dimensions for smallV. (In fact, in the presence of an

external magnetic field breaking the time reversal symmetry,
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presence of finite Uby slightly enhancing the persistent cur-
rent from its finiteU-suppressed value. Whether these last
two findings remain true in the thermodynamic limit is, how-
ever, unknown.

Note that the scale factor, in Fig. 3 indicates that the
persistent current scales with the perimeter size of the array
or the square root of the number of dat¥? in the system.
We have explicitly verified this system size dependence by
doing calculations for various system sizes at various fillings.
As an example, we show as an inset of.RBga comparison
of the system size dependence of the rms current in the 1D
[ ] ring and the 2D array geometries, finding an approximately

-5 -4 -3 -2 -1 0 linear dependence drf* with the best fitw~0.46(1.1) in the
log,, (W} 2D array (1D ring). Thus, the persistent current is propor-
tional to the length of the boundary in both the 1D ring and

FIG. 3. A log-log plot of(12)? versusw averaged over 100 the 2D array geometry. _ _
disorder realizations for each value \8f is shown U=V=0) at In conclusion, we predict, based on an exact diagonaliza-
half filling in 3x3 (crossey 4x4 (triangle, 5x5 (solid ling), 6x6  ton study of the generalized disordered Mott-Hubbard
(pluses. Asterisks show the interactindJ=1 meV,V=0) results Hamiltonian, the existence of a ground-state persistent cur-
at half filling for the 3<3 system. Inse12)*2 at half filling versus ~ rent in finite 2D quantum-dot arrays that should be experi-
system sizesl(): triangles(2D array, squares1D ring). (The av- mentally observable. Direct observation of an equilibrium
erage is taken over the range of the same total flux through thpersistent current in coherent 2D quantum-dot arrays will not
systems, which varies from- ¢ /2 to ¢,/2.) The dashed lines in only verify the formation of an artificial quantum-dot mol-
the plot are the best linear fits to the corresponding data as deecule but will also shed light on the interplay among coher-
scribed in the text. ence, disorder, long- and short-range Coulomb interaction

L ) effects on Anderson-Mott-Hubbard quantum phase transi-
over to strong localization for large/. We also expect in- oo

teraction effects to be particularly important at weak disor-

der, but not so at high disorder, which is what is seen in Fig. The authors thank Charles Stafford for useful discussions
3 even at half filling. Weak disorder, in fact, produces anduring the early part of this work. This work was supported
antilocalization effecfFigs. 1c) and 2 at half filling in the by the U.S.—O.N.R.

log, ((IF)2 (LV2-1)2/13

1F. R. Waughet al, Phys. Rev. B53, 1413(1996; R. H. Blick 8F. London, J. Phys. Radiu® 347 (1937).
et al, ibid. 53, 7899(1996); F. Hoffmanet al, ibid. 51, 13 872 "N. Byers and C. N. Yang, Phys. Rev. Lef{.46 (1961).
(1995; N. C. van der Vaaret al, Phys. Rev. Lett74, 4702 8M. Buttiker, Y. Imry, and R. Landauer, Phys. Le86A, 365

(1995; D. Dixon et al, Phys. Rev. B63, 12 625(1996. (1983.

2G. Kirczenow, Phys. Rev. B6, 1439(1992. L. P. Levyet al, Phys. Rev. Lett64, 2074(1990.

SA. A. Middleton and N. S. Wingreen, Phys. Rev. Léfl, 3198  1°V. Chandrasekhaet al, Phys. Rev. Lett67, 3578(1991).
(1993. 11D, Mailly et al, Phys. Rev. Lett70, 2020(1993.

4C. A. Stafford and S. Das Sarmas, Phys. Rev. Le#. 3590  °T. Giamarchi and B. S. Shastry, Phys. Rev6B 10 915(1995,
(19949. and references therein.

5G. Klimeck, G. Chen, and S. Datta, Phys. Rev.5B, 2316 BHo-Fai Cheunget al, Phys. Rev. B37, 6050(1988.
(1994; 50, 8035(1994. 14D, Belitz and T. Kirkpatrick, Rev. Mod. Phy$6, 261 (1994.



