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Using an exact diagonalization technique within a generalized Mott-Hubbard Hamiltonian, we predict the
existence of a ground-state persistent current in coherent two-dimensional semiconductor quantum-dot arrays
pierced by an external magnetic flux. The calculated persistent current, which arises from the nontrivial
dependence of the ground-state energy on the external flux, exists in isolated arrays without any periodic
boundary condition. The sensitivity of the calculated persistent current to interaction and disorder is shown to
reflect the intricacies of various Anderson-Mott-Hubbard quantum phase transitions in two-dimensional sys-
tems.@S0163-1829~97!50816-2#

Significant recent advances in semiconductor materials
growth and nanolithography techniques now allow1 for the
fabrication of multiple quantum-dot systems in modulation-
doped two-dimensional electron structures that are quantum
mechanically coherent, and may therefore be considered
two-dimensional ‘‘artificial molecules’’ ~with individual
quantum dots being the ‘‘atomic’’ constituents of this artifi-
cial molecule!. Theoretical work on multidot systems has
mostly concentrated on the two limiting situations2,3 ~coher-
ent dots with no Coulomb interaction2 and Coulomb block-
ade of individual dots3!. In this paper, we consider coherent
two-dimensional~2D! arrays of quantum dots~i.e., 2D arti-
ficial molecules! taking into account4,5 both quantum fluctua-
tions arising from interdot hopping and electron-electron in-
teraction effects through a generalized Mott-Hubbard
Hamiltonian.4 Our main result is the prediction of anequi-
librium persistent currentin finite 2D arrays of semiconduc-
tor quantum dots in the presence of an applied magnetic field
transverse to the 2D plane. A measurement of this persistent
current in small 2D arrays will be definitive evidence for the
formation of an artificial quantum-dot molecule. The pre-
dicted persistent current is a periodic function of the external
flux and exhibits clear signature of the competition between
coherence and interaction in artificial 2D molecules. We in-
clude disorder effects in our calculation and show that our
predicted equilibrium persistent current should be experi-
mentally observable in currently~or soon-to-be! accessible
2D quantum-dot arrays.

It is well known6–8 that gauge invariance and single val-
uedness of electron wave functions allow for the existence of
a ground-state persistent current in normal metal rings sur-
rounding an external magnetic flux. The intrinsic magnetic
moment associated with this persistent current, which is pro-
portional to the current in one-dimensional~1D! rings, is an
oscillatory function of the external flux with a period equal
to the elementary flux quantumf05h/e. The existence of
such an oscillatory persistent current in normal metal rings
has been experimentally verified.9–11 Our predicted ground-
state persistent current in 2D quantum-dot arrays has some
significant differences with the existing persistent current
theoretical analyses in the 1D ring geometry. The system we
consider is a finite coherent 2D quantum-dot array, where the
one electron states are in the atomic tight-binding limit~i.e.,

the electron states tend to be strongly localized on individual
quantum dots except for weak interdot quantum tunneling! in
contrast to metallic systems that are nearly free-electron-like.
In addition, we consider a finite 2D array without any peri-
odic boundary condition in contrast to the 1D ring geometry,
which, by definition, is periodic. Another significant aspect
of our prediction is the inclusion of quantum tunneling, dis-
order, and Coulomb interaction effects on equal footings be-
cause in real semiconductor quantum-dot arrays all of these
effects are expected to be important.

We model the finite square 2D quantum-dot array of size
Lx3Ly5L dots through the following physically motivated
generalized 2D Mott-Hubbard type strongly correlated
Hamiltonian4 (c,c† are electron field operators andn̂ is the
density operator!
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wheref i j5e/\* i j AW • l i jW is the usual Peierls gauge phase fac-
tor arising from electron hopping on a lattice in a transverse
external magnetic flux~with AW the vector potential andl i jW the
spatial vector along a plaquette!. The indicesi , j are the
quantum-dot spatial positions in the array anda denotes an
electron state on the quantum dot. The generalized Mott-
Hubbard parametersU, V, andt have the usual significance
of the on-site Coulomb interaction, the long range part of the
Coulomb interaction, and the hopping kinetic energy term,
respectively, within the tight binding description of the 2D
array. We consider two spin-split energy levels«a per dot
due to quantum confinement in a dot. We assume the mag-
netic field to be weak enough for single-particle level cross-
ing effects not to be important. We concentrate here on the
collective physics in the array in the strongly interacting and
noninteracting system limiting cases leaving out the cross-
over between these two regimes due to single-dot Zeeman
physics. The Coulomb interaction in the array is expressed in
terms of the capacitance matrix representation.3 The
quantum-dot array is in the tight-binding atomic limit, and
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we therefore keep only the nearest-neighbor tunneling term
in t i j[t. Within the model defined by Eq.~1!, U,V,t are
parameters to be given as inputs using a physical description
of the quantum-dot array.

We are interested in calculating the equilibrium persistent
current flowing in the array atT50 in the presence of an
external flux threading the 2D lattice. It is easy to show by
using commutation properties ofH with the polarization op-
erator that the transverse component of the magnetic moment
density operatormz is given by the gauge invariant result

mz52
]H

]F
, ~2!

whereF is the total uniform magnetic flux piercing the finite
2D system.~We note that the external magnetic field is in the
z direction and with the 2D array in thex-y plane, and there-
foremz is the only nonzero component of the magnetization
density.! A nonzero value of the static magnetization density,
as measured by a finitemz , is equivalent to the existence of
a ground-state persistent current~whose strength is exactly
the same as the measured value ofmz because of the two-
dimensional nature of the problem!. Our goal is to calculate
the equilibrium magnetic moment density for 2D quantum-
dot arrays using Eqs.~1! and~2!. An experimental measure-
ment of a finitemz ~as a function of external flux! will be a
direct verification of the quantum-dot molecule formation.

To obtain the equilibrium persistent currentI[mz , we
calculate the ground-state energy by doing anexact diago-
nalizationof H, defined by Eq.~1!, in the basis of the total
number of electronsN in the array and the total spinSz in the
direction of the field, and then perform minimization over
Sz to find the stable ground state. The magnetic moment
density in a finite 2D quantum-dot array is calculated using
Eq. ~2!. Existing semiconductor nanofabrication techniques
are at best capable of producing coherent arrays that are
232 to 333 quantum dots in size. The Lanczos diagonal-
ization technique that we use is capable of giving the exact
interacting ground state for up to a 333 array of our interest.
We calculate the persistent current ininteracting2D arrays
up to L5333 sizes for all band fillingsn (5N/2L) by
varying the number of electronsN in each system between
N51 andN5L. We use realistic Mott-Hubbard parameters
that approximately correspond to 2D GaAs quantum-dot sys-
tems~atT50). We choose4 the intradot single-particle level
spacingD50.3 meV to be comparable in magnitude to the
interdot hopping parametert50.1 meV, with the intradot
Coulomb charging energyU;1 meV. With this choice of
parameters the 2D quantum-dot array is in the interesting
coherent ‘‘molecular’’ state referred to as the ‘‘collective
Coulomb blockade’’ regime,4 where both coherence and in-
teraction play comparable nonperturbative roles, and the
Coulomb blockade of individual dots is destroyed. Disorder
is included in our calculation through a spin-independent pa-
rameterW;D that denotes the half-width of a uniform dis-
tribution of random on-site quantum-dot energies centered
aroundD. The spin splitting~set to be 0.03D that allows us
to study the total spin transitions due to the collective motion
in the array! of the single-particle energy levels is assumed to
be independent ofW.

We show our typical calculated persistent current as a
function of the external flux in Fig. 1 for three different
values of band filling (n51/6,5/18,1/2) in the 333 system.
Results for six different situations~as described in the figure
captions! for various valuesU, V, andW are shown for each
filling with t; D is fixed throughout the calculation. The flux
f is through each elementary cell~or plaquette! of the
333 system, and the calculated equilibrium persistent cur-
rent is in absolute units. The most significant feature of Fig.
1 is the existence of a persistent current, which is periodic in
f/f0 ~note that the total flux through the system isF54f
by virtue of the four equivalent plaquettes in the 333
quantum-dot array!, whose magnitude is reasonably large
~> nA). The magnitude of the current depends, in a rather
complicated way, on the Mott-Hubbard parametersU, V,
andW, and also on the band filling~in particular, on whether
n51/2 or not!. We can, however, make the following quali-
tative observations:

~1! Away from half filling, finite disorder is the most
prominent destructive effect on the current amplitude, with
finite interaction (U,VÞ0) producing some enhancement of
the disordered current but never to the free electron
(U,V,W50) value. Without any disorder (W50), finiteU
andV have reasonably small effects on the current magni-
tude away from half filling.

~2! At half filling, however, finite on-site Coulomb repul-
sion (UÞ0) by itself dramatically suppresses the persistent
current with the long-range Coulomb interaction (VÞ0) op-
posing this dramatic suppression due to finiteU.

~3! Disorder, by itself (WÞ0,U, V50!, seems to produce

FIG. 1. Typical calculated persistent current for three different
values of band filling@n51/6(a),5/18(b),1/2(c)# in the 333 array
is plotted versus the magnetic flux through the elementary cell in
units off0 for six different sets ofU,V,W ~see the legend in the
Fig. 2 for the key to each line in the plot! in the 333 system.
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similar quantitative suppression of the persistent current at
all fillings except at half filling, where disorder enhances
~slightly! the interacting clean system current.

~4! Long-range Coulomb repulsion (VÞ0) always en-
hances the current magnitude from its finiteU andW values.

~5! The various structures~jumps and discontinuities! in
the current arise from many-body energy level crossings that
occur in the system at specific fillings and values of the mag-
netic flux. The discontinuities of the persistent current seen
in Fig. 1 correspond to the change of the total orbital mo-
mentum in the 2D array, which can be accompanied by spin-
flip transitions in the system. Finite disorder (WÞ0)
smoothens the discontinuities in the noninteracting
(U,V50) current, and removes some of the discontinuities
in the interacting (U,VÞ0) current. There are no disconti-
nuities or spin flips at half filling in the interacting system
@Fig. 1~c!#.

~6! The sign of the persistent current at zero magnetic flux
is generally dependent on the electron filling and the geom-
etry of the array. We find the interacting (UÞ0, V, W50!
persistent current in 232, 332, 432, and 333 arrays to be
diamagnetic forn51/2L and paramagnetic forn51/2. The
random disorder of strengthW (5D, as used in our calcula-
tions! does not change the sign of the persistent current.

~7! The current distribution in the clean 2D array is deter-
mined by the spatial symmetries of the system and band
filling in the array. In the clean 333 lattice the current flows
along the boundary for all electron fillings in the system.
However, the persistent current distribution is disorder real-
ization dependent.

The most important feature of our results, the strong sup-
pression of the persistent current at half filling by the on-site
Coulomb repulsionU, is a directfinite sizemanifestation of
the Mott-Hubbard metal-insulator transition, which is a true
phase transition in the thermodynamic limit. The long-range
Coulomb repulsion (VÞ0) opposes this transition in a finite
system ~leading to an enhancement in the finite
U-suppressed current amplitude forVÞ0 at half filling!. Ef-
fects of finiteV andW on the Mott-Hubbard transition in a
2D Hubbard model~in the thermodynamic limit! are not rig-
orously known, but our results are consistent with the expec-
tation that, in general, finite values ofV andW should op-
pose the metal-insulator Mott transition at half filling. To
further quantify the relative magnitudes of the effects of fi-
niteU,V,W on the persistent current at various band fillings,
we show in Fig. 2 our calculated root-mean-square current
amplitude as a function of the number of electrons in the
333 quantum-dot array for various values of Mott-Hubbard
parameters. The rms current magnitude^I 2&1/2 is obtained by
averaging the typical current~Fig. 1! over one flux period.
The six different parameter sets with different values of
U,V,W in Fig. 2 clearly show the dominant effect of the
Mott-Hubbard transition ~for finite U) at half filling
(N59) and the generic destructive effect of finite disorder
at all fillings, as well as the generic tendency of the long-
range Coulomb interaction to homogenize the electron den-
sity in the system12 and consequently to enhance the persis-
tent current.

In the well-studied single 1D ring geometry, the effect of
disorder~in the absence of any Coulomb interaction! on the
persistent current is an exponentially strong suppression13 of

the current arising from the Anderson localization phenom-
enon associated with all electronic states being exponentially
localized in one dimension in the presence of any finite dis-
order. For our 2D quantum-dot array the effect of finite dis-
order (WÞ0) is subtle~and much softer than in one dimen-
sion! because localization effects are logarithmically weak14

in two dimensions for smallW. ~In fact, in the presence of an
external magnetic field breaking the time reversal symmetry,
the localization effect is even weaker14 and may be hard to
discern in a finite sample.! This explains the rather benign
effect of having a finiteW in Figs. 1 and 2 of our results,
which should be contrasted with 1D ring calculations where
the persistent current is strongly suppressed by finite values
of W. To better quantify our finite disorder results we show
in Fig. 3 a log-log plot at half filling of the rms current
^I 2&1/2 without any interaction effects (U,V50), averaged
over 100 disorder realizations for each value ofW, as a func-
tion of the disorder strengthW for various system sizes
~333,434,535,636!. In plotting these results, we have fac-
tored out a scale factornc5(L1/221)2/L so that the results
for various system sizes fall on top of each other, showing
approximate current scaling with system size and disorder.
@The scale factornc5(L1/221)2/L is the number of unit
cells or plaquettes in each square array of sizeL.# All four
noninteracting disordered results scale very well, whereas the
one disordered resultwith interaction deviates from the uni-
versal scaling at low disorder strength, where the Mott
metal-insulator transition effect dominates. The two dashed
straight lines in Fig. 3 give the best fits to weak and strong
disorder scaled currents, leading to the following empirical
results for the effect of disorder on the persistent current:
^I 2&1/25(L/nc)g(W), with the scaling functiong(W) being
given by

g~W!;HW2g, g5~6.462.8!31022, W,1.55pt

W2b, b51.8460.49, W.1.55pt.

The very small value of the scaling exponentg in the weak
disorder limit is consistent with the expected logarithmic
weak localization14 in a 2D array, which eventually crosses

FIG. 2. A plot of the RMS persistent current^I 2&1/2 versus the
number of electronsN in the 333 array for the six different sets of
U,V,W ~as shown in the legends! in the 333 system. All energies
are given in the meV units.
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over to strong localization for largeW. We also expect in-
teraction effects to be particularly important at weak disor-
der, but not so at high disorder, which is what is seen in Fig.
3 even at half filling. Weak disorder, in fact, produces an
antilocalization effect@Figs. 1~c! and 2# at half filling in the

presence of finite U, by slightly enhancing the persistent cur-
rent from its finiteU-suppressed value. Whether these last
two findings remain true in the thermodynamic limit is, how-
ever, unknown.

Note that the scale factornc in Fig. 3 indicates that the
persistent current scales with the perimeter size of the array
or the square root of the number of dotsL1/2 in the system.
We have explicitly verified this system size dependence by
doing calculations for various system sizes at various fillings.
As an example, we show as an inset of Fig. 3 a comparison
of the system size dependence of the rms current in the 1D
ring and the 2D array geometries, finding an approximately
linear dependence onLa with the best fita'0.46~1.1! in the
2D array ~1D ring!. Thus, the persistent current is propor-
tional to the length of the boundary in both the 1D ring and
the 2D array geometry.

In conclusion, we predict, based on an exact diagonaliza-
ton study of the generalized disordered Mott-Hubbard
Hamiltonian, the existence of a ground-state persistent cur-
rent in finite 2D quantum-dot arrays that should be experi-
mentally observable. Direct observation of an equilibrium
persistent current in coherent 2D quantum-dot arrays will not
only verify the formation of an artificial quantum-dot mol-
ecule but will also shed light on the interplay among coher-
ence, disorder, long- and short-range Coulomb interaction
effects on Anderson-Mott-Hubbard quantum phase transi-
tions.
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FIG. 3. A log-log plot of ^I 2&1/2 versusW averaged over 100
disorder realizations for each value ofW is shown (U5V50) at
half filling in 333 ~crosses!, 434 ~triangles!, 535 ~solid line!, 636
~pluses!. Asterisks show the interacting (U51 meV,V50) results
at half filling for the 333 system. Inset:̂I 2&1/2 at half filling versus
system sizes (L): triangles~2D array!, squares~1D ring!. ~The av-
erage is taken over the range of the same total flux through the
systems, which varies from2f0 /2 to f0 /2.! The dashed lines in
the plot are the best linear fits to the corresponding data as de-
scribed in the text.
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